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A narrative review on environmental impacts 
of cannabis cultivation
Zhonghua Zheng1, Kelsey Fiddes2 and Liangcheng Yang2*  

Abstract 

Interest in growing cannabis for medical and recreational purposes is increasing worldwide. This study reviews the 
environmental impacts of cannabis cultivation. Results show that both indoor and outdoor cannabis growing is 
water-intensive. The high water demand leads to water pollution and diversion, which could negatively affect the 
ecosystem. Studies found out that cannabis plants emit a significant amount of biogenic volatile organic compounds, 
which could cause indoor air quality issues. Indoor cannabis cultivation is energy-consuming, mainly due to heating, 
ventilation, air conditioning, and lighting. Energy consumption leads to greenhouse gas emissions. Cannabis cultiva-
tion could directly contribute to soil erosion. Meanwhile, cannabis plants have the ability to absorb and store heavy 
metals. It is envisioned that technologies such as precision irrigation could reduce water use, and application of tools 
such as life cycle analysis would advance understanding of the environmental impacts of cannabis cultivation.
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Background
TheCannabis plant has been cultivated throughout the 
world since ancient civilizations and used for thousands 
of years for both medicinal and recreational applications. 
Cannabis contains a psychoactive compound called tet-
rahydrocannabinols (THC) that creates a psychogenic 
effect. It can be consumed through the respiratory tract 
and digestive tract through smoking and oral ingesting, 
respectively. In contrast, cannabidiol (CBD), another 
component derived from cannabis, is a non-psychoactive 
cannabinoid that has gained popularity for its medicinal 
values and as a supplement. In the USA, an estimated 
“30 million Americans use marijuana (cannabis) at least 
occasionally, and 20 million use it at least once per 
month” (Osbeck and Bromberg 2017). Despite being used 
widely, the lack of science-based information due to the 
legal status of cannabis in the last centuries worldwide 
(e.g., in the USA) has prevented research.

Cultivation methods have an unavoidable influence 
on the environment in different degrees. Outdoor cul-
tivation is the traditional and original method of canna-
bis cultivation. Although with low costs, it is subject to 
weather and natural resources. Improper soil and water 
resources management and pest control may induce crit-
ical environmental issues. On the contrary, indoor cul-
tivation (including greenhouse cultivation) enables full 
control over all aspects of the plants, such as light and 
temperature, but is constrained by higher costs, energy 
demand, and associated environmental implications. 
Reducing the global environmental impact of agriculture 
is vital to maintain environmental sustainability. How-
ever, there is a lack of systemic principles towards the 
sustainable farming of cannabis because its environmen-
tal impacts remain unclear. In the wake of the unprece-
dented legalization of cannabis, there is a pressing need 
for a complete review of its environmental assessment.

In this paper, we conduct a narrative review of the avail-
able literature. We strive to build a better understanding 
of the environmental impacts induced by cannabis cul-
tivation. This improved understanding can benefit com-
munities, including policymakers, cannabis industry 
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stakeholders, agricultural engineers, ecologists, and envi-
ronmental scientists. This review covers the environmental 
effects on water, air, and soil. Energy consumption and car-
bon footprint are included as well. Possible research direc-
tions are also put forward.

Methods and materials
The literature search for this narrative review paper was 
conducted several times in 2020 and 2021. We searched 
combinations of keywords such as “cannabis cultivation,” 
“marijuana cultivation,” “cannabis water demand,” “can-
nabis emissions,” “cannabis energy demand”, and “envi-
ronmental impacts.” Papers, reports, and government 
documents from 1973 to 2021 from Science Direct and 
Google Scholar databases have been searched in English. 
We screened over 250 literatures and discarded irrelevant 
literature for further analysis. A total of 63 literatures were 
cited in the review.

Water demand analysis
To unify the water demand calculations from different data 
sources, we conducted the following unit conversions:

Similarly, units reported for water demand such as 
“mm/total growing period” were converted to “gallon/

(1)1 inch of water = 27,154 gallons of water per acre

(2)1 acre = 43,560 ft
2

ft2/day”. For example, the water need of cotton is 700 mm 
per total growing period. The water demand was calcu-
lated to:

Finally, the minimal daily water demand for cotton 
(shown in Table  1) was calculated using the maximal 
growing days (195 days):

Water demand and pollution
Water demand
Cannabis is a water- and nutrient-intensive crop (Carah 
et  al. 2015). Table  1 shows that the water demand for 
cannabis growing far exceeds the water needs of many 
commodity crops. For example, cannabis in a grow-
ing season needs twice as much as the water required 
by maize, soybean, and wheat. On average, a canna-
bis plant is estimated to consume 22.7  l (6 gallons) of 
water per day during the growing season, which typi-
cally ranges from June to October for an approximate 
total of 150 days (Butsic and Brenner 2016). As a com-
parison, the mean water usage for the wine grapes, the 
other major irrigated crop in the same region, was esti-
mated as 12.64  l of water per day (Bauer et  al. 2015). 
Although the average daily water use varies from site 

(3)700 mm = 27.56 inches = 748,346 gallon per acre

(4)
748,346 gallon per acre

195 days
×

acre

43,560 ft2
= 0.09

gallons

ft2 × days

Table 1 Water demand comparison between Cannabis and commodity crops

Notea: The water demand of cannabis is calculated based on 22.7 l (6 gallons) of water per day during the growing season and 200 plants per 5,000 sq. ft (HGA, 2010)

Noteb: The water demand of crops is based on crop water need from Table 14 in Brouwer Heibloem (Brouwer and Heibloem, 1986). We convert the unit from mm to 
million gallon  acre−1 according to the rule of unit conversion where 1 acre inch is equivalent to 27,154.29 gallon

Plants Total growing period 
(days)

Water demand per 
season
(million gallons acre−1)

Daily water demand
(gallon ft−2 day−1)

Ref

Cannabis: outdoor 150 1.57 a 0.24 (HGA, 2010)

Cannabis: outdoor August n.a 0.22 (Wilson et al., 2019)

Cannabis: outdoor September n.a 0.17 (Wilson et al., 2019)

Cannabis: indoor August n.a 0.18 (Wilson et al., 2019)

Cannabis: indoor September n.a 0.22 (Wilson et al., 2019)

Cotton 180–195 0.75–1.39b 0.09–0.15 (Brouwer and Heibloem, 1986)

Cotton / / 0.14–0.17 (Hussain et al., 2020)

Maize 130–150 0.53–0.86b 0.07–0.13 (Brouwer and Heibloem, 1986)

Corn / / 0.22 (peak) (Rogers et al. 2017)

Soybean 135–150 0.48–0.75b 0.07–0.13 (Brouwer and Heibloem, 1986)

Soybean / / 0.22 (peak) (Rogers et al. 2017)

Wheat 120–150 0.48–0.69b 0.07–0.19 (Brouwer and Heibloem, 1986)

Wheat / / 0.19 (peak) (Rogers et al. 2017)

Rice 90–150 0.48–0.75b 0.09–0.18 (Brouwer and Heibloem, 1986)

Rice / / 0.11–0.15 (Intaboot, 2017)
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to site, depending on many factors such as the geo-
graphic characters, soil properties, weather, and culti-
vation types, it is an agreed-upon truth that cannabis is 
a high-use water plant. A survey conducted by Wilson 
et al. (2019) reports the water usage of outdoor canna-
bis cultivation in California is 5.5 gallons per day per 
plant (equivalent to 0.22 gallon  ft−2   day−1) in August 
and 5.1 gallons per day per plant (equivalent to 0.17 
gallon  ft−2   day−1) in September (Wilson et  al. 2019). 
The indoor cultivation water consumptions are 2.5 and 
2.8 gallons per day per plant in August and September. 
However, the application rates (0.18 gallon  ft−2   day−1 
in August and 0.22 gallon  ft−2  day−1 in September) are 
very close to outdoor cultivation (Wilson et  al. 2019). 
In California, irrigated agriculture is regarded as the 
single largest water consumer, accounting for 70–80% 
of stored surface water and pumping vast volumes of 
groundwater (Moyle 2002; Bauer et al. 2015). The great 
water demand induced by agriculture, amid population 
growth and climate change, is most likely to exacerbate 
water scarcity in the foreseeable future (Bauer et  al. 
2015). Notably, the predicted decrease in water avail-
ability downscales in California may adversely affect 
the value of farmland (Schlenker et al. 2007) and pose 
a severe challenge to the cannabis industry. As a result, 
the immense amount of water necessary to keep canna-
bis plants alive and healthy will continue to burden our 
environment.

The high water demand presses the need for water 
sources. Water diversion is a common practice, which 
removes or transfers the water from one watershed to 
another to meet irrigation requirements. While the water 
diversion alleviates the water shortage problem for can-
nabis cultivation, it also presents new challenges. A study 
conducted by Bauer et al. quantitatively revealed that sur-
face water diversions for irrigation led to reduced flows 
and dewatered streams (Bauer et  al. 2015). Four north-
western California watersheds were investigated in this 
study since they are remote, primarily forested, sparsely 
populated. The results show that the annual seven-day 
low flow was reduced by up to 23% in the least impacted 
watersheds of this study, and water demands for canna-
bis cultivation in three watersheds exceed streamflow 
during the low-flow period. More recently, Dillis et  al. 
identified well water (58.2%), surface water diversions 
(21.6%), and spring diversions (16.2%), are the most com-
monly extracted water source for cannabis cultivation in 
the North Coast region of California (Dillis et al. 2019). 
The distributing percentages, however, vary among the 
counties. For example, the growers in Humboldt County 
relied more on surface water and spring diversions (57%) 
than the wells (40.9%), while another study conducted by 
Wilson et al. showed that groundwater (wells or springs) 

was the primary water source for irrigation, followed by 
municipal water, rainwater, and surface water (Wilson 
et al. 2019).

Water pollution
Cannabis cultivation, especially illegal cultivation, may 
deteriorate water quality. Recent studies have suggested 
the considerable demands of nutrition such as nitro-
gen (Saloner and Bernstein 2020, 2021), phosphorous 
(Shiponi and Bernstein 2021), and potassium (Saloner 
et  al. 2019) for cannabis growth. However, there is lim-
ited data on the impact of cannabis cultivation on water 
quality worldwide or even nationwide. Here we focus on 
a survey conducted by Wilson et al. (2019) for CA, USA. 
Based on the survey, more than 30 different soil amend-
ments and foliar nutrient sprays were used to maintain 
nutrition and fertility (Wilson et  al. 2019). The applied 
pesticides (including herbicides, insecticides, fungicides, 
nematodes, and rodenticides), due to routine pest and 
disease controls, make their way into the water without 
restriction and therefore posing significant risks to the 
water environment (Gabriel et  al. 2013). The transport 
and fate of the applied fertilizers and pesticides vary. 
For example, nitrogen and pesticides can get into run-
off or leach into groundwater due to rainfall or excessive 
irrigation (Trautmann et  al. 2012). If the polluted water 
continues to be used, it would add contaminants into 
soil, surface water, and groundwater. These chemicals 
may threaten humans and crops through the food chain 
(Pimentel and Edwards 1982). The other major irrigated 
crops can also be significantly impacted since the place-
ment of crops is subject to the environmental safety of 
runoff, groundwater contamination, and the poisoning 
of nearby bodies of water. However, without the ability 
to sample water quality and assess the extent to which 
chemical inputs are entering adjacent water bodies, the 
ability to link cultivation practices to water pollution is 
greatly limited (Gianotti et  al. 2017). Besides, few envi-
ronmental clean-up and remediation efforts in the pol-
luted watersheds are accessible due to a lack of resources 
and staff in state or federal agencies.

Water ecosystem
Water diversion and water pollution affect the water 
ecosystem. The high demand for water due to cannabis 
cultivation in watersheds affects wildlife such as fish and 
amphibians in a significant way since cannabis cultiva-
tion is widespread within the boundaries of the water-
sheds, where the downstream water houses populations 
of sensitive aquatic species. The diminished flows may be 
notably detrimental to salmonid fishes since they need 
clean, cold water and suitable flow regimes (Bauer et al. 
2015). As the reduced streamflow has a strong positive 
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correlation with increased water temperature, indirectly 
resulting in reduced growth rates in salmonids, lowered 
dissolved oxygen, increased predation risk, and increased 
susceptibility to disease (Marine and Cech 2004). It has 
been reported that there are 80%–116% increases in 
cannabis cultivation sites near high-quality habitats for 
threatened and endangered salmonid fish species (Butsic 
et  al. 2018). Besides, the threat of water diversions and 
altered stream flows to amphibians cannot be neglected. 
The desiccation-intolerant species, such as southern tor-
rent salamander (Rhyacotriton variegatus) and coastal 
tailed frog (Ascaphus truei), are vulnerable to headwater 
stream diversions or dewatering (Bauer et al. 2015). The 
headwater stream-dwelling amphibians also exhibit high 
sensitivity to water temperature changes (Bury 2008). It 
is vital to get all the growers on the same page regard-
ing water resources because flow modification is one of 
the greatest threats to aquatic biodiversity. The cannabis 
industry is becoming a major abuser concerning water 
diversions. Studies show that the second-generation anti-
coagulant rodenticides (ARs) affect many predators in 
both rural and urban settings (Gabriel et al. 2013, 2012; 
Elliott et al. 2014). Necropsy revealed that a male fisher 
had died of acute AR poisoning in April 2009, most likely 
due to the source of numerous illegal cannabis cultiva-
tion sites currently found on public lands throughout the 
western USA (Thompson et al. 2014). A study examining 
the effects of Ars on the Pacific fisher reports that four 
out of fifty-eight deceased fishers examined were killed 
by “lethal toxicosis, indicated by AR exposure.”

Outdoor and indoor air quality
Outdoor air quality
Little attention has been devoted so far to study the 
impact of cannabis cultivation on outdoor air quality. 
The emission of volatile organic compounds (VOCs) 
attracts special attention because of the vital role played 
by VOCs in ozone and particulate matter formation, 
as well as VOC’s health impact (D.R. et  al. 2001; Jacob 
1999). Amongst the VOCs, the biogenic volatile organic 
compounds (BVOCs) (Atkinson and Arey 2003), mainly 
emitted from vegetation, account for approximately 89% 
of the total atmospheric VOCs (Goldstein and Galbally 
2007). Previous studies have identified cannabis plant tis-
sues contain high concentrations of many BVOCs such as 
monoterpenes  (C6H16), terpenoid compounds (e.g., euca-
lyptol;  C10H18O), sesquiterpenes  (C15H24), and methanol. 
Hood et al. investigated that the monoterpenes α-pinene, 
β-pinene, β-myrcene, and d-limonene accounted for over 
85% of the detected VOCs emitted, with acetone and 
methanol contributing a further 10% (Hood et  al. 1973; 
Rice and Koziel 2015; Ross and ElSohly 1996). However, 
limited systematic studies characterized and accurately 

quantified volatile emissions during the growing and 
budding process (Wang et al. 2019b).

To determine the BVOCs emission rates, Wang et  al. 
employed an enclosure chamber and live Cannabis spp. 
plants during a 90-day growing period considering four 
different strains of Cannabis spp. including Critical Mass, 
Lemon Wheel, Elephant Purple, and Rockstar Kush 
(Wang et al. 2019b). They found the percentages of indi-
vidual BVOCs emissions were dominated by β-myrcene 
(18–60%), eucalyptol (17–38%), and d-limonene (3–10%) 
for all strains during peak growth (Table 2). The terpene 
emission capacity was determined, ranging from 4.9 
to 8.7 μg-C per g dry biomass per hour. The estimation 
with μg-C per g dry biomass per hour for Denver would 
result in more than double the existing rate of BVOCs 
emissions to 520 metric ton  year−1, leading to 2100 met-
ric ton  year−1 of ozone, and 131 metric ton  year−1 of PM 
(particular matter). However, a high emission can be 
expected since the better growing conditions contribute 
to rapid growth and higher biomass yields.

A recent study conducted by Wang et al. was the first 
attempt at developing an emission inventory for can-
nabis (Wang et  al., 2019a). This study compiled a bot-
tom-up emission inventory of BVOCs from cannabis 
cultivation facilities (CCFs) in Colorado using the best 
available information. Scenarios analysis shows that the 
highest emissions of terpenes occur in Denver County, 
with rates ranging from 36 to 362 t  year−1, contributing 
to more than half of the emissions across Colorado. With 
the emission inventory, the air quality simulations using 
the Comprehensive Air Quality Model with extensions 
(CAMx) show that increments in terpene concentrations 
could results in an increase of up to 0.34  ppb in hourly 

Table 2 Composition of BVOCs

Note: BVOCs biogenic volatile organic compounds

Data adapted from Wang, C. T., Wiedinmyer, C., Ashworth, K., Harley, P. C., Ortega, 
J., Vizuete, W. (2019b). Leaf enclosure measurements for determining volatile 
organic compound emission capacity from Cannabis spp. Atmos. Environ., 199, 
80–87. (Wang et al., 2019b)

BVOCs 30-day (%) 46-day (%)

β-myrcene 26.6–42.6 18.3–59.4

Eucalyptol 18.5–32.8 16.8–37.6

d-limonene 4.4–17.2 3.0–10.0

p-cymene 2.3–12.8 0.6–4.6

γ-terpinene 2.0–9.7 2.8–14.0

β-pinene 0.4–6.9 1.3–3.5

(Z)-β-ocimene 1.3–5.9 0.0

Sabinene 0.0–5.0 0.2–10.9

Camphene 0.0–4.4 0.0–1.0

α-pinene 0.8–4.3 2.7–3.6

Thujene 0.9–3.1 1.2–3.4

α-terpinene 0.0–2.0 0.5–5.4
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ozone concentrations during the morning and 0.67  ppb 
at night. Given that Denver county is currently classi-
fied as “moderate” non-attainment of the ozone standard 
(USEPA 2020), the air quality control of the CCF opera-
tion is essential.

In addition to BVOC emissions, like every crop cultiva-
tion in water-sensitive zones, the fertilization of canna-
bis causes deterioration in air quality. As fertilization is 
one of the most critical factors for cannabis cultivation, 
the introduction of excessive nitrogen into the environ-
ment without regulation can lead to adverse multi-scale 
impacts (Balasubramanian et  al. 2017; Galloway et  al. 
2003). Ammonia in the chemical nitrogen fertilizer vol-
atilized from cropland to the atmosphere forms PM via 
the reaction with acidic compounds in the atmosphere. 
Besides, the wet and dry deposition of reactive nitrogen 
consisting of ammonia continuously deteriorates the eco-
logical environment. Both soil acidification and water 
eutrophication risks could significantly increase because 
of the nitrogen cascade (Galloway et  al. 2003; Galloway 
et al. 2008).

Indoor air quality
Although cannabis can be grown outdoors in many 
regions of the world, sizeable commercial cultivation can 
also occur indoors or in greenhouses. Ambient measure-
ments collected inside growing operations pre-legaliza-
tion have found concentrations as high as 50–100 ppbv 
of terpenes including α-pinene, β-pinene, β-myrcene, 
and d-limonene for fewer than 100 plants in the canna-
bis cultivation facility (Martyny et al. 2013; Atkinson and 
Arey 2003; Wang et  al. 2019a). The study conducted by 
Spokane Regional Clean Air Agency (SRCAA) measured 
indoor VOCs in seven flowering rooms and two dry bud 
rooms across four different CCFs, reporting the aver-
age terpene concentration was 361  ppb (27–1676  ppb) 
(Southwellb et al. 2017).

Samburova et al. analyzed the BVOCs emissions from 
four indoor-growing Cannabis facilities in California 
and Nevada (Samburova et  al. 2019). They reported 
the indoor concentrations of measured BVOCs could 

vary among the facilities, ranging from 112  μg   m−3 to 
5502  μg   m−3 (Table  3), for a total measured BVOCs 
of 744  mg   day−1  plant−1. The BVOCs characteriza-
tion partially agrees with the measurements shown 
by Wang et  al. where β-myrcene is one of the domi-
nated BVOCs emitted by Cannabis, but eucalyptol was 
not a dominating terpene in this study (Wang et  al. 
2019b). The obtained emission rates ranged between 
0 to 518.25  mg   day−1  plant−1. The largest emission 
contributors were β-pinene (518.25  mg   day−1  plant−1, 
70% of the total BVOCs) α-pinene (142.92  mg   day−1 
 plant−1, 19% of the total BVOCs), and D-limonene 
(30.86  mg   day−1  plant−1, 4% of the total BVOCs). Sil-
vey (2019) characterized the overall VOC total terpene 
mass concentration using sorbent tube sampling and 
found a higher range between 1.5  mg   m−3 (office) to 
34 mg  m−3 (trimming room) (Silvey 2019).

The indoor cannabis (marijuana) grows operations 
(known as “IMGO”) also pose a risk of potential health 
hazards such as mold exposure, pesticide, and chemical 
exposure (Martyny et  al. 2013). For example, cannabis 
cultivations typically require a temperature between 
21 and 32 °C, with a relative humidity between 50 and 
70% (Koch et  al. 2010), while the ventilation rate is 
often suppressed to limit odor emanating, especially 
for the illegal cultivation. John and Miller suggested 
that the houses built after 1980 in Canada are at high 
risk of moisture-related damage if used as IMGO, and 
increased moisture levels of the IMGO are associated 
with elevated mold spore levels (Johnson and Miller 
2012). The reports by IOM (IOM 2004) and WHO 
(World Health Organization) showed that the presence 
of mold in damp indoor environments is correlated 
with upper respiratory tract symptoms, respiratory 
infections, wheeze, cough, current asthma, asthma 
symptoms in sensitized individuals, hypersensitivity 
pneumonitis, and dyspnea (WHO 2009). Cuypers et al. 
conducted a study in Europe, showing that pesticide 
use in Belgian indoor cannabis cultivation is a common 
practice, putting both the growers and intervention 
staff at considerable risk (Cuypers et  al. 2017). They 

Table 3 Indoor BVOCs concentrations

BVOCs Biogenic volatile organic compounds

BVOCs Sites Unit in ppbv Unit in ug m−3 Ref

α-pinene, β-myrcene, β-pinene, 
and limonene

Growing room 50–100 n.a (Martyny et al., 2013; Wang et al., 2019a)

Terpenes Flowering room 30–1600 n.a (Southwellb et al., 2017; Wang et al., 2019a)

Total BVOCs Growing room n.a 112–5502 (Samburova et al., 2019)

Total BVOCs Curing room n.a 863–1055 (Cuypers et al., 2017)

Total BVOCs Purging room n.a 1005 (Trautmann et al., 2012)
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found 19 pesticides in 64.3% of 72 cannabis plant sam-
ples and 65.2% of 46 carbon filter cloth samples, includ-
ing o-phenylphenol, bifenazate, and cypermethrin.

Energy demands and carbon footprint
Indoor cultivation energy demands and impacts
As one of the most energy-intensive industries in the 
USA (Warren 2015), cannabis cultivation results in up to 
$6B in energy costs annually, accounting for at least 1% of 
the nation’s electricity (Mills 2012). The cannabis electric-
ity consumption increases to 3% in California (Warren 
2015). In Denver, the average electricity use from canna-
bis cultivation and associated infused product manufac-
turing increased by 36% annually between 2012 and 2016 
(DPHE 2018). As cannabis becomes legalized throughout 
the country, energy consumption will continue to grow in 
the foreseeable future.

The energy use of indoor cannabis cultivation arises 
from a range of equipment, falling into two major catego-
ries: lighting and precise microclimate control. For the 
cannabis plants to thrive and therefore make the growers 
a profit, several energy-intensive tools are regularly uti-
lized. The energy demand for indoor cannabis cultivation 
was reported to be 6074 kWh kg-yield−1 (Mills 2012). 
Figure  1 shows the end-use electricity consumption 
according to a study performed by the Northwest Power 
and Conservation Council (NPCC 2014). Amongst them, 
lighting, HVAC (heating, ventilation, and air condition-
ing), and dehumidification account for 89% of the total 
end-use electricity consumption.

High-intensity lighting is the main contributor to elec-
tricity for indoor production facilities. Sweet pointed 
out that lighting alone can account for up to 86% of the 
total electricity usage (Sweet 2016). It has been reported 
that the intensity of the indoor cannabis lamps (25 klux 
for leaf phase, and 100 klux for flowering (Mills 2012)) 
approximates that of hospital operating room lamps, 
which is up to 500 times greater than a standard reading 

light (Warren 2015). Indoor cultivation facilities typically 
utilize a combination of high-pressure sodium (HPS), 
ceramic metal halide (CMH), fluorescent, and/or light-
emitting diode (LED) lamps. In addition to the lamp 
type, lighting system design is also critical to maximizing 
energy efficiency in the cultivation facilities, and time of 
use also plays a crucial role.

HVAC Dehumidification system ensures frequent air 
exchanges, ventilation, temperature, and humidity con-
trol day and night. This system can account for more than 
half of the total energy consumption in an indoor culti-
vation facility (Mills 2012). Besides, water and energy are 
inextricably linked, given water and wastewater utilities 
contribute to 5% of overall USA electricity consumption 
(Pimentel and Edwards 1982). The grow systems (includ-
ing automation and sensors), irrigation (including ferti-
gation and pumps), and  CO2 injection also consume an 
amount of electricity.

Energy production, especially fossil fuel use, is account-
able for the environmental impact. Table  4 shows that 
coal and natural gas make up almost three-quarters of the 
power supply for Colorado customers in the USA. Con-
sidering the environmental impacts of different energy 
sources, the extensive usages of fossil fuels (coal, natural 
gas, and oil) causes serious environmental damage and 

Fig. 1 End-use electricity consumption

Table 4 Power supply mix for Colorado customers

Data adapted from Dever Publich Health Environment. 2018. Cannabis 
Environmental Best Management Practices Guide. (DPHE, 2018)

Energy sources Total 
generation 
mix (%)

Coal 44

Natural gas 28

Wind 23

Solar 3

Hydroelectric 2

Others (including biomass, oil and nuclear generation) 0

Lighting, 38% 

HVAC& 
Dehumidification, 51 % 
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pose effects on (1) humans, (2) animals, (3) farm pro-
duce, plants, and forests, (4) aquatic ecosystems, and (5) 
buildings and structures (Barbir et al. 1990).

Carbon footprint
The term carbon footprint refers to “a measure of the 
exclusive total amount of carbon dioxide emissions that 
is directly and indirectly caused by an activity or is accu-
mulated over the life stages of a product” (Wiedmann 
and Minx 2008). In the context of cannabis cultivation, 
a carbon footprint can be defined as the total amount of 
greenhouse gases (GHGs) emitted during the production 
of cannabis. Denver Department of Public Health Envi-
ronment broke the GHG inventory down into the three 
primary scopes: (1) an organization’s direct GHG emis-
sions produced on-site; (2) an organization’s off-site car-
bon emissions, or indirect emissions; (3) all other indirect 
carbon emissions associated with the operation of a busi-
ness (DPHE 2018). However, a relatively small body of lit-
erature pays particular attention to the carbon footprint 
calculation. Mills estimates that producing one kilogram 
of processed cannabis indoors leads to 4600  kg of  CO2 
emissions to the atmosphere, equivalent to one passenger 
vehicle driven for one year or 11,414 miles driven by an 
average passenger vehicle (Mills 2012). Amongst them, 
the emissions factor (kg  CO2 emissions per kg yield) of 
lighting is 1520 (33%), followed by ventilation and dehu-
midify (1231, 27%), and air conditioning (855, 19%). On 
the other hand, outdoor cultivation can alleviate the 
energy use for lighting and precise microclimate con-
trol but requires other facilities and techniques such as 
water pumping. Carbon footprint analysis is the first step 
towards the carbon reduction strategies, which contrib-
utes to the reduction of the environmental impacts of the 
cannabis industry. Future studies are foreseen to improve 
the understanding of the carbon footprint of cannabis 
cultivation both indoors and outdoors.

Soil erosion and pollution
Soil erosion
Soil erosion is a natural process that occurs when there is 
a loss or removal of the top layer of soil due to rain, wind, 
deforestation, or any other human activities. It increases 
fine-sediment loading into streams and threatens rare 
and endangered species (Carah et  al. 2015). Soil ero-
sion can happen slowly due to wind or quickly due to the 
heavy rainfall event. Land terracing, road construction, 
and forest clearing make their ways to remove native veg-
etation and to induce soil erosion (Carah et al. 2015). Bar-
ringer (Barringer 2013) and O’Hare et al. suggested that 
cannabis cultivation directly contributes to soil erosion 
(O’Hare et al. 2013). The slope is a useful proxy for ero-
sion potential since soil on steep slopes tends to erosion 

when cleared or cultivated (Butsic et al. 2018). Butsic and 
Brenner conducted a systematic, spatially explicit survey 
for the Humboldt County, California, involving digitiz-
ing 4,428 grow sites in 60 watersheds (Butsic and Bren-
ner 2016). About 22% of the clustered cannabis on steep 
slopes indicates a risk of erosion. Many studies also sug-
gest that cannabis cultivation can result in deforestation 
and forest fragmentation (Wang et al. 2017), which exac-
erbate soil erosion. Though greenhouse prevents soil ero-
sion, they are surrounded by large clearings accumulated 
during construction with exposed soils subject to erosion 
(Bauer et al. 2015).

Phytoremediation potential
Cannabis has gradually garnered attention as a “biore-
mediation crop” because of its strong ability to absorb-
ing and storing heavy metals (McPartland and McKernan 
2017). It can remove heavy metal substances from sub-
strate soils and keep these in its tissues by means of its 
bio-accumulative capacity (Dryburgh et  al. 2018). Usu-
ally, it takes up high levels of heavy metals from the soil 
or growing medium via its roots and potentially depos-
its into its flowers (Seltenrich 2019). Tainted fertilizer 
uptake from the soil is often a source of heavy metals 
contamination such as arsenic, cadmium, lead, and mer-
cury. Singani and Ahmadi reported that Cannabis sativa 
could absorb lead and cadmium from soils amended 
with contaminated cow and poultry manures (Singani 
and Ahmadi 2012). Though limited studies discussed the 
effectiveness of cannabis for heavy metals removal, many 
studies have addressed the uptake of heavy metals by 
industrial hemp (Campbell et al. 2002; Linger et al. 2002). 
It indicates that the cannabis plant is qualified as a phy-
toremediation of contaminated soils.

Conclusions and envisions
A summary of the environmental impacts of canna-
bis cultivation is shown in Fig.  2. Water demand and 
usage will continue to be a major concern. Illegal can-
nabis cultivation and improper operation may raise 
water pollution issues. Studies on cannabis’ physiologi-
cal properties will guide to determine water demand. 
Besides, identifying and applying best management 
practices, such as precision irrigation and enhanced cli-
mate control, will be critical to minimize the environ-
mental impacts on water. Energy consumptions mainly 
come from the equipment operation of the indoor cul-
tivations such as lighting, HVAC, and dehumidifica-
tion. Carbon footprint can be calculated both indoors 
and outdoors based on energy consumption. Quanti-
tatively accounting for the energy assumption across 
operations at scales is the key to better estimating the 
carbon footprint. Techniques such as life cycle energy 
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assessment and life cycle carbon emissions assessment 
would offer informative guidance to reduce the envi-
ronmental impacts. Few studies have focused on the 
impacts of cannabis cultivation on air quality. Evidence 
has emerged that BVOCs and fertilization may contrib-
ute to outdoor air quality issues. Indoor air pollutants, 
i.e., BVOCs emission, mold, pesticide, and chemicals 
pose a risk of health hazards. Field or chamber stud-
ies on determining the species and emission rate of 
BVOCs, trace gases, and particles from the plant, plant 
detritus, and soils are important. Much work will be 
needed to include this information in the emission 
inventory for air quality modeling. Investigation con-
cerning the contribution of those species to regional, 
even global air quality, is useful for policymakers and 
the public. Besides, a better understanding of indoor 
pollutant concentration and emission ensures the safety 
of indoor operation. The environmental impact of can-
nabis cultivation on soil quality has two sides, and it 
needs to be treated dialectically. On one side, cannabis 
cultivation directly contributes to soil erosion. On the 
other side, cannabis has a strong ability to absorb and 
store heavy metals in the soil. Further studies on the 
soil mechanics and dynamics of heavy metals in plant-
soil interactions are needed.
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