



To: San Francisco Board of Supervisors  
From: Monchamp Meldrum LLP  
Date: February 2, 2026  
RE: Proposed 350 Amber Drive Project  
File No. **251094** – Appeal of CEQA Exemption from Environmental Review;  
Case No. 2024-0004318ENV  
File No. **251098** – Appeal of Conditional Use Authorization Approval  
Case No. 2024-0004318CUA

---

Our firm represents the applicant AT&T Wireless (AT&T) regarding the appeals by the Diamond Heights Community Association (DHCA) of the approval of the California Environmental Quality Act (CEQA) exemption and Conditional Use Authorization (CUA) for the above-referenced project at 350 Amber Drive in San Francisco (Project). AT&T submitted its opposition to the CEQA appeal on November 26, 2025 (AT&T CEQA Rebuttal) and its opposition to the CUA appeal on December 3, 2025 (AT&T December 3<sup>rd</sup> CUA Rebuttal). This memorandum and its attachments provide supplemental substantial evidence to support the City's Project approvals. Additionally, this memorandum addresses DHCA's letter of January 30, 2026 (DHCA January 30<sup>th</sup> Submittal), which furthers their misinterpretation of federal statutes and case law.

## I. Executive Summary

AT&T submits expert opinion to the City on the following issues raised by DHCA:

- Slope Instability-Compression/Settlement of Existing Fills: As detailed in the Geist Engineering Geotechnical Executive Summary dated February 2, 2026 (Exhibit A) and the Salem Engineering Geotechnical Engineering Investigation dated January 19, 2026 (Exhibit B), the Project will not increase the risk of slope instability or the potential for future compression/settlement of existing fills. The Vector Engineering Structural Drawings and Structural Calculations dated January 28, 2026 (Exhibits C and D) reflect the recommendations set forth in the Salem Investigation.
- Fire Risk: As explained in the declaration of expert fire investigator (retired) Thomas W. Oldag (Exhibit E), a fire involving a cell tower is not a frequent or expected occurrence. Mr. Oldag states that the Project site does not present a fire risk because of the site's secure location, rigid engineering standards, compliance with NFPA Standards, the climate in the area, and the absence of any

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 2

exposed power lines near the proposed tower. Further, the Project will enhance public safety through the deployment of FirstNet in the subject area which puts advanced wireless technologies into the hands of public safety agencies and first responders, including fire fighters.

- Tree Health: As detailed in the Tree Management Experts Arborist Report dated January 28, 2026 (Exhibit F), Certified Arborist Roy Leggitt has provided his expert opinion that the Project poses no threat to the trees adjacent to, or in the vicinity of, the Project site.
- St. Nicholas Antiochian Orthodox Church: As explained in the City Planning Department's December 8, 2025, Memo, the "Church has not been identified as a potential historic resource and there are no identified historical resources in the project's vicinity." Regardless, AT&T has provided expert photosimulations demonstrating the Project would have no discernable visual effects on the Church.

As to DHCA's misinterpretation of federal statutes and case law, as originally set out in AT&T December 3<sup>rd</sup> CUA Rebuttal, the denial by a permitting entity of an application for a wireless facility amounts to an effective prohibition if the applicant shows that (1) there is a "significant gap" in wireless coverage; and (2) the proposed installation is the "least intrusive means" for closing that gap. AT&T has established its significant coverage gap, demonstrated its efforts at locating a viable location, and shown that the selected site and design are the least intrusive means for closing the gap. To the extent that DHCA opposes the tower on alleged aesthetics, its statements suggesting the tower's negative aesthetic amount to generalized complaints that do not qualify as substantial evidence to support denial of AT&T's application.

**II. Project Construction Would Not Increase Risk of Slope Instability or Potential for Future Compression/Settlement of Existing Fills**

DHCA makes the unsupported assertion that "infill . . . suggests soil instability" and concludes without evidence that just disturbing the soil during construction might affect the geotechnical area and its groundwaters. Evaluation of geologic conditions is a technical subject, and lay opinion unsupported by factual foundation does not constitute substantial evidence. Although usually not evaluated by the City until building permit review, AT&T has completed a geotechnical engineering investigation, that included soil borings (Exhibit B) and has provided structural drawings and calculations based on that investigation (Exhibits C and D). As explained in the executive summary provided by Geist Engineering (Exhibit A), "[t]he exploration test geotechnical boring B-1 was drilled on December 29 and 30, 2025 to a depth of 86.5 feet below site grade [BSG]. Free groundwater was not encountered" and "[t]he fill soils are conservatively estimated to extend to depths around 85 feet BSG with weathered formation rock material,

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 3

encountered between 85 feet and the maximum depth explored of 86.5 feet BSG.” The lack of groundwater and presence of formation rock material results in a conclusion that:

From a geotechnical perspective, provided the recommendations included in the Salem report are followed, the proposed tower construction is not anticipated to have a negative impact on existing site improvements. Construction of the proposed tower improvements would not be anticipated to increase surface water drainage over or into the existing western slope area. Also, the tower construction would not result in a potential for increased saturation of the fills. *Therefore, construction of the project would not result in an increased risk for slope instability or an increase the potential for future compression/settlement of the existing fills that could negatively impact the site and surrounding development.*

The geotechnical expert’s conclusion is that the Project will not cause any increased risk for geotechnical or alter groundwater.

As stated in the Salem Engineering Geotechnical Engineering Investigation (Exhibit B), “[b]ased upon the data collected during this investigation, and from a geotechnical engineering standpoint, it is our opinion that the site is suitable for the proposed construction of improvements at the site as planned, provided the recommendations contained in this report are incorporated into the project design and construction.” The Structural Drawings and Calculations provided by Vector Engineering are incorporated in the recommendations of the Salem report.

Thus, two experts conclude that the site is suitable for the Project and will not result in any slope instability nor will construction cause any geotechnical or groundwater issues.

**III. The Project Will Expand and Improve Emergency Communication Capabilities and is Not a Fire Risk**

DHCA claims, without any supporting evidence, that cell towers are fire hazards. Contrary to DHCA’s assertions, however, the Project will in fact enhance public safety, including fire safety, by providing decreased fire response times, which reduces fire risk. The Project is part of AT&T’s commitment to support public safety through its partnership with FirstNet, the federal First Responder Network Authority. Conceived by the *9/11 Commission Report* as necessary for first responder communications, Congress created the federal First Responder Network Authority, which selected AT&T to build and manage FirstNet, the first-ever nationwide first-responder wireless network. The Project will provide new service on Band 14, which is the nationwide high-quality spectrum set aside by the U.S. government for the exclusive transmission of public safety and first responder communications. Deployment of FirstNet in the subject area will improve

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 4

public safety by putting advanced wireless technologies into the hands of public safety agencies and first responders, including fire fighters.

Also contrary to DHCA's assertions, a fire involving a cell tower is not a frequent or expected occurrence. As explained by expert fire investigator (retired) Thomas W. Oldag (Exhibit E):

Cell towers are not known to randomly catch fire. The proposed AT&T tower and associated equipment will be constructed of noncombustible materials. The associated powerlines and communication lines will be enclosed within the metal structure. Cell towers require electricity to function. The power lines supplying the site will be underground. Wildland fires [like those cited by DHCA] usually occur due to branches falling onto power lines, or power lines making contact with other nearby facilities. There are no exposed power lines associated with the proposed tower, however.

The National Fire Protection Association (NFPA) has a standard for telecommunications facilities, NFPA 76 – Standard for the Fire Protection of Telecommunications Facilities. This prevention guideline was created to minimize fires in telecommunication facilities. The proposed facility will comply with these standards, which mandates the storage of any combustible materials in approved non-combustible containers near or around the facility.

[In relation to the assertion that] it would supposedly be difficult to combat [a cell tower fire] since the power “from the grid” will take time to shut off [, p]ower provided to a macro cell tower, like all commercial power, is stepped down by transformers and regulated to the end user. There are also fuses and breakers built into the system. In the possible event of a fault (arc), the involved fuse or breaker will turn off the power to that phase (power line). The grid at large is not affected. As an example, in a structure fire, firefighters can fight the fire after securing the utilities, power and gas to that structure; they do not need to shut off the power “on the grid,” or to the larger area.

Also, in reviewing the Project's location, expert fire investigator Oldag determined that “[w]ildland fire concerns are very low in the Diamond Heights area” because the “neighborhood's elevation and exposure place it directly in the path of the funneled marine layer and westerly winds, so it runs cooler, windier, and fogger than many other San Francisco neighborhoods.” Oldag further determined that the Project site does not present a fire risk because of the site's secure location, rigid engineering standards, compliance with NFPA Standards, the higher humidity in the area, and the absence of any exposed power lines near the proposed tower.”

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 5

To support its appeal, DHCA proffers correspondence from Susan Foster. In opposing the Project, Foster identifies herself a “Fire and Utility Consultant” and an “Honorary Firefighter,” but she provides no evidence that she is a fire expert, and there is no available information to suggest that she has any relevant credentials or is qualified to opine on the supposed fire danger presented by a communications tower. Nor is there any information to suggest that Foster has any training in fire prevention or fire science; she is not an electrical engineer, or any type of engineer. According to her LinkedIn page, Foster is a writer with a BA in Psychology and an MSW degree.<sup>1</sup> From her internet presence, Foster’s main occupation appears to be the dissemination of what many believe to be misinformation, as a member of the Children’s Health Defense (CHD), regarding the “alleged health hazards presented by cell phone and cell tower radiation.”<sup>2</sup> Throughout her advocacy, Foster has attempted to convince regulators to implement moratoriums on cell towers in the US and Canada, with a particular focus on the slowing of the deployment of 5G technology.<sup>3</sup> CHD has been recognized by Media Bias/Fact Check (an independent, U.S.-based website that rates news and information sources for their political bias and factual reliability) as “an anti-vaccine nonprofit pseudoscience organization,” and “a strong conspiracy and quackery level advocacy group that frequently promotes unsupported claims,” that do “not align with scientific consensus regarding vaccines and other scientific matters.”<sup>4</sup> This is the very approach Ms. Foster has taken in her unsubstantiated statements submitted in opposition to the Project. None of her statements are backed by science, expertise, or fact. Foster does not have the technical expertise to comment on the likelihood the Facility will catch fire, and the information provided by Foster does not constitute substantial evidence.

The proposed site in this case meets all FCC safety guidelines for RF emissions and all City requirements for safety and design. Foster’s challenge to the cell site is in fact nothing but a disguised challenge based on fear of RF emissions. Federal law sets the appropriate RF emissions safety standards that apply to cell sites, and local attempts at such regulation are disallowed and preempted under federal law.

None of the Southern California wildfires that Foster lists in her letter have any connection to the type of facility proposed for installation at 350 Amber Drive. As explained in fire expert Oldag’s declaration, each of those fires involved telecommunications lines installed on wooden utility poles in close proximity to 12,000-volt above-ground electrical distribution lines, and the coming together of those lines in hurricane force winds, causing sparks to fall into dry grass below, in extremely hot, dry, and windy weather conditions. Moreover, the CPUC’s reports regarding these fires demonstrate telecommunication facilities were not the source of these

---

<sup>1</sup> <https://www.linkedin.com/in/susan-foster-5b2a5039>

<sup>2</sup> <https://childrenshealthdefense.org/authors/susan-foster>

<sup>3</sup> *Id.*

<sup>4</sup> <https://mediabiasfactcheck.com/childrens-health-defense/>

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 6

fires.<sup>5</sup> There are no similarities between the conditions and equipment in those wildfires and the steel wireless communications tower proposed in the subject application. The proposed tower will support cell antennas 104 feet above the ground; there are no electrical distribution lines on the proposed tower, or anywhere near it. (see Exhibit E, Declaration of expert fire investigator Oldag)

Moreover, according to the Wireless Infrastructure Association, there were 142,100 cell towers (defined as free-standing structures over 50 feet in height) in the United States as of 2022. A review of reported fire incidents involving cell towers reveals that they are a rare occurrence. Foster cites only one tower fire, on a light pole on a high school football field in Chula Vista, in which an AT&T investigation concluded the wiring connecting the field lights and/or a rodent infestation (and not any associated cell site equipment) were the most likely causes. Merely because there were wireless facilities on the pole that burned and fell does not mean that cell facilities create any independent risk of fire, and no investigation of the fire in Chula Vista has alleged as such.

**IV. The Project Would Not Impact the Health of the Trees Adjacent to, or in the Vicinity of the Project Site.**

DHCA alleges the Project would disrupt the tree root systems of the surrounding eucalyptus and the “mixed exotic oak forest” and ‘blue gum forest’ present at the Project site and its vicinity.” As discussed in the Arborist Report (Exhibit F), Certified Arborist Roy Leggitt conducted a site visit on January 20, 2026, to inspect trees adjacent to, and in the vicinity of, the Project site. Only one tree, 25 feet from the Project site, is close enough to be potentially impacted by construction. The structural roots of that tree would be close to the trunk, however, and ultimately would not be impacted. With regard to the remainder of the root system, Certified Arborist Leggitt opined:

Given the limited development of a root zone beneath pavement, it is likely that 2 to 3 percent of the root zone could be affected. This is a negligible amount of root loss and does not pose any threat to the tree.

The “mixed exotic species” in the adjacent park would not be affected by construction. Further, because the Project site is located within a gap in the tree canopies and would have a flat, non-flammable asphalt surface, there would be no tree-related fire risk associated with the vegetation at the site.

---

<sup>5</sup> Malibu Canyon Fire, see CPUC Draft Report on Settlement (9/13/2012); Woolsey Fire, see CPUC Woolsey Fire Investigation Report (10/21/2021); Guejito Fire, see CPUC Guejito Fire Report (9/2/2008).

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 7

Contrary to DHCA’s speculative assertions, which are not supported with any substantial evidence, Certified Arborist Leggitt has provided his expert opinion that the Project poses no threat to the trees adjacent to, or in the vicinity of, the Project site.

**V. The Project Would Not Visually Affect the St. Nicholas Antiochian Orthodox Church**

DHCA alleges the Project would impact the St. Nicholas Antiochian Orthodox Church (Church) as a historical resource. As explained in the City Planning Department’s December 8, 2025, Memo, the “Church has not been identified as a potential historic resource and there are no identified historical resources in the project’s vicinity.” Regardless, AT&T has provided additional photosimulations from public vantage points surrounding the Church. As shown in Exhibit G, the Project would not be visible when looking at the Church from Diamond Heights Boulevard or Duncan Street (Shot Points 5 and 7). The Project would be visible from the Church parking lot but would not be a dominant visual feature (Shot Point 6). The Project would have no discernable visual effect on the Church.

**VI. The DHCA January 30<sup>th</sup> Submittal Misinterprets the Standards Applicable Under the Federal Telecommunications Act.**

The DHCA January 30<sup>th</sup> Submittal (Section III, pg. 5-14) rehashes the same erroneous arguments originally raised in DHCA’s “Memorandum in Opposition” submitted for the Planning Commission’s September 25, 2025 hearing.<sup>6</sup> Specifically, DHCA disputes the standards for effective prohibition and what type of evidence is appropriate for to prove (1) the existence of a coverage gap; and (2) the absence of a less intrusive alternative site for the project. AT&T addressed DHCA’s misinterpretation of the law of material inhibition and effective prohibition in the AT&T December 3<sup>rd</sup> CUA Rebuttal (Sections K.4 and K.6, pg. 15-21).

DHCA misinterprets the law by arguing that the “least intrusive means” test applied by most federal courts, including the Ninth Circuit, to analyze whether an unlawful effective prohibition has occurred, “has gradually been replaced by a different legal standard that turns on whether a regulation ‘materially inhibits’ wireless coverage.” (DHCA January 30<sup>th</sup> Submittal, pg. 6). DHCA misunderstands the law. A municipality “effectively prohibits” wireless services

---

<sup>6</sup> In its January 30<sup>th</sup> Submittal, DHCA appears confused as to why AT&T addressed federal issues in its CUA Rebuttal. Every DHCA submittal has purported to “fully incorporate[] by reference all the comments and concerns raised to date on the Project or its environmental CEQA clearance.” As explained in the AT&T December 3<sup>rd</sup> CUA Rebuttal, AT&T addressed federal issues because they were raised in the “Memorandum in Opposition” submitted for the Planning Commission’s September 25, 2025 hearing. Daniel Schereck, the DHCA Board President, signed onto this Memorandum, along with at least 20 other individuals who signed the CUA appeal petition.

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 8

whenever a land use decision “materially inhibits” those services.<sup>7</sup> The Ninth Circuit instructs that the least intrusive means test “is consistent with the FCC’s” material inhibition test.<sup>8</sup> The two-part effective prohibition test remains the law in the Ninth Circuit. *See, e.g., New Cingular Wireless, PCS, LLC v. Kootenai Cnty.*, 2025 U.S. Dist. LEXIS 31713, \*34-35 (“the effective prohibition analysis is a two-part test, asking first whether there is a gap in coverage and, second, whether the absence of feasible alternatives to the proposed tower means that denial of an application effectively prohibits all wireless service in the area.” (citations) (D. Id. 2025; *Kootenai Cnty.*)).<sup>9</sup>

DHCA next questions the existence of AT&T’s coverage gap and argues the coverage maps AT&T provided are “unsubstantiated,” because, even though AT&T’s consultant completed independent drive test results to affirm the coverage gap in AT&T’s RF maps, DHCA now wants the “raw drive test data,” to prove the existence of the gap. Though not required for this application, AT&T is willing to make the “raw drive test data” available to the Board upon request. “Coverage Maps and Drive Test Maps provide a reliable method to evaluate whether there is a significant gap in coverage [and are] commonly used by radiofrequency engineers and the wireless industry.”<sup>10</sup> AT&T has proven its significant coverage gap in the Diamond Heights area based on substantial evidence in the form of Court-approved RF maps supported by drive test data.

In-building coverage is the appropriate standard by which to measure a carrier’s gap in coverage. (See AT&T December 3<sup>rd</sup> CUA Rebuttal, pg. 20, n. 56.) Courts have found that “[c]onsumers and carriers have an expectation and a need for reliable in-building wireless service,” and the “absence of [reliable in-building service, e.g.,] constitutes a significant gap in coverage.”<sup>11</sup> Likewise, courts have found that an absence of reliable in-vehicle service constitutes

---

<sup>7</sup> *See In the Matter of California Payphone Assoc. Petition for Preemption, Etc.*, Opinion and Order, 12 FCC Rcd. 14191 (FCC rel. July 17, 1997); *Sprint Telephony PCS, L.P. v. Cnty. of San Diego*, 543 F.3d 571, 578 (9th Cir. 2008) (*Sprint Telephony PCS, L.P.*).

<sup>8</sup> *Sprint Telephony PCS, L.P.*, 543 F.3d at 578.

<sup>9</sup> The test for effective prohibition has been the same since 2005, when the Ninth Circuit adopted the least intrusive means test in *MetroPCS, Inc. v. City & Cnty. of San Francisco*, 400 F.3d 715, 734-35 (9th Cir. 2005; *MetroPCS, Inc.*). *See, e.g., Kootenai Cnty.*, 2025 U.S. Dist. LEXIS 31713, \*34-35; *New Cingular Wireless PCS, LLC v. County of Ventura*, 2022 U.S. Dist. LEXIS 53923 (C.D. Cal. Feb. 22, 2022); *L.A. SMSA Ltd. P’ship v. City of L.A.*, 2021 U.S. Dist. LEXIS 160046, \*9 (C.D. Cal. Aug. 24, 2021; *City of L.A.*); *T-Mobile West Corp. v. City of Huntington Beach*, 2012 U.S. Dist. LEXIS 148170, \*12 (C.D. Cal. Oct. 10, 2012; *Huntington Beach*); *T-Mobile USA, Inc. v. City of Anacortes*, 572 F.3d 987, 995-98 (9th Cir. 2009) (*Anacortes*).

<sup>10</sup> *Huntington Beach*, 2012 U.S. Dist. LEXIS 148170, \*26.

<sup>11</sup> *Huntington Beach*, 2012 U.S. Dist. LEXIS 148170, \*12; *Accord, City of L.A.*, 2021 U.S. Dist. LEXIS 160046, \*9 (“Inadequate or unreliable in-building service can be sufficient to show the existence of a significant gap in coverage”).

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 9

a significant gap.<sup>12</sup> Applicable law also does not support DHCA's argument that AT&T needs to show "no service at all" or a "state of total absence" of coverage to prove a coverage gap.<sup>13</sup> AT&T has met its burden for proving a significant service coverage in this instance.

DHCA next argues that AT&T "cannot establish that the proposed Project would be the 'less intrusive means' [sic] to provide wireless service coverage" in the area. (DHCA January 30<sup>th</sup> Submittal, pg. 8). Because AT&T has established its coverage gap, demonstrated its efforts at locating an available and feasible location, including providing the City with a meaningful comparison of alternatives, and explained that the selected site and design are the least intrusive means for closing the gap, the burden now shifts to the City (if it were inclined to deny the application) to show that a specific alternative site is (a) available, (b) technologically feasible, and (c) less intrusive than AT&T's proposed solution.<sup>14</sup> Were the City to make such a showing, AT&T would then have the opportunity to rebut the availability and feasibility of any identified alternatives.<sup>15</sup> Since this is not the case, AT&T has fulfilled all the necessary requirements and the process has been completed.

DHCA lists things it claims AT&T should have looked for in an alternative site, criticizes AT&T's analysis of alternative sites, and asserts AT&T should have considered constructing a distributed antenna system (DAS) instead of the proposed macro facility. But AT&T's analysis of alternatives – including unavailability of properties due to disinterested owners and infeasible locations – is precisely the analysis required by the Ninth Circuit.<sup>16</sup> Nor is DHCA's argument sufficient to rebut AT&T's evidence, or to prove the existence of a less-intrusive alternative. As a 2025 District Court opinion explained:

Because AT&T made a *prima facie* showing, the burden of proof shifts to the County to show there are available alternative sites. The County, however, offers no evidence of other alternatives; instead it offers only speculative, nonspecific suggestions regarding where AT&T might have looked for potential alternatives. Although the County is "not compelled to accept"

---

<sup>12</sup> *Huntington Beach*, at \*15-16; *City of L.A.*, at \*25 (courts consider "gaps on commuters and highway traffic in determining their significance").

<sup>13</sup> *MetroPCS, Inc.*, 400 F.3d at 730-35 (In adopting the least intrusive means test, Ninth Circuit explicitly rejected a rule that would require proof of a 'general ban' on wireless services to prove an unlawful effective prohibition).

<sup>14</sup> *Anacortes*, 572 F.3d at 998-99.

<sup>15</sup> *Id.*; see, e.g., *Kootenai Cnty.*, 2025 U.S. Dist. LEXIS 31713, \*39.

<sup>16</sup> See *Anacortes*, 572 F.3d at 996-98.

AT&T's representations, if it rejects them, 'it must show that there are some potentially available and technologically feasible alternatives.'" <sup>17</sup>

And the City would not meet its reciprocal burden under *Anacortes* by dictating a different technology such as DAS.<sup>18</sup> DHCA has not identified even one potentially available and feasible alternative site that would close the AT&T coverage gap.

Finally, DHCA asks the Board to grant its appeal based on "negative aesthetic impacts." (DHCA January 30<sup>th</sup> Submittal, pg. 12). But such a result based on DHCA's arguments would also be counter to the law. Statements suggesting a negative aesthetic of the proposed tower amount to generalized complaints that do not qualify as substantial evidence that could support denial of AT&T's application. Courts in the Ninth Circuit and across the country agree that such generalized aesthetic concerns do not qualify as substantial evidence in wireless siting determinations.<sup>19</sup>

## **VII. Conclusion**

As discussed in AT&T's filings and this supplemental submittal, DHCA's appeal does not raise substantial evidence that supports a fact-based reason to reverse the Planning Commission's application of the Class 3 CEQA Exemption or its approval of AT&T's CUA. AT&T has provided substantial evidence in the form of expert opinions to support the findings that the Project: (1) will not affect slope stability or upset the fill settlement/compression, (2) does not represent a fire hazard and will enhance public safety, (3) will not affect the health of trees adjacent to or in the vicinity of the Project site, and (4) will not visually affect the St. Nicholas Antiochian Orthodox Church. The Project meets all applicable health and safety standards, is designed to not cause visual impacts, and will provide vastly improved service for wireless

---

<sup>17</sup> See *Kootenai Cnty.*, 2025 U.S. Dist. LEXIS 31713, \*39 (citing *Cnty. of Ventura, California*, 2022 U.S. Dist. LEXIS 53923 at \*3 (quoting *Anacortes*, 572 F.3d at 998)); See also *Cnty. of Ventura*, 2022 U.S. Dist. LEXIS 53923, at \*16 (least intrusive analysis does not require "elimination of every theoretical possible alternative") (citation omitted).

<sup>18</sup> A DAS would require a central office and construction of an integrated system of numerous nodes. Not only does DHCA fail to explain where these facilities could be placed (availability) or whether they could address AT&T's significant coverage gap (feasibility), the City is preempted from dictating the technology a wireless provider uses to build its network. See e.g., *New York SMSA L.P. v. Town of Clarkstown*, 612 F.3d 97, 105-106 (2d Cir. 2010) (rejecting town's preference for DAS, court held local governments are preempted from regulating technical and operational aspects of wireless telecommunications technology; *In the Matter of Public Utility Comm'n of Texas Petition for Declaratory Ruling and/or Preemption of Certain Provisions of Texas Public Utility Regulatory Act of 1995*, FCC 97-346, 13 FCC Rcd 3460, at ¶ 74 (FCC ruled it is unlawful for a locality to specify the "means and facilities" by which a service provider may offer services)).

<sup>19</sup> See, e.g., *California RSA No. 4 v. Madera Cnty* (E.D. Cal. 2003) 332 F.Supp.2d 1291, 1308-09 ("generalized expressions of concern regarding aesthetics or the effect on property values" fail to meet the substantial evidence threshold under the Act), citing *Omnipoint Corp. v. Zoning Hearing Bd.*, 181 F.3d 403, 409 (3d Cir.1999); *Cellular Telephone Co. v. Town of Oyster Bay*, 166 F.3d 490 (2nd Cir. 1999).

Proposed 350 Amber Drive Project

File No. **251094** – Appeal of CEQA Exemption; Case No. 2024-0004318ENV

File No. **251098** – Appeal of Conditional Use Authorization Approval; Case No. 2024-0004318CUA

February 2, 2026

Page 11

customers, public safety organizations, and first responders. AT&T has established its coverage gap, demonstrated its efforts at locating a feasible location, and stated that the selected site and design are the least intrusive means for closing the gap. DHCA has provided no substantial evidence to support its arguments on appeal. AT&T requests the Board deny the appeal and uphold the Project's Class 3 CEQA Exemption and CUA Approval.

Exhibits:

- A. Geotechnical Investigation Summary dated February 2, 2026, Geist Engineering and Environmental Group
- B. Geotechnical Engineering Investigation dated January 19, 2026, Salem Engineering Group, Inc.
- C. Structural Drawings dated January 28, 2026, Vector Engineers
- D. Structural Calculations dated January 28, 2026, Vector Engineers
- E. Declaration of Thomas W. Oldag, retired fire investigator
- F. Arborist Report dated January 28, 2026, Tree Management Experts
- G. Photosimulations in relation to the St. Nicholas Antiochian Orthodox Church

# **Exhibit A**

# **Exhibit A**



February 2, 2026

Next Edge Networks (Next Edge)  
 (Northern CA Sacramento and San Francisco offices)  
 1355 Windward Concourse, Suite 410  
 Alpharetta, GA 30005

**RE: Updated\* Geotechnical Investigation - Proposed 104-ft Concealed Monopole**  
**AT&T ID: CCL05330 / SF Police Academy**  
**AT&T address: 350 Amber Dr, San Francisco, San Francisco County, CA**  
**GE<sup>2</sup>G Project # 311965**

Dear Next Edge,

Geist Engineering and Environmental Group, Inc. (GE<sup>2</sup>G), appreciates the opportunity have assisted Next Edge by having one geotechnical assessment and findings report completed for the proposed above listed proposed AT&T Mobility, LLC undertaking. Northern California Underground Service Alert (USA # 2025122300287) was completed prior to the field drilling activities. A drilling permit was obtained from the City of San Francisco. Third party utility clearance was also completed at the request of the City of San Francisco Police Department.

\*Updated report statements/conclusions: Section 9.7, Section 10.3.5, Section table 10.6.1, and Section 10.10.1.

**Executive Summary:**

Based on a review of the previous geotechnical report completed in 1999 and summary of previous geotechnical reports included within it, documented distress to the existing Site Parcel building has been attributed to settlement of the underlying fill soils and was not caused by slope instability.

Based on the Salem Engineering Group, Inc. (Salem) observations of the exterior surficial conditions and exterior of the existing building, no visible evidence of previous slope movement/landslides was noted during the Salem November 2025 site observations conducted by an Engineering Geologist. There are no known landslides located at the site, nor is the site in the path of any known or potential landslides.

The monopole tower is planned to be located near the southern edge of an existing paved area, near the top of an existing slope. The top of the slope is approximately 250 feet east (measured horizontally) of the western property line. Based on review of available topographic information, the existing slope is estimated to have a repose of approximately 5 horizontal (H) to 1 vertical (V). The lease site area is relatively flat and

**GEIST ENGINEERING AND ENVIRONMENTAL GROUP, INC.**

4200 Park Boulevard #149, Oakland, California 94602

510.238.8851 (p) / [sgeist@ge2g.com](mailto:sgeist@ge2g.com)

Field Offices: Arizona, California, Colorado, Oregon, and Washington

level and is located approximately 10 to 12 feet horizontally from the top of the existing slope.

The exploration test geotechnical boring B-1 was drilled on December 29 and 30, 2025 to a depth of 86.5 feet below site grade. Free groundwater was not encountered in B-1 prior to its abandonment.

In general, the materials encountered during drilling included fill soils, comprised predominately of medium dense clayey sand with trace to moderate amounts of gravel fragments throughout the depths explored. The fill soils are conservatively estimated to extend to depths around 85 feet BSG with weathered formation rock material, encountered between 85 feet and the maximum depth explored of 86.5 feet BSG.

It is anticipated that the monopole tower will be supported on cast-in-drilled-hole (CIDH) pile foundations. From a geotechnical perspective, provided the recommendations included in the Salem report are followed, the proposed tower construction is not anticipated to have a negatively impact on existing site improvements. Construction of the proposed tower improvements would not be anticipated to increase surface water drainage over or into the existing western slope area. Also, the tower construction would not result in a potential for increased saturation of the fills. Therefore, construction of the project would not result in an increased risk for slope instability or an increase the potential for future compression/settlement of the existing fills that could negatively impact the site and surrounding development.

Based on mapping and historical seismicity, the project area is located in an area high seismic activity. The site is not within a currently established State of California Earthquake Fault Zone for surface fault rupture hazards nor within an Alquist-Priolo Earthquake Fault (Special Studies) Zone, therefore, a site-specific fault study investigation by an Engineering Geologist is not required. No active faults with the potential for surface fault rupture are known to pass directly beneath the site. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design the life of the proposed development is considered low.

Based on review of the CGS Earthquake Zones of Required Investigation maps, the subject site is not located within a mapped liquefaction hazard zone. Based on the clayey nature of the materials encountered and lack of shallow groundwater, liquefaction/seismically induced settlements is not a concern for the proposed construction.

Specific geotechnical, site preparation, structural fill, and other recommendations for the improvement project are presented in the attached report. It is recommended that the foundation designs for the tower be provided to Salem for review. A pile foundation with

Geotechnical Investigation  
Proposed 104-ft Concealed Monopole  
AT&T ID: CCL05330  
350 Amber Dr, San Francisco, San Francisco County, CA  
GE<sup>2</sup>G Project # 311965

GEIST ENGINEERING & ENVIRONMENTAL GROUP INC



the listed minimum foundation depths should be designed by the project Structural Engineer based on design loads and maximum lateral forces expected at site.

If you have any inquiries or would like any additional information, please contact me at (510) 610-1453, or [sgeist@geistenvironmental.com](mailto:sgeist@geistenvironmental.com).

Sincerely,

A handwritten signature in blue ink, appearing to read "Stephen Geist".

Stephen Geist, President,  
Geist Engineering and Environmental Group, Inc.

**Attached:**

Completed Geotechnical Engineering Investigation Report by Salem Engineering Group, Inc. for AT&T: CCL05330 SF Police Academy, 350 Amber Dr, San Francisco, San Francisco County, California with recommendations as compiled by Dean B. Ledgerwood II, PE 94395/ PG 8725 / CEG 2613 Geotechnical Manager dated January 19, 2026 (Updated report statements/conclusions: Section 9.7, Section 10.3.5, Section table 10.6.1, and Section 10.10.1.)

**Reference:**

Preliminary Geological Review for Landslide Susceptibility Review by Salem Engineering Group, Inc. for AT&T: CCL05350, with recommendations as compiled by Dean B. Ledgerwood II, Professional Engineer (PE) 94395/ Professional Geologist (PG) 8725 / Certified Engineering Geologists (CEG) 2613 Geotechnical Manager dated November 24, 2025

**GEIST ENGINEERING AND ENVIRONMENTAL GROUP, INC.**

4200 Park Boulevard #149, Oakland, California 94602

510.238.8851 (p) / [sgeist@ge2g.com](mailto:sgeist@ge2g.com)

Field Offices: Arizona, California, Colorado, Oregon, and Washington

# **Exhibit B**

# **Exhibit B**



## GEOTECHNICAL ENGINEERING INVESTIGATION

**PROPOSED AT&T 104' MONOPOLE  
SITE ID: CCL05530  
SAN FRANCISCO POLICE ACADEMY  
350 AMBER DRIVE  
SAN FRANCISCO, CALIFORNIA**

**SALEM PROJECT NO. 5-225-1076  
JANUARY 19, 2026**

***PREPARED FOR:***

**MR. STEPHEN T. GEIST  
GEIST ENGINEERING & ENVIRONMENTAL GROUP, INC.  
4200 PARK BOULEVARD #149  
OAKLAND, CALIFORNIA 94602**

***PREPARED BY:***

**SALEM ENGINEERING GROUP, INC.  
4729 W. JACQUELYN AVENUE  
FRESNO, CA 93722  
P: (559) 271-9700  
F: (559) 275-0827**



4729 W. Jacquelyn Avenue  
Fresno, CA 93722  
Phone (559) 271-9700  
Fax (559) 275-0827

January 19, 2026

Project No. 5-225-1076

Mr. Stephen T. Geist  
Geist Engineering & Environmental Group, Inc.  
4200 Park Boulevard #149  
Oakland, California

**SUBJECT: GEOTECHNICAL ENGINEERING INVESTIGATION  
PROPOSED AT&T 104' MONOPOLE  
SITE ID: CCL05350  
SAN FRANCISCO POLICE ACADEMY  
350 AMBER DRIVE  
SAN FRANCISCO, CALIFORNIA**

Dear Mr. Geist:

At your request and authorization, SALEM Engineering Group, Inc. (SALEM) has prepared this geotechnical engineering investigation report for the Proposed AT&T 104' Monopole planned at the San Francisco Police Academy site, located at 350 Amber Drive in San Francisco, California.

The accompanying report presents our findings, conclusions, and recommendations regarding the geotechnical aspects of designing and constructing the project as presently proposed. In our opinion, the proposed project is feasible from a geotechnical viewpoint, provided our recommendations are incorporated into the design and construction of the project.

We appreciate the opportunity to assist you with this project. Should you have questions regarding this report or need additional information, please contact the undersigned at (559) 271-9700.

Respectfully Submitted,

A handwritten signature in blue ink, appearing to read 'Dean B. Ledgerwood II'.

Dean B. Ledgerwood II, PE, PG, CEG  
Geotechnical Manager  
PE 94395 / PG 8725 / CEG 2613

## TABLE OF CONTENTS

|       |                                                                           |    |
|-------|---------------------------------------------------------------------------|----|
| 1.    | PURPOSE AND SCOPE .....                                                   | 1  |
| 2.    | SITE LOCATION AND DESCRIPTION.....                                        | 1  |
| 3.    | SITE HISTORY .....                                                        | 2  |
| 4.    | PROJECT DESCRIPTION .....                                                 | 3  |
| 5.    | FIELD EXPLORATION.....                                                    | 4  |
| 6.    | LABORATORY TESTING .....                                                  | 4  |
| 7.    | SOIL AND GROUNDWATER CONDITIONS.....                                      | 5  |
| 7.1   | Subsurface Conditions .....                                               | 5  |
| 7.2   | Groundwater .....                                                         | 5  |
| 7.3   | Soil Corrosion Screening .....                                            | 6  |
| 8.    | GEOLOGIC SETTING .....                                                    | 6  |
| 9.    | GEOLOGIC HAZARDS.....                                                     | 7  |
| 9.1   | Faulting and Seismicity.....                                              | 7  |
| 9.2   | Surface Fault Rupture .....                                               | 8  |
| 9.3   | Ground Shaking.....                                                       | 8  |
| 9.4   | Liquefaction.....                                                         | 8  |
| 9.5   | Lateral Spreading.....                                                    | 9  |
| 9.6   | Landslides.....                                                           | 9  |
| 9.7   | Tsunamis and Seiches.....                                                 | 9  |
| 10.   | CONCLUSIONS AND RECOMMENDATIONS .....                                     | 10 |
| 10.1  | General .....                                                             | 10 |
| 10.2  | Surface Drainage .....                                                    | 11 |
| 10.3  | Grading.....                                                              | 11 |
| 10.4  | Soil and Excavation Characteristics .....                                 | 13 |
| 10.5  | Materials for Fill .....                                                  | 13 |
| 10.6  | Seismic Design Criteria .....                                             | 15 |
| 10.7  | Cast in Drilled Hole (CIDH) Pile Foundation for Tower .....               | 16 |
| 10.8  | CIDH Pier Construction .....                                              | 17 |
| 10.9  | Lightly Loaded Shallow Conventional Foundations and Equipment Slabs ..... | 17 |
| 10.10 | Temporary Excavations .....                                               | 18 |
| 10.11 | Underground Utilities .....                                               | 19 |
| 11.   | PLAN REVIEW, CONSTRUCTION OBSERVATION AND TESTING.....                    | 20 |
| 11.1  | Plan and Specification Review.....                                        | 20 |
| 11.2  | Construction Observation and Testing Services.....                        | 20 |
| 12.   | LIMITATIONS AND CHANGED CONDITIONS .....                                  | 21 |

## **TABLE OF CONTENTS (cont.)**

### **FIGURES**

Figure 1, Vicinity Map

Figure 2, Site Plan

### **APPENDIX A – FIELD INVESTIGATION**

Log of Exploratory Test Boring, B-1

### **APPENDIX B – LABORATORY TESTING**

Gradation Curves

Atterberg Limits Test Results

Expansion Index Test Result

Direct Shear Test Results

Consolidation Test Result

Corrosivity Test Results

Soil Resistivity Test Result

### **APPENDIX C – EARTHWORK AND PAVEMENT SPECIFICATIONS**

**GEOTECHNICAL ENGINEERING INVESTIGATION  
PROPOSED AT&T 104' MONOPOLE  
SITE ID: CCL05350  
SAN FRANCISCO POLICE ACADEMY  
350 AMBER DRIVE  
SAN FRANCISCO, CALIFORNIA**

## **1. PURPOSE AND SCOPE**

This report presents the results of our geotechnical engineering investigation for the proposed 104' monopole planned at the San Francisco Police Academy located at 350 Amber Drive in San Francisco, California (see Figure 1, Vicinity Map).

The purpose of our geotechnical engineering investigation was to observe and sample the subsurface conditions encountered at the site, and provide conclusions and recommendations relative to the geotechnical aspects of constructing the project as presently proposed.

The scope of this investigation included a field exploration, laboratory testing, engineering analysis and the preparation of this report. The recommendations presented herein are based on analysis of the data obtained during the investigation and our experience with similar soil and geologic conditions.

If project details vary significantly from those described herein, SALEM should be contacted to determine the necessity for review and possible revision of this report. Earthwork and Pavement Specifications are presented in Appendix C. If text of the report conflict with the specifications in Appendix C, the recommendations in the text of the report have precedence.

## **2. SITE LOCATION AND DESCRIPTION**

The project site is located within the western limits of the developed paved portion of the San Francisco Police Academy at 350 Amber Drive in San Francisco, California. The immediate area of the proposed tower is occupied by asphaltic concrete pavements. The tower location is planned to be about 10 to 12 feet from the crown of an existing graded 5H to 1V descending slope. The slope was noted to be heavily vegetated. It is our understanding that the slope and site was graded in the early to mid 1960s (See Section 3.0 Site History).

The overall site includes an existing two story building, with an approximate plan view area of about 28,000 square feet, occupying the central portion of the property. The building construction appeared to include concrete masonry unit (CMU) wall construction with concrete pilasters supporting roof loads. The exterior walls of the existing building appeared to be in good condition. No cracking of the CMU walls, concrete columns, or concrete stem walls was noted during our site reconnaissance. During our site reconnaissance, Mr. Joel Hornstein (SFPD) indicated that he had no knowledge of any previous distress to the building during the past approximately 20 years that he has been working at the site. However, it should be noted Mr. Hornstein mentioned the interior floor in his office did not appear to be level. Mr.

Hornstein's comment regarding the floor surface appearing out of level corresponds with our understanding of the historic performance of the building summarized in the 1999 report. Our site reconnaissance and this study did not include review of the interior of the building.

The areas surrounding the building included asphaltic concrete pavements, with a parking canopy located east of the building. The pavements were noted to be in poor condition with potholes, alligator cracking, and raveling noted throughout. It is our understanding that no pavement repairs or rehabilitation activities have been performed over at least the past 20 years. The pavement condition was considered appropriate considering the age of the pavements. An existing transformer pad with CMU wall enclosure was noted at the top of the slope, east of the existing building. An asphaltic concrete curb was noted at the western edge of the pavements, at the top of a graded southwest facing slope. SALEM did not observe any signs of distress to the curbline or equipment enclosure.

### 3. SITE HISTORY

Based on review of available historical aerial imagery from UC Santa Barbara Historical Aerial Imagery Library (<https://www.library.ucsb.edu/geospatial/aerial-photography>) the surrounding area including the subject site was graded and surrounding area was developed during the early to mid-1960s. Aerial imagery dated July 29, 1946 depicts the area of the SFPD parcel as generally open land, and appears to gently slope to the west/southwesterly direction. Aerial imagery, dated July 10, 1963, indicates large mass grading was occurring on the property, including at and around the proposed tower location. An aerial image, dated May 11, 1965, depicts the tower site and overall building areas of the site as relatively flat. The existing church, located northwest of the site, had been constructed (not previously depicted in the 1963 image). Slope terraces descending to the southwest were noted. A 1993 aerial image published on Google Earth, depicts the tower site and subject property in similar condition to the present day condition.

A previous Geotechnical Investigation Report, prepared by Trans Pacific Geotechnical Consultants, Inc., dated January 18, 1999 was provided to SALEM for review. The previous report was noted to be unsigned and marked Draft. The previous report had been prepared to address proposed remodeling and seismic upgrades to the San Francisco Police Academy building. Based on review of the previous report, the 1999 report indicated that previous geotechnical investigations by Woodward Clyde Sherard and Associates were prepared for the original Diamond Heights Elementary School (January 29, 1965), a second report addressing conditions of walls and floor slab (March 21, 1969), and a third report addressing settlement in the south wing of Diamond Heights Elementary School (June 7, 1976). In addition, the 1999 report included review of a July 15, 1977 report by Harding Lawson Associates addressing additional movements to the Diamond Heights Elementary School building. These reports have not been made available to SALEM to review at this time. According to the 1999 report, previous reports summarize a history of settlement that occurred to the existing building. The Woodward Clyde Sherard (WCS) reports were reported to summarize settlement of the existing building at rate of about 1.5 inches per year. The WCS reports documented 8 inches of vertical deformation at the south end of the building, and horizontal deformation of fill at Christopher Park (downslope of the SFPD site) of about 1 inch. Reportedly, the WCS reports concluded "*that the entire mass of fill placed to develop Christopher Park and the school property was moving along the original ravine slopes*". The Harding Lawson Associates (HLA) report prepared in 1977 included an independent investigation of the movements of the building. According to the 1999 report, the HLA report summarized several theories of possible movement, including noting that there was a documented 6 year period between 1967 and 1973 where no settlement occurred. It was summarized that the HLA report had correlated the settlement occurred

following periods of higher than normal rainfall. The HLA report also reportedly summarized that the existing fill soils had compaction results ranging between 86 and 98 percent (averaging 92 percent). The HLA report indicated the predicted settlement rate would be around 1.5 to 2 inches per year and a total of 11 inches of settlement within the 2 story wing of the building was measured as of 1977. The 1999 report reported that HLA concluded “*The site is stable against a large scale landslide and continue to be used safely for a school*”, however the two story wing was considered to be potentially unsafe during an earthquake and should not be reoccupied.”

According to the 1999 report, “*On March 13, 1979 Harding Lawson Associates issued a final report addressing the settlement monitoring on the site. There was slight lateral movement of the fill but no indications to suggest a potential landslide. Settlement was still occurring within the two story wing.*”

The 1999 report included subsurface exploration extending to depths of about 31.5 feet BSG. The borings reportedly encountered medium stiff to stiff gravelly clay with rock fragments to depths of 18 to 20 feet BSG and sandy lean clay underlain by medium dense wet clayey gravel with rock fragments to 20 feet BSG. These materials were underlain by medium dense clayey gravel and sand to the maximum depths explored of 31.5 feet BSG. The test borings and subsurface soils description did not clearly distinguish between fills and native materials, however, the report later states that fills on the order of 35 to 45 feet thick may be present in the northern portion of the building and 60 to 90 feet thick in the southern portion of the building.

**Based on review of the 1999 report and summary of previous reports included in the 1999 report, documented distress to the existing building has been attributed to settlement of the underlying fill soils and was not caused by slope instability.**

SALEM has not been provided with any other historic documentation pertaining to the existing construction or previous reports documenting historic cases of instability within the site. A document review request was made to the City of San Francisco Record Department, however, no information had been provided at the time of this report. If available, SALEM should be provided with any available documents for relating to the history of the property and/or ground instability.

#### **4. PROJECT DESCRIPTION**

Our understanding of the project is based primarily on our cursory review of project plans provided by Geist Engineering & Environmental Group, Inc. It is our understanding that the project will include construction of a 104' Monopole planned at the San Francisco Police Academy facility (see Figure No. 1). The tower is planned to be located near the southern edge of an existing paved area, near the top of an existing slope (see Figure No.1). The top of the slope is approximately 250 feet east (measured horizontally) of the western property line. Based on review of available topographic information, the existing slope is estimated to have a repose of approximately 5 horizontal (H) to 1 vertical (V). The lease site area is relatively flat and level and is located approximately 10 to 12 feet horizontally from the top of the existing slope. It is anticipated that the monopole tower will be supported on cast-in-drilled-hole (CIDH) pile foundations. Based on our experience with tower projects, the foundation loads are expected to be light to moderate, with foundation design governed by lateral loading.

In addition, the planned construction will include foundations supporting lightly loaded equipment cabinets. At the time of this investigation, foundation loads for the proposed tower structure had not been provided for review. Based on our experience lateral loading typically governs design.

A site grading plan was not available at the time of preparation of this report. We anticipate that cuts and fills during earthwork will be minimal and limited to providing a level equipment pads and positive site drainage. In the event that changes occur in the nature or design of the project, the conclusions and recommendations contained in the report will not be considered valid unless the changes are reviewed and the conclusions of our report are modified.

The site configuration and location of proposed improvements are shown on the Site Plan, Figure 2.

## 5. FIELD EXPLORATION

Our field exploration consisted of a site surface reconnaissance and a subsurface exploration. The exploratory test boring was drilled on December 29 and 30, 2025, in the areas shown on the Site Plan, Figure 2. Test boring B-1 was advanced with a CME-55 truck-mounted drill rig with 8-inch hollow stem augers, to the maximum depth explored of 86.5 feet below site grade. Upon completion of drilling, the test boring was backfilled with neat cement grout.

The materials encountered in the test boring was visually classified in the field, and the log was recorded by a field engineer and stratification lines were approximated on the basis of observations made at the time of drilling. Visual classification of the materials encountered in the excavation was generally made in accordance with the Unified Soil Classification System (ASTM D2487). The excavation location can be found on the Site Plan, attached at the end of this report.

A soil classification chart and key to sampling is presented on the Unified Soil Classification Chart, in Appendix "A." The Test Boring Log is presented in Appendix "A." The Boring Log includes the soil type, color, moisture content, dry density, and the applicable Unified Soil Classification System symbol. The location of the test boring was determined by measuring from features shown on the Site Plan, provided to us. Hence, accuracy can be implied only to the degree that this method warrants.

Subsurface soil samples were obtained by driving a Modified California sampler (MCS) and a Standard Penetration Test (SPT) sampler. Penetration resistance blow counts were obtained by dropping an automated 140-pound trip hammer through a 32.5-inch free fall to drive the sampler to a maximum depth of 18 inches. The number of blows required to drive the last 12 inches is recorded as Penetration Resistance (blows/foot) on the logs of the boring. In case very high penetration resistance is encountered, the number of blows recorded may be for less than 12 inches.

Soil samples were obtained from the test boring at the depths shown on the log of boring. The MCS samples were recovered and capped at both ends to preserve the samples at their natural moisture content; SPT samples were recovered and placed in a sealed bag to preserve their natural moisture content.

## 6. LABORATORY TESTING

Laboratory tests were performed on selected soil samples to evaluate their physical characteristics and engineering properties. The laboratory-testing program was formulated with emphasis on the evaluation of natural moisture, density, gradation, consolidation potential, shear strength, expansion index, and Atterberg Limits of the materials encountered.

In addition, chemical tests were performed to evaluate the corrosivity of the soils to buried concrete and metal. Details of the laboratory test program and the results of laboratory test are summarized in Appendix

"B." This information, along with the field observations, was used to prepare the final boring log in Appendix "A."

## 7. SOIL AND GROUNDWATER CONDITIONS

### 7.1 Subsurface Conditions

The subsurface conditions encountered appear typical of those found in the geologic region of the site and our understanding of the historic site grading.

In general, the materials encountered during drilling included fill soils, comprised predominately of medium dense clayey sand with trace to moderate amounts of gravel fragments throughout the depths explored. Below 65 feet BSG, the fills were noted to be dense. At depths around 80 to 85 feet BSG, the material encountered appeared to transition to a possible weathered rock material, with more competent rock encountered at 85 feet BSG (identified by relatively high blow counts of greater than 50 blows per foot). For the purpose of this report, the fill soils are conservatively estimated to extend to depths around 85 feet BSG with weathered formation rock material (Colma Formation), encountered between 85 feet and the maximum depth explored of 86.5 feet BSG. It should be noted that isolated layers of soils with noted organic odor were noted around depths of 25, 30, 35, and 45 feet BSG.

Three (3) direct shear tests were performed on relatively undisturbed soil samples obtained during drilling. The direct shear tests conducted on samples from 10 feet, 35 feet, and 60 feet BSG resulted in internal angles of friction of 31 degrees, 40 degrees, and 43 degrees with cohesion values of 760 pounds per square foot, 387 pounds per square foot, and 260 pounds per square foot, respectively. It should be noted that additional samples at intermittent depths were attempted for direct shear testing, however, due to gravel content in the samples collected laboratory testing was not feasible.

Atterberg limits testing performed on samples collected between 5 and 55 feet BSG resulted in plasticity indexes 10, 11, 12, and 13 with liquid limits values of 31, 33, 34, and 36, respectively. The results of the samples tested indicate these soils have low plasticity characteristics.

Soil conditions described in the previous paragraphs are generalized. Therefore, the reader should consult exploratory boring logs included in Appendix A for soil type, color, moisture, consistency, and USCS classification of the materials encountered at specific locations and elevations.

### 7.2 Groundwater

The test boring was checked for the presence of groundwater during and after the drilling operations. Free groundwater was not encountered at the time of our investigation.

Based on review of the Seismic Zone Hazard Report for the City and County of San Francisco (SZHR 043), the site is in an area marked as bedrock and reported groundwater depths of greater than 50 feet BSG.

It should be recognized that water table elevations may fluctuate with time, being dependent upon seasonal precipitation, irrigation, land use, localized pumping, and climatic conditions as well as other factors. Therefore, water level observations at the time of the field investigation may vary from those encountered during the construction phase of the project. The evaluation of such factors is beyond the scope of this report.

### 7.3 Soil Corrosion Screening

Excessive sulfate in either the soil or native water may result in an adverse reaction between the cement in concrete and the soil. The 2019 Edition of ACI 318 (ACI 318) has established criteria for evaluation of sulfate and chloride levels and how they relate to cement reactivity with soil and/or water. A soil sample was obtained from the project site and was tested for the evaluation of the potential for concrete deterioration or steel corrosion due to attack by soil-borne soluble salts and soluble chloride. The water-soluble sulfate concentration in the saturation extract from the soil samples were detected to be 430, 183, 220, and 330 mg/kg.

ACI 318 Tables 19.3.1.1 and 19.3.2.1 outline exposure categories, classes, and concrete requirements by exposure class. ACI 318 requirements for site concrete based upon soluble sulfate are summarized in Table 7.3 below.

**TABLE 7.3**  
**WATER SOLUBLE SULFATE EXPOSURE REQUIREMENTS**

| Boring/Depth    | Dissolved Sulfate (SO <sub>4</sub> ) in Soil, % by Weight | Exposure Severity | Exposure Class | Maximum w/cm Ratio | Minimum Concrete Compressive Strength | Cementitious Materials Type (ASTM C150) |
|-----------------|-----------------------------------------------------------|-------------------|----------------|--------------------|---------------------------------------|-----------------------------------------|
| B-1 at 10-11.5' | 0.0430                                                    | Negligible        | S0             | N/A                | 2,500 psi                             | No Restriction                          |
| B-1 at 30-31.5  | 0.0183                                                    | Negligible        | S0             | N/A                | 2,500 psi                             | No Restriction                          |
| B-1 at 51.5-53  | 0.0220                                                    | Negligible        | S0             | N/A                | 2,500 psi                             | No Restriction                          |
| B-1 at 30-31.5  | 0.0330                                                    | Negligible        | S0             | N/A                | 2,500 psi                             | No Restriction                          |

The water-soluble chloride concentration detected in saturation extract from the soil sample was 80, 52, 54, and 57 mg/kg. In addition, testing performed on the same soil sample resulted in a minimum resistivity value of 1,916 ohm-centimeter. Based on the results, these soils would be considered to have a “moderately corrosive” potential to buried metal objects (per National Association of Corrosion Engineers, Corrosion Severity Ratings).

It is recommended that, at a minimum, applicable manufacturer’s recommendations for corrosion protection of buried metal pipe be closely followed. Corrosion is dependent upon a complex variety of conditions, which are beyond the Geotechnical practice. Consequently, a qualified corrosion engineer should be consulted if the owner desires more specific recommendations. It is recommended that, at a minimum, applicable manufacturer’s recommendations for corrosion protection of buried metal pipe be closely followed.

## 8. GEOLOGIC SETTING

The subject site is located in the San Francisco Bay Region of the Coast Range Geologic Province. The Coast Range Geologic Province borders the coast of California and generally consists of northwesterly/southeasterly trending ridges of granitic, metavolcanic, and metasedimentary rocks. Numerous northwest to southeast trending faults parallel the trend of the Coast Ranges. The Coast Ranges generally consist of

an alternating series of parallel mountains and valleys located adjacent to the Pacific Coast. San Francisco Bay is a broad shallow depression within the Coast Ranges that has been subsequently filled with sedimentary deposits.

The bedrock units that form the Coast Ranges have been disrupted by intense folding, faulting, and crushing that occurred when the range was formed by the processes of plate tectonics. During the Jurassic and Cretaceous Periods (about 150 to 80 million years ago), the Pacific Oceanic plate collided with the North American Continental plate. The colliding motion of the two plates caused portions of the Pacific Oceanic Crust and overlying marine sediments to be piled onto the North American continental plate along the West Coast of California. The resulting chaotic jumble of bedrock units scraped off onto the North American Plate is known as the “Franciscan Assemblage,” and comprises a large portion of the Coast Range Province. Subsequent development of a series of northwest-trending fault zones has further contributed to the deformation of the Coast Ranges.

Based on review of Preliminary geologic map of the San Francisco South 7.5' quadrangle and part of the Hunters Point 7.5' quadrangle, San Francisco Bay area, California<sup>1</sup>, the site is mapped in an area described as “Colma Formation (Qc)”. These native materials encountered below the fill soils appear consistent with this material. In addition, the fill soils appear generally consistent with material derived from native formation materials in the region.

## 9. GEOLOGIC HAZARDS

### 9.1 Faulting and Seismicity

Based on mapping and historical seismicity, the project area is considered to be located in an area high seismic activity. The site is not within a currently established State of California Earthquake Fault Zone for surface fault rupture hazards nor within an Alquist-Priolo Earthquake Fault (Special Studies) Zone, therefore, a site-specific fault study investigation by an Engineering Geologist is not required. No active faults with the potential for surface fault rupture are known to pass directly beneath the site. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design the life of the proposed development is considered low.

To determine the distance of known active faults within 100 miles of the site, we used the United States Geological Survey (USGS) web-based application *2008 National Seismic Hazard Maps - Fault Parameters*. Site latitude is 37.74381° North; site longitude is -122.44163° West. The ten (10) active fault closest to the site are summarized below in Table 9.1.

**TABLE 9.1  
REGIONAL FAULT SUMMARY**

| Fault Name                     | Distance to Site (miles) | Maximum Earthquake Magnitude, M <sub>w</sub> |
|--------------------------------|--------------------------|----------------------------------------------|
| N. San Andreas;SAO+SAN+SAP+SAS | 4.48                     | 7.9                                          |
| N. San Andreas;SAO+SAN         | 7.86                     | 7.8                                          |
| San Gregorio Connected         | 8.45                     | 7.5                                          |
| Hayward-Rodgers Creek;RC+HN+HS | 13.55                    | 7.3                                          |

<sup>1</sup> Bonilla, M.G., 1998, Preliminary geologic map of the San Francisco South 7.5' quadrangle and part of the Hunters Point 7.5' quadrangle, San Francisco Bay area, California: a digital database, U.S. Geological Survey, Open-File Report OF-98-354, 1:24,000

|                          |       |     |
|--------------------------|-------|-----|
| Monte Vista-Shannon      | 23.58 | 6.5 |
| Hayward-Rodgers Creek;RC | 23.70 | 7.1 |
| Mount Diablo Thrust      | 23.82 | 6.7 |
| Calaveras;CN+CC+CS       | 24.14 | 7.0 |
| Point Reyes              | 25.53 | 6.9 |
| Green Valley Connected   | 26.89 | 6.8 |

*The faults tabulated above and numerous other faults in the region are sources of potential ground motion. However, earthquakes that might occur on other faults throughout California are also potential generators of significant ground motion and could subject the site to intense ground shaking.*

## 9.2 Surface Fault Rupture

The site is not within a currently established State of California Earthquake Fault Zone for surface fault rupture hazards. The nearest fault to the project site is the North San Andreas fault located approximately 4.48 miles away from the site. Due to the distance from the site to the North San Andreas fault, the potential for fault rupture to occur at the site is very low.

## 9.3 Ground Shaking

Based on the 2025 CBC, estimated mean shear wave velocity was determined based on the standard penetration resistance (N-values) derived from test boring B-1, projected to a depth of 100 feet BSG. The mean shear wave velocity was factored in accordance with Chapter 20 of ASCE 7-22. Estimated mean factored shear wave velocities of 1,119 ft/sec (Vs30), 861 ft/sec (VS30/1.3) and 1,455 ft/sec (VS30\*1.3) were determined for the site. Based on the estimated shear wave velocities Site Class Designations of C, C/D, and D were selected for the site. Table 10.6.1 includes design seismic coefficients and spectral response parameters, based on the 2025 California Building Code (CBC) for the project foundation design.

Based on Office of Statewide Health Planning and Development (OSHPD) Seismic Design Maps, the estimated design peak ground acceleration adjusted for site class effects ( $PGA_M$ ) was determined to be 0.73 g (based on both probabilistic and deterministic seismic ground motion).

While listing  $PGA$  is useful for comparison of potential effects of fault activity in a region, other considerations are important in seismic design, including frequency and duration of motion and soil conditions underlying the site.

## 9.4 Liquefaction

Soil liquefaction is a state of soil particles suspension caused by a complete loss of strength when the effective stress drops to zero. Liquefaction normally occurs under saturated conditions in soils such as sand in which the strength is purely frictional. Primary factors that trigger liquefaction are: moderate to strong ground shaking (seismic source), relatively clean, loose granular soils (primarily poorly graded sands and silty sands), and saturated soil conditions (shallow groundwater). Due to the increasing overburden pressure with depth, liquefaction of granular soils is generally limited to the upper 50 feet of a soil profile. However, liquefaction has occurred in soils other than clean sand. A seismic hazard, which could potentially cause damage to the proposed development during seismic shaking, is the post-liquefaction settlement of the liquefied sands.

Based on review of the CGS Earthquake Zones of Required Investigation maps, the subject site is not located within a mapped liquefaction hazard zone. Based on the clayey nature of the materials encountered and lack of shallow groundwater, liquefaction/seismically induced settlements is not a concern for the proposed construction.

## **9.5 Lateral Spreading**

Lateral spreading is a phenomenon in which soils move laterally during seismic shaking and is often associated with liquefaction. The amount of movement depends on the soil strength, duration and intensity of seismic shaking, topography, and free face geometry. Based on the clayey nature of the soils and lack of shallow groundwater, lateral spread is not anticipated to have a negative impact to the planned development.

## **9.6 Landslides**

There are no known landslides located at the site, nor is the site in the path of any known or potential landslides. The western portion of the subject parcel (at least 80 feet west, and downslope of the proposed tower location) is mapped by CGS and City of San Francisco as being in a potential landslide hazard zone. The area of the planned tower is not located within the mapped hazard zone. Therefore, the area of the planned lease area is not considered to be within an area mapped by local or state jurisdiction as having known potential for landslide hazards.

Based on review of the Associated of Bay Area Governments (ABAG) Hazard View Map, the area of the proposed tower lease and entire SF Police Academy parcel is within an area mapped as “flat land” designation for potential Rainfall Induced Landslides. ABAG defines “flat land” as areas unlikely to have a rainfall induced landslide event.

As summarized in the previous geotechnical report reviewed (See Section 3.0 – Site History), previous studies have concluded that slope instability is not a concern for the site. The documented settlement/movement of the existing building has been attributed by other consultants to have occurred due to vertical compression of saturated fill soils. Based on our observations of the exterior surficial conditions and exterior of the existing building, no visible evidence of previous slope movement/landslides was noted during our November 2025 site observations conducted by an Engineering Geologist.

Based on the findings of this report and review of the previous reports, no evidence of previous landslides were found during this investigation. The project will not pose a risk for increased slope instability and the potential for landslides to impact the site is considered low.

## **9.7 Tsunamis and Seiches**

This site is not in an area mapped as in a tsunami hazard zone by California Geological Survey – Tsunami Hazard Area map. Therefore, tsunamis (seismic sea waves) are not considered a significant hazard at the site.

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. No major water-retaining structures are located immediately up gradient from the project site. Flooding from a seismically-induced seiche is considered unlikely.

## 10. CONCLUSIONS AND RECOMMENDATIONS

### 10.1 General

10.1.1 Based upon the data collected during this investigation, and from a geotechnical engineering standpoint, it is our opinion that the site is suitable for the proposed construction of improvements at the site as planned, provided the recommendations contained in this report are incorporated into the project design and construction. Conclusions and recommendations provided in this report are based on our review of applicable design literature, analysis of data obtained from our field exploration and laboratory testing program, and our understanding of the proposed development at this time.

10.1.2 From a geotechnical perspective, provided the recommendations included in this report are followed, the proposed tower construction is not anticipated to have a negatively impact on existing site improvements. Construction of the proposed tower improvements would not be anticipated to increase surface water drainage over or into the existing western slope area. Also, the tower construction would not result in a potential for increased saturation of the fills. Therefore, construction of the project would **not** result in an increased risk for slope instability or an increase the potential for future compression/settlement of the existing fills that could negatively impact the site and surrounding development.

10.1.3 The subsurface conditions encountered appear typical of those found in the geologic region of the site. In general, the materials encountered during drilling included fill soils, comprised predominately of medium dense clayey sand with trace to moderate amounts of gravel fragments throughout the depths explored. Below 65 feet BSG, the fills were noted to be dense. At depths around 80 to 85 feet BSG, the material encountered appeared to transition to a possible weathered rock material, with more competent rock encountered at 85 feet BSG (identified by relatively high blow counts of greater than 50 blows per foot). For the purpose of this report, the fill soils are conservatively estimated to extend to depths around 85 feet BSG with weathered formation rock material (Colma Formation), encountered between 85 feet and the maximum depth explored of 86.5 feet BSG. It should be noted that isolated layers of soils with noted organic odor were noted around depths of 25, 30, 35, and 45 feet BSG

10.1.4 Based on the laboratory testing results, the near surface soils are anticipated to have low expansion potential.

10.1.5 Based on the soils encountered during this exploration, CIDH piers should extend to a minimum of 50 feet BSG (5 feet below the fill soils with layers of soils with increased organic content). Provided the recommendations included in this report are followed, the proposed tower may be supported on cast-in-drilled hole pile (CIDH) foundations. Tower foundations constructed in accordance with the recommendations included in this report may be designed considering total differential static settlement of 1 inch total and  $\frac{1}{2}$  inch differential in 30 feet.

10.1.6 Based on the chemistry testing performed, the near surface soils have ‘negligible’ potential for sulfate attack on concrete and are considered to be “mildly corrosive” to buried metal objects.

10.1.7 All references to relative compaction and optimum moisture content in this report are based on ASTM D 1557 (latest edition).

10.1.8 SALEM should be retained to review the project plans as they develop further, provide engineering consultation as-needed, and perform geotechnical observation and testing services during construction.

## **10.2 Surface Drainage**

10.2.1 Proper surface drainage is critical to the future performance of the project. Uncontrolled infiltration of irrigation excess and storm runoff into the soils can adversely affect the performance of the planned improvements. Saturation of a soil can cause it to lose internal shear strength and increase its compressibility, resulting in a change to important engineering properties. Proper drainage should be maintained at all times.

10.2.2 All site drainage should be collected and transferred away from improvements in non-erosive drainage devices. Drainage should not be allowed to pond anywhere on the site, and especially not against any foundations or retaining walls. Drainage should not be allowed to flow uncontrolled over any descending slope. Proposed structures with roofs should be provided with roof gutters. Discharge from downspouts, roof drains and scuppers are not permitted onto unprotected soils within five feet of any building perimeter or foundation. Planters, if located adjacent to foundations, should be sealed or properly drained to prevent moisture intrusion into the materials providing foundation support. Landscape irrigation within 5 feet of building footings and or equipment slabs should be kept to a minimum to just support vegetative life.

10.2.3 Positive site drainage should be provided away from structures, foundation, pavement, and the tops of slopes to swales or other controlled drainage structures. The lease area should be graded such that water is not allowed to pond within 15 feet of any foundation and final soil grades should slope a minimum of 2 percent away from foundations, slabs, structures, etc. Pavements should be sloped a minimum of 1 percent away from structures/foundations.

## **10.3 Grading**

10.3.1 A representative of our firm should be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service as acceptance of earthwork construction is dependent upon compaction of the material and the stability of the material. The Geotechnical Engineer may reject any material that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the assumption that earthwork construction will conform to recommendations set forth in this section as well as other portions of this report.

10.3.2 A preconstruction conference should be held at the site prior to the beginning of grading operations with the owner, contractor, civil engineer and geotechnical engineer in attendance.

10.3.3 Site clearing and demolition activities shall include removal of all surface obstructions not intended to be incorporated into final site design. In addition, underground buried structures and/or utility lines encountered during demolition and construction should be properly removed and the resulting excavations backfilled with Engineered Fill. After demolition activities, it is recommended that disturbed soils be compacted as engineered fill.

10.3.4 Excavations or depressions resulting from site clearing operations, or other existing excavations or depressions, should be restored with Engineered Fill in accordance with the recommendations of this report.

10.3.5 If encountered during construction, surface vegetation consisting of grasses and other similar vegetation (if encountered at construction) should be removed by stripping to a sufficient depth to remove organic-rich topsoil. The upper 2 to 4 inches of soils containing, vegetation, roots and other objectionable organic matter encountered at the time of grading should be stripped and removed from the surface. Deeper stripping may be required in localized areas. In addition, the gravel surface material and any existing concrete and asphalt materials required to be removed shall be removed from areas of proposed improvements and stockpiled separately from excavated soil material. The stripped vegetation, asphalt and concrete materials will not be suitable for use as Engineered Fill or within 5 feet of foundations, equipment pads, or within pavement areas. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas or exported from the site.

10.3.6 Areas of proposed lightly loaded structures such as equipment shelters, equipment mat slabs, or retaining walls, should be prepared by over-excavation to the bottom of foundations or 12 inches below adjacent site grade, whichever is greater. Upon approval, the bottom of excavation should be scarified a minimum of 12 inches, moisture conditioned to at least 1 percent above optimum, and compacted to 92 percent of the maximum density. The over-excavation zone should extend horizontally a minimum of 3 feet beyond foundations.

Equipment slabs on grade should be supported on a minimum of 6 inches of Class 2 aggregate base compacted to 95 percent relative compaction over subgrade soils prepared as recommended above.

10.3.7 An integral part of satisfactory fill placement is the stability of the placed lift of soil. If placed material exhibit excessive instability as determined by a SALEM field representative, the lift will be considered unacceptable and shall be remedied prior to placement of additional fill material. Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil conditions are not stable.

10.3.8 The most effective site preparation alternatives will depend on site conditions prior to grading. We should evaluate site conditions and provide supplemental recommendations immediately prior to grading, if necessary.

10.3.9 We do not anticipate groundwater or seepage to adversely affect construction if conducted during the drier months of the year (typically summer and fall). However, due to the shallow clayey soils, soil moisture conditions could be significantly different during the wet season (typically winter and spring). Grading during this time period will likely encounter wet materials resulting in possible excavation and fill placement difficulties. Project site winterization consisting of placement of aggregate base and protecting exposed soils during construction should be performed. If the construction schedule requires grading operations during the wet season, we can provide additional recommendations as conditions warrant.

10.3.10 Typical remedial measures include: discing and aerating the soil during dry weather; mixing the soil with dryer materials; removing and replacing the soil with an approved fill material or placement of crushed rocks or aggregate base material; or mixing the soil with an approved lime or cement product.

The most common remedial measure of stabilizing the bottom of the excavation due to wet soil condition is to reduce the moisture of the soil to near the optimum moisture content by having

the subgrade soils scarified and aerated or mixed with drier soils prior to compacting. However, the drying process may require an extended period of time and delay the construction operation. To expedite the stabilizing process, crushed rock may be utilized for stabilization provided this method is approved by the owner for the cost purpose.

If the use of crushed rock is considered, it is recommended that the upper soft and wet soils be replaced by 6 to 24 inches of  $\frac{3}{4}$ -inch to 1-inch crushed rocks. The thickness of the rock layer depends on the severity of the soil instability. The recommended 6 to 24 inches of crushed rock material will provide a stable platform. It is further recommended that lighter compaction equipment be utilized for compacting the crushed rock. All open graded crushed rock/gravel should be fully encapsulated with a geotextile fabric (such as Mirafi 140N) to minimize migration of soil particles into the voids of the crushed rock. Although it is not required, the use of geogrid (e.g. Tensar BX 1100, BX 1200 or TX 160) below the crushed rock will enhance stability and reduce the required thickness of crushed rock necessary for stabilization.

Our firm should be consulted prior to implementing remedial measures to provide appropriate recommendations.

#### **10.4 Soil and Excavation Characteristics**

- 10.4.1 Based on the conditions encountered in the soil boring, the surface soils can be excavated with moderate effort using conventional excavation equipment.
- 10.4.2 It is the responsibility of the contractor to ensure that all excavations and trenches are properly shored and maintained in accordance with applicable Occupational Safety and Health Administration (OSHA) rules and regulations to maintain safety and maintain the stability of adjacent existing improvements. Temporary excavations are further discussed in a later Section of this report.
- 10.4.3 The near surface soils identified as part of our investigation are generally considered damp to moist. Earthwork operations conducted during inclement periods of the year are likely to encounter moist potentially unstable soils which may require removal to a stable bottom. Exposed native soils exposed as part of site grading operations shall not be allowed to dry out and should be kept continuously moist prior to placement of subsequent fill.

#### **10.5 Materials for Fill**

- 10.5.1 On-site soils are considered suitable for use as engineered fill at depths of at least 4 inches below concrete slabs and directly below shallow foundations. On-site soils used as engineered fill should not contain deleterious matter, organic material, or rock material larger than 3 inches in maximum dimension.
- 10.5.2 Import soil intended for use as Imported Engineered Fill soil, should be well-graded, slightly cohesive silty sand or sandy silt. This material should be approved by the Engineer prior to use and should typically possess the soil characteristics summarized below in Table 10.5.2

**TABLE 10.5.2  
IMPORT ENGINEERED FILL REQUIREMENTS**

|                              |     |
|------------------------------|-----|
| Percent Passing 3-inch Sieve | 100 |
|------------------------------|-----|

|                                      |              |
|--------------------------------------|--------------|
| Percent Passing No.4 Sieve           | 75-100       |
| Percent Passing No 200 Sieve         | 15-40        |
| Maximum Plasticity Index             | 10           |
| Organic Content, Percent by Weight   | Less than 3% |
| Maximum Expansion Index (ASTM D4829) | 10           |

Prior to importing the Contractor should demonstrate to the Owner that the proposed import meets the requirements for import fill specified in this report. In addition, the material should be verified by the Contractor that the soils do not contain any environmental contaminates as regulated by local, state, or federal agencies, as applicable.

- 10.5.3 The preferred materials specified for Imported Engineered Fill are suitable for most applications with the exception of exposure to erosion. Project site winterization and protection of exposed soils during the construction phase should be the sole responsibility of the Contractor, since they have complete control of the project site.
- 10.5.4 Environmental characteristics and corrosion potential of import soil materials should also be considered.
- 10.5.5 Proposed import materials should be sampled, tested, and approved by SALEM prior to its transportation to the site.
- 10.5.6 On-site soils placed as Engineered Fill should be moisture conditioned to at least 1 percent above optimum moisture content, and compacted to 92 percent relative compaction (ASTM D 1557).
- 10.5.7 Imported Engineered Fill should be moisture conditioned to slightly above optimum moisture content, and compacted to 92 percent relative compaction (ASTM D1557).
- 10.5.8 All Engineered Fill should be placed in lifts no thicker than will allow for adequate bonding and compaction (typically a maximum of 6 to 8 inches in loose thickness).
- 10.5.9 Caltrans Class 2 Aggregate Base shall meet the minimum requirements of Section 26 of the Caltrans Standard Specifications (Current Edition). Prior to importing, the Contractor should provide documentation that the aggregate base meets the requirements for Class 2 aggregate base (i.e. gradation, durability, R-value, sand equivalent, etc.) to the Owner and Salem for review. All aggregate base should be compacted to a minimum of 95 percent relative compaction.
- 10.5.10 Open graded gravel and rock material (i.e.  $\frac{3}{4}$  inch or  $\frac{1}{2}$  inch crushed gravel) should not be used as backfill including utility trenches. If required by local agency or for use in subgrade stabilization, to prevent migration of fines, open graded materials should be fully encapsulated in a geotextile fabric such as Mirafi 140N or equivalent. Open graded rock should be placed in loose lifts no greater than about 6 to 8 inches, and vibrated in-place to a firm non-yielding condition.

## 10.6 Seismic Design Criteria

10.6.1 For seismic design of the structures, and in accordance with the seismic provisions of the 2025 CBC, our recommended parameters are shown below. These parameters were determined from the USGS Seismic Design Geodatabase obtained via the State of California Office of Statewide Health Planning and Development (OSHPD) Seismic Design Map Tool Website (<https://seismicmaps.org/>) in accordance with the 2025 CBC. The Site Classes were determined based on the requirements of ASCE 7-22, Chapter 20. The Value given for each Seismic Item below is the most critical value between the given Site Classes.

**TABLE 10.6.1 - 2025 CBC SEISMIC DESIGN PARAMETERS**

| Seismic Item                                                                                                      | Symbol          | Value                                        | ASCE 7-22 or 2025 CBC Reference    |
|-------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|------------------------------------|
| Site Coordinates (Datum = NAD 83)                                                                                 |                 | 37.74381 Lat<br>-122.44163 Lon               |                                    |
| Site Class                                                                                                        | --              | C/CD/D                                       | ASCE 7-22 Table 20.2-1             |
| Soil Profile Name(s)                                                                                              | --              | Very Dense<br>/Very Dense to<br>Dense /Dense | ASCE 7-22 Table 20.2-1             |
| Risk Category                                                                                                     | --              | III                                          | CBC 2025 Table 1604.5              |
| Peak Ground Acceleration<br>(adjusted for Site Class effects)                                                     | PGAM            | 0.73 g                                       | USGS Seismic Design<br>Geodatabase |
| Seismic Design Category                                                                                           | SDC             | D                                            | ASCE 7 Table 11.6-1 & 2            |
| Mapped Spectral Acceleration<br>(Short period - 0.2 sec)                                                          | S <sub>s</sub>  | 1.84 g                                       | USGS Seismic Design<br>Geodatabase |
| Mapped Spectral Acceleration<br>(1.0 sec. period)                                                                 | S <sub>1</sub>  | 0.70 g                                       | USGS Seismic Design<br>Geodatabase |
| MCE Spectral Response Acceleration<br>(Short period - 0.2 sec)                                                    | S <sub>MS</sub> | 2.06 g                                       | USGS Seismic Design<br>Geodatabase |
| MCE Spectral Response Acceleration<br>(1.0 sec. period)                                                           | S <sub>M1</sub> | 2.07 g                                       | USGS Seismic Design<br>Geodatabase |
| Design Spectral Response Acceleration<br>S <sub>DS</sub> = $\frac{2}{3}$ S <sub>MS</sub> (short period - 0.2 sec) | S <sub>DS</sub> | 1.37 g                                       | ASCE 7 Equation 11.4-1             |
| Design Spectral Response Acceleration<br>S <sub>DI</sub> = $\frac{2}{3}$ S <sub>M1</sub> (1.0 sec. period)        | S <sub>DI</sub> | 1.38 g                                       | ASCE 7 Equation 11.4-2             |
| End of Short-Term Transition Period<br>(S <sub>DI</sub> /S <sub>DS</sub> ), Seconds                               | T <sub>s</sub>  | 1.06                                         | ASCE 7-22, Section 11.4.5          |
| Beginning of Short-Term Transition<br>Period (0.2[S <sub>DI</sub> /S <sub>DS</sub> ]), Seconds                    | T <sub>0</sub>  | 0.213                                        | ASCE 7-22, Section 11.4.5          |
| Long Period Transition Period (seconds)                                                                           | T <sub>L</sub>  | 12                                           | ASCE 7-22, Figure 22-14            |

10.6.2 Conformance to the criteria in the above table for seismic design does not constitute any kind of guarantee or assurance that significant structural damage or ground failure will not occur if a large earthquake occurs. The primary goal of seismic design is to protect life, not to avoid all damage, since such design may be economically prohibitive.

## 10.7 Cast in Drilled Hole (CIDH) Pile Foundation for Tower

10.7.1 It is recommended that the foundation designs for the tower be provided to SALEM for review. A pile foundation should be designed by the project Structural Engineer based on design loads and maximum lateral forces expected at site. This report recommends the CIDH piers extend to at least 5 feet below the fill soils with varying organic content encountered between 25 and 45 feet BSG. Therefore, this report recommends a minimum CIDH pier depth of 50 feet BSG.

10.7.2 Cast-in-drilled-hole pile foundations may be designed based on total static settlement of 1 inch and differential static settlement of  $\frac{1}{2}$  inch in 30 feet or between piles, whichever is less.

10.7.3 Skin friction within the upper 2 feet BSG should be neglected in design. The downward load capacity of the piers (extending to at least 50 feet BSG), may be designed based on an average allowable skin friction value of 500 pounds per square foot. **End bearing support should not be considered in design.** This value may be increased by 1/3 for short duration temporary wind and seismic loading.

10.7.4 The average allowable uplift resistance of the pier foundations may be assumed to be 300 pounds per square foot, plus the weight of the CIDH pile.

10.7.5 The passive resistance in the upper portion of the piles to a depth of 2 feet or width equal to the CIDH pier diameter, whichever is greater, should be neglected for design. In addition, the upper portion of the pile where soils are within 10 feet horizontally of the face of the descending slope should be neglected in design. The allowable passive resistance of the soils below the depths described above may be assumed to be equal to the pressure developed by a fluid with a density of 275 pounds per cubic foot to a maximum of 2,750 pounds per square foot. These values may be increased by one-third for short duration wind and seismic loads. No other increases should be applied to the allowable passive pressure.

10.7.6 If desired, the cast in drilled hole piers may be designed using LPILE and the parameters presented in Table 10.7.6. The lateral loading criteria is based on the assumption that the load application is applied at the ground level, flexible cap connections applied.

TABLE 10.7.6 -LPILE PARAMETERS

| Depth, BSG (Feet) | L-Pile Soil Type | Effective Unit Weight (pcf) | Angle of Internal Friction (degrees) | Static Modulus of Subgrade Reaction, K (pci) |
|-------------------|------------------|-----------------------------|--------------------------------------|----------------------------------------------|
| *2-25             | Sand (Reese)     | 130                         | 31                                   | 90                                           |
| 25-45             | Sand (Reese)     | 130                         | 40                                   | 40                                           |
| 45-85             | Sand (Reese)     | 130                         | 43                                   | 225                                          |

\* The upper portion of the piles to a depth of 2 feet or width equal to the CIDH pier diameter, whichever is greater, should be neglected for design. In addition, the upper portion of the pile where soils are within 10 feet horizontally of the face of the descending slope should be neglected in design

## 10.8 CIDH Pier Construction

- 10.8.1 The project structural engineer should prepare a specification for the construction of the deep foundations as part of the construction documents. The specifications should be consistent with the recommendations included in this report.
- 10.8.2 Concrete should be placed in the drilled shaft as soon as possible following drilling. Concrete should be placed by tremie pipe method from the bottom of the drilled shaft.
- 10.8.3 The Contractor should consider the borings noted in test borings reported in this report to determine the most appropriate means and method for drill hole stabilization. If excessive sidewall collapse occurs, SALEM should be consulted to observe the conditions and determine if any mitigation measures are required prior to placement of reinforcement and concrete.
- 10.8.4 If Temporary Casing is required, the Temporary casing used for support of drilled pile excavations during construction should be slowly removed from the shaft excavation during placement of concrete while ensuring the casing is not raised above the level of the concrete during shaft construction. The bottom of the casing should be lifted slowly as the concrete is deposited and kept at least two feet below the top of the concrete to avoid sloughing soils from mixing with the concrete.
- 10.8.5 Casing (where used) should be able to withstand the external pressures of the caving soils. The outside diameter of the casing should not be less than the diameter of the cast-in-drilled hole concrete pile.
- 10.8.6 Drilled holes for pile foundations should be drilled within 2 degrees of vertical. The rebar cage should be suspended within 2 degrees of vertical in the center of the excavation. Minimum concrete cover, as specified by the project design engineer, should be maintained throughout the length of the excavation. These conditions should be verified and documented by Salem Engineering Group during construction.
- 10.8.7 Salem Engineering Group should inspect the drilling of the shafts to verify that the materials encountered are consistent with those evaluated during our geotechnical engineering investigation. **This inspection should be conducted during drilling and prior to placement of reinforcing steel and concrete.**
- 10.8.8 All loose materials should be removed from the drilled shaft excavations prior to placement of reinforcing steel and concrete by use of a clean-out bucket or other acceptable methods to ensure removal of all loose materials.

## 10.9 Lightly Loaded Shallow Conventional Foundations and Equipment Slabs

- 10.9.1 It is recommended that the foundation designs for ancillary structures be provided to SALEM for review.
- 10.9.2 The site is suitable for use of conventional shallow foundations for equipment shelters/pads structures and slab foundations for equipment, bearing in compacted engineered fill prepared in accordance with Section 10.3 of this report.
- 10.9.3 It is recommended that shallow conventional footings to be utilized for lightly loaded foundations such as the equipment shelter should have a minimum width of 12 inches, and a minimum

embedding depth of 12 inches below lowest adjacent pad grade. The face of shallow foundations should be at a sufficient depth to ensure a minimum setback of 5 feet horizontally from the face of descending slopes

- 10.9.4 Shallow foundations supported on engineered fill as recommended in this report may be designed based on an allowable bearing capacity of 1,500 pounds per square foot. This value may be increased by 1/3 for wind and seismic loading.
- 10.9.5 Structural mat foundations may be designed for an average allowable bearing pressure of 1,000 psf and a maximum bearing pressure of 1,500 psf. A modulus of subgrade reaction of 150 psi/inch may be used for design.
- 10.9.6 Total static settlement of 1 inch and differential static settlement of  $\frac{1}{2}$  inch in 30 feet should be anticipated for design. The footing excavations should not be allowed to dry out any time prior to pouring concrete.
- 10.9.7 Resistance to lateral footing displacement can be computed using an estimated allowable friction factor of 0.29 acting between the base of foundations and the supporting subgrade.
- 10.9.8 Lateral resistance for footings can alternatively be developed using an estimated allowable equivalent fluid passive pressure of 275 pounds per cubic foot acting against the appropriate vertical footing faces. An increase of one-third is permitted for wind and earthquake and seismic loading. The upper 6 inches should be neglected in design.
- 10.9.9 Minimum reinforcement for continuous footings should consist of four No. 4 steel reinforcing bars; two placed near the top of the footing and two near the bottom. Reinforcement for spread footings should be designed by the project structural engineer.
- 10.9.10 Underground utilities running parallel to footings should not be constructed in the zone of influence of footings. The zone of influence may be taken to be the area beneath the footing and within a 1:1 plane extending out and down from the bottom edge of the footing.
- 10.9.11 The foundation subgrade should be sprinkled as necessary to maintain a moist condition without significant shrinkage cracks as would be expected in any concrete placement. Prior to placing rebar reinforcement, foundation excavations should be evaluated by a representative of SALEM for appropriate support characteristics and moisture content. Moisture conditioning may be required for the materials exposed at footing bottom, particularly if foundation excavations are left open for an extended period.

## **10.10 Temporary Excavations**

- 10.10.1 We anticipate that the majority of the near surface site soils will be classified as Cal-OSHA “Type C” soil when encountered in excavations during site development and construction. Excavation sloping, benching, the use of trench shields, and the placement of trench spoils should conform to the latest applicable Cal-OSHA standards. The contractor should have a Cal-OSHA-approved “competent person” onsite during excavation to evaluate trench conditions and make appropriate recommendations where necessary.

10.10.2 It is the contractor's responsibility to provide sufficient and safe excavation support as well as protecting nearby utilities, structures, and other improvements which may be damaged by earth movements. All onsite excavations must be conducted in such a manner that potential surcharges from existing structures, construction equipment, and vehicle loads are resisted. The surcharge area may be defined by a 1:1 projection down and away from the bottom of an existing foundation or vehicle load.

10.10.3 Temporary excavations and slope faces should be protected from rainfall and erosion. Surface runoff should be directed away from excavations and slopes.

10.10.4 Open, unbraced excavations in undisturbed soils should be made according to the slopes presented in the following table:

**RECOMMENDED EXCAVATION SLOPES**

| Depth of Excavation (ft) | Slope (Horizontal : Vertical) |
|--------------------------|-------------------------------|
| 0-5                      | 1:1                           |
| 5-10                     | 1½:1                          |

10.10.5 If, due to space limitation, excavations near existing structures are performed in a vertical position, braced shorings or shields may be used for supporting vertical excavations. Therefore, in order to comply with the local and state safety regulations, a properly designed and installed shoring system would be required to accomplish planned excavations and installation. A Specialty Shoring Contractor should be responsible for the design and installation of such a shoring system during construction.

10.10.6 Braced shorings should be designed for a maximum pressure distribution of  $40H$ , (where  $H$  is the depth of the excavation in feet). The foregoing does not include excess hydrostatic pressure or surcharge loading. Fifty percent of any surcharge load, such as construction equipment weight, should be added to the lateral load given herein. Equipment traffic should concurrently be limited to an area at least 3 feet from the shoring face or edge of the slope.

10.10.7 The excavation and shoring recommendations provided herein are based on soil characteristics derived from the boring within the area. Variations in soil conditions will likely be encountered during the excavations. SALEM Engineering Group, Inc. should be afforded the opportunity to provide field review to evaluate the actual conditions and account for field condition variations not otherwise anticipated in the preparation of this recommendation. Slope height, slope inclination, or excavation depth should in no case exceed those specified in local, state, or federal safety regulation, (e.g. OSHA) standards for excavations, 29 CFR part 1926, or Assessor's regulations.

## **10.11 Underground Utilities**

10.11.1 Underground utility trenches should be backfilled with properly compacted material. The material excavated from the trenches should be adequate for use as general backfill above the bedding and pipe zone (see Section 14.2) provided it does not contain deleterious matter, vegetation or rock larger than 3 inches in maximum dimension. Trench backfill should be placed in loose lifts not exceeding 8 inches and compacted to at least 90 percent relative compaction to

at least 1 percent above optimum moisture content. The upper 12 inches of trench backfill within asphalt or concrete paved areas shall be moisture conditioned to at or above optimum moisture content and compacted to at least 95 percent relative compaction.

- 10.11.2 Bedding and pipe zone backfill typically extends from the bottom of the trench excavations to approximately 12 inches above the crown of the pipe. Pipe bedding, haunches and initial fill extending to 1 foot above the pipe should consist of a clean well graded sand with 100 percent passing the #4 sieve, a maximum of 15 percent passing the #200 sieve, and a minimum sand equivalent of 20.
- 10.11.3 It is suggested that underground utilities crossing beneath new or existing structures be plugged at entry and exit locations to the building or structure to prevent water migration. Trench plugs can consist of on-site clay soils, if available, or sand cement slurry. The trench plugs should extend 2 feet beyond each side of individual perimeter foundations.
- 10.11.4 The contractor is responsible for removing all water-sensitive soils from the trench regardless of the backfill location and compaction requirements. The contractor should use appropriate equipment and methods to avoid damage to the utilities and/or structures during fill placement and compaction.

## **11. PLAN REVIEW, CONSTRUCTION OBSERVATION AND TESTING**

### **11.1 Plan and Specification Review**

- 11.1.1 SALEM should review the project plans and specifications prior to final design submittal to assess whether our recommendations have been properly implemented and evaluate if additional analysis and/or recommendations are required.

### **11.2 Construction Observation and Testing Services**

- 11.2.1 The recommendations provided in this report are based on the assumption that we will continue as Geotechnical Engineer of Record throughout the construction phase. It is important to maintain continuity of geotechnical interpretation and confirm that field conditions encountered are similar to those anticipated during design.

If we are not retained for these services, we cannot assume any responsibility for others interpretation of our recommendations, and therefore the future performance of the project.

- 11.2.2 SALEM should be present at the site during site preparation to observe site clearing, preparation of exposed surfaces after clearing, and placement, treatment and compaction of fill material.
- 11.2.3 SALEM's observations should be supplemented with periodic compaction tests to establish substantial conformance with these recommendations. Moisture content of footings and slab subgrade should be tested immediately prior to concrete placement. SALEM should observe foundation excavations prior to placement of reinforcing steel or concrete to assess whether the actual bearing conditions are compatible with the conditions anticipated during the preparation of this report.

## 12. LIMITATIONS AND CHANGED CONDITIONS

The analyses and recommendations submitted in this report are based upon the data obtained from the test boring drilled at the approximate locations shown on the Site Plan, Figure 2. The report does not reflect variations which may occur between borings. The nature and extent of such variations may not become evident until construction is initiated.

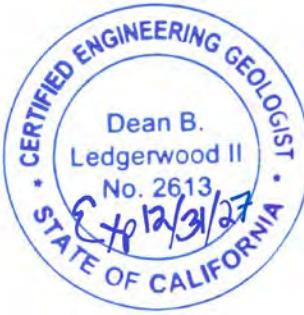
If variations then appear, a re-evaluation of the recommendations of this report will be necessary after performing on-site observations during the excavation period and noting the characteristics of such variations. The findings and recommendations presented in this report are valid as of the present and for the proposed construction.

If site conditions change due to natural processes or human intervention on the property or adjacent to the site, or changes occur in the nature or design of the project, or if there is a substantial time lapse between the submission of this report and the start of the work at the site, the conclusions and recommendations contained in our report will not be considered valid unless the changes are reviewed by SALEM and the conclusions of our report are modified or verified in writing.

The validity of the recommendations contained in this report is also dependent upon an adequate testing and observations program during the construction phase. Our firm assumes no responsibility for construction compliance with the design concepts or recommendations unless we have been retained to perform the on-site testing and review during construction. SALEM has prepared this report for the exclusive use of the owner and project design consultants.

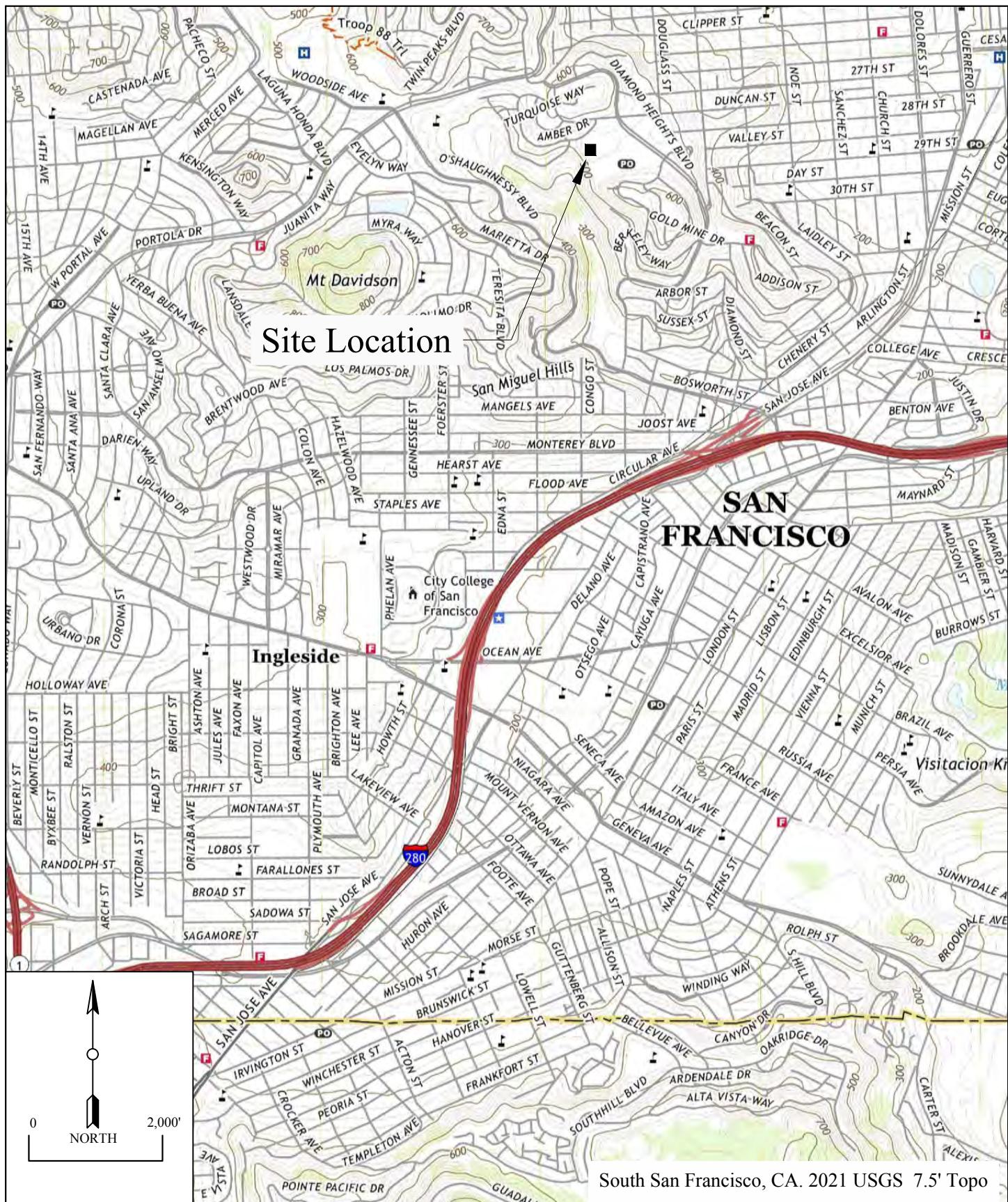
SALEM does not practice in the field of corrosion engineering. It is recommended that a qualified corrosion engineer be consulted regarding protection of buried steel or ductile iron piping and conduit or, at a minimum, that manufacturer's recommendations for corrosion protection be closely followed. Further, a corrosion engineer may be needed to incorporate the necessary precautions to avoid premature corrosion of concrete slabs and foundations in direct contact with native soil. The importation of soil and or aggregate materials to the site should be screened to determine the potential for corrosion to concrete and buried metal piping.

The report has been prepared in accordance with generally accepted geotechnical engineering practices in the area. No other warranties, either express or implied, are made as to the professional advice provided under the terms of our agreement and included in this report.


If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (559) 271-9700.

Respectfully Submitted,

**SALEM ENGINEERING GROUP, INC.**




Dean B. Ledgerwood II, PE, PG, CEG  
Geotechnical Manager  
PE 94395 / PG 8725 / CEG 2613



R. Sammy Salem, M8, PE, GE  
Principal Managing Engineer  
RCE 52762 / RGE 2549





| VICINITY MAP                                                                                                                                                   | SCALE: 1" = 2,000' | DATE: Dec. 2025                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|
| GEOTECHNICAL ENGINEERING INVESTIGATION<br>PROPOSED VERIZON 103' MONOPOLE TOWER<br>SAN FRANCISCO POLICE ACADEMY<br>350 AMBER DRIVE<br>SAN FRANCISCO, CALIFORNIA | DRAWN BY: VT       | APPROVED BY: DL                  |
| PROJECT NO. 5-225-1076                                                                                                                                         | FIGURE NO. 1       | SALEM<br>engineering group, inc. |



| SITE PLAN                                                                                                                                                      | SCALE: 1" = 70'        | DATE: DEC. 2025 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| GEOTECHNICAL ENGINEERING INVESTIGATION<br>PROPOSED VERIZON 103' MONOPOLE TOWER<br>SAN FRANCISCO POLICE ACADEMY<br>350 AMBER DRIVE<br>SAN FRANCISCO, CALIFORNIA | DRAWN BY: CR           | APPROVED BY: DL |
|                                                                                                                                                                | PROJECT NO. 5-225-1076 | FIGURE NO. 3    |



**SALEM**  
engineering group, inc.

# A



## **APPENDIX A**

### **FIELD EXPLORATION**

Our field exploration consisted of a site surface reconnaissance and a subsurface exploration. The exploratory boring was drilled on December 29 and 30, 2025, in the area shown on the Site Plan, Figure 2.

Sampling in the boring was accomplished using a hydraulic 140-pound hammer with a 30-inch drop. Samples were obtained with a 3-inch outside-diameter (OD), split spoon (California Modified) sampler, and a 2-inch OD, Standard Penetration Test (SPT) sampler driven 18 inches into the soil. Penetration and/or Resistance tests were performed at selected depths. The resistance/N-Value obtained from driving was recorded based on the number of blows required to penetrate the last 12 inches. The driving energy was provided by an auto-trip hammer weighing 140 pounds, falling 4 inches. Relatively undisturbed MCS soil samples were obtained while performing this test. Bag samples of the disturbed soil were obtained from the SPT samples and auger cuttings. All samples were returned to our Fresno laboratory for evaluation. The test borings were backfilled with excavated soil upon completion of drilling and sampling.

Subsurface conditions encountered in the exploratory boring were visually examined, classified and logged in general accordance with the American Society for Testing and Materials (ASTM) Practice for Description and Identification of Soils (Visual-Manual Procedure D2488). This system uses the Unified Soil Classification System (USCS) for soil designations. The log depicts soil and geologic conditions encountered and depths at which samples were obtained. The log also includes our interpretation of the conditions between sampling intervals. Therefore, the log contains both observed and interpreted data. We determined the lines designating the interface between soil materials on the log using visual observations, drill rig penetration rates, excavation characteristics and other factors. The transition between materials may be abrupt or gradual. Where applicable, the field log was revised based on subsequent laboratory testing.



**SALEM**  
engineering group, inc.

**Test Boring: B-1**

**Page 1 Of: 3**

**Project Number: 5-225-1076**

**Date: 12/29/2025**

**Client: Geist Engineering & Environmental Group, Inc.**

**Project: AT&T 103' Monopole CCL05350: SF Police Academy**

**Location: 350 Amber Drive, San Francisco, CA.**

**Drilled By: Salem Engineering Group, Inc. Logged By: RS**

**Drill Type: CME 55**

**Elevation: 553-ft. AMSL**

**Auger Type: 8in. Hollow Stem Auger**

**Initial Depth to Groundwater: NE**

**Hammer Type: Automatic Trip - 140lbs./30in. Final Depth to Groundwater: NE**

| ELEVATION/DEPTH (feet) | SOIL SYMBOLS<br>SAMPLER SYMBOLS<br>AND FIELD TEST DATA | USCS       | Soil Description                                                                                                | N-Values<br>blows/ft. | Moisture Content % | Dry Density, PCF | Remarks                                                      |
|------------------------|--------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------|--------------------------------------------------------------|
| 0                      | 6/6<br>4/6<br>5/6                                      | AC<br>FILL | Asphalt Concrete = 2 inches.<br>Clayey Sand; Loose, reddish brown to light brown, fine to coarse, trace gravel. | 9                     | 15.8               | --               |                                                              |
| 550                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |
| 5                      | 10/6<br>10/6<br>10/6                                   |            | Dark brown. Medium dense                                                                                        | 20                    | 13.7               | 113.3            | Gravel=26%<br>Sand = 45%<br>#200 = 29%<br>PL = 21<br>LL = 31 |
| 545                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |
| 10                     | 5/6<br>8/6<br>10/6                                     |            | Light brown, increase sand.                                                                                     | 18                    | 13.3               | 115.5            | $\phi = 31^\circ$<br>$C' = 760$                              |
| 540                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |
| 15                     | 6/6<br>9/6<br>11/6                                     |            |                                                                                                                 | 20                    | --                 | --               | No recovery.                                                 |
| 535                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |
| 20                     | 11/6<br>16/6<br>20/6                                   |            | dark brown, increase in percent sand.                                                                           | 36                    | 9.5                | 120.3            |                                                              |
| 530                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |
| 25                     | 9/6<br>9/6<br>15/6                                     |            | grey with brown, very moist, slight organic smell.                                                              | 24                    | 18.1               | 108.6            | Gravel=21%<br>Sand = 31%<br>#200 = 48%<br>PL = 22<br>LL = 33 |
| 525                    |                                                        |            |                                                                                                                 |                       |                    |                  |                                                              |

**Notes:**

**Figure Number A-1**



Project Number: 5-225-1076

Date: 12/29/2025

Test Boring: B-1

| ELEVATION/DEPTH (feet) | SOIL SYMBOLS<br>SAMPLER SYMBOLS<br>AND FIELD TEST DATA | USCS | Soil Description                                                   | N-Values blows/ft. | Moisture Content % | Dry Density, PCF | Remarks                                                      |
|------------------------|--------------------------------------------------------|------|--------------------------------------------------------------------|--------------------|--------------------|------------------|--------------------------------------------------------------|
| 30                     | 3/6<br>4/6<br>7/6                                      |      | dark brown to black, trace of roots, increase in percent fines.    | 11                 | 22.9               | --               |                                                              |
| 520                    |                                                        |      |                                                                    |                    |                    |                  |                                                              |
| 35                     | 11/6<br>11/6<br>10/6                                   |      | Greyish brown, moist, no roots, no organic smell, increase gravel. | 21                 | 15.8               | 114.1            | $\phi = 40^\circ$<br>$C' = 387$                              |
| 515                    |                                                        |      |                                                                    |                    |                    |                  |                                                              |
| 40                     | 4/6<br>5/6<br>9/6                                      |      | brown with some greyish white, slightly moist.                     | 14                 | 24.0               | --               |                                                              |
| 510                    |                                                        |      |                                                                    |                    |                    |                  |                                                              |
| 45                     | 7/6<br>8/6<br>7/6                                      |      | Red to brown.                                                      | 15                 | 14.1               | 116.4            | Gravel=25%<br>Sand = 39%<br>#200 = 36%<br>PL = 22<br>LL = 34 |
| 505                    |                                                        |      | brown to dark grey, some organics,                                 |                    |                    |                  |                                                              |
| 50                     | 13/6<br>16/6<br>19/6<br>7/6<br>9/6<br>12/6             |      | light brown to brown, moist, with gravel.                          | 35                 | 13.8               | 113.5            |                                                              |
| 500                    |                                                        |      | Dark grey, with sand and trace gravel.                             | 21                 | 13.7               | --               |                                                              |
| 55                     | 9/6<br>16/6<br>19/6<br>8/6<br>12/6<br>8/6              |      | Orange, red, grey, green with brown.                               | 35                 | 13.3               | 113.5            | Gravel=28%<br>Sand = 45%<br>#200 = 27%<br>PL = 23<br>LL = 36 |
| 495                    |                                                        |      | Grey with reddish brown.                                           | 20                 | 12.3               | --               |                                                              |
| 60                     | 9/6<br>13/6<br>12/6<br>6/6<br>7/6<br>11/6              |      | Dark grey, with gravel.                                            | 25                 | 16.9               | 113.8            | $\phi = 43^\circ$<br>$C' = 260$                              |
| 490                    |                                                        |      | Light orange brown to dark grey.                                   | 18                 | 17.2               | --               |                                                              |

Notes:



Project Number: 5-225-1076

Date: 12/29/2025

Test Boring: B-1

| ELEVATION/DEPTH (feet) | SOIL SYMBOLS<br>SAMPLER SYMBOLS<br>AND FIELD TEST DATA | USCS | Soil Description                                                  | N-Values blows/ft. | Moisture Content % | Dry Density, PCF | Remarks                                |
|------------------------|--------------------------------------------------------|------|-------------------------------------------------------------------|--------------------|--------------------|------------------|----------------------------------------|
| 65                     | 8/6<br>13/6<br>16/6<br>5/6<br>10/6<br>50/5             | FILL | Light brown, slightly moist.                                      | 29                 | 10.7               | --               | Gravel=31%<br>Sand = 42%<br>#200 = 27% |
| 70                     | 10/6<br>14/6<br>26/6                                   |      | Brown, dark grey.                                                 | >50                | 16.3               | --               |                                        |
| 75                     | 7/6<br>12/6<br>17/6                                    |      | Hard drilling, weathered grey rock.                               |                    | 21.9               | --               |                                        |
| 80                     | 15/6<br>15/6<br>15/6                                   |      | Dense, reddish light brown, Very moist                            | 40                 | 16.4               | --               |                                        |
| 85                     | 9/6<br>13/6<br>17/6                                    |      | Light reddish dark brown, moist.                                  | 29                 | 11.0               | --               |                                        |
| 86.5                   | 12/6<br>16/6<br>23/6<br>9/6<br>50/1<br>50/1            | ROCK | Dense                                                             | 30                 | 14.3               | --               | Gravel=29%<br>Sand = 45%<br>#200 = 26% |
| 86.5                   |                                                        |      | Very gravelly, weathered rock fragments.                          | 30                 | 14.1               | --               |                                        |
| 86.5                   |                                                        |      | moist, reddish brown weathered rock, with clay.                   | 39                 | 11.8               | --               |                                        |
| 86.5                   |                                                        |      | Weathered Rock - Very Low Recovery Appears to be Colima Formation | >50                | 12.3               | --               |                                        |
| 86.5                   |                                                        |      | End of boring at 86.5ft. BSG                                      | >50                | --                 | --               |                                        |
| 90                     |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 95                     |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 100                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 105                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 110                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 115                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 120                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 125                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 130                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 135                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 140                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 145                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 150                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 155                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 160                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 165                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 170                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 175                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 180                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 185                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 190                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 195                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 200                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 205                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 210                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 215                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 220                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 225                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 230                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 235                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 240                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 245                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 250                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 255                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 260                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 265                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 270                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 275                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 280                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 285                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 290                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 295                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 300                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 305                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 310                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 315                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 320                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 325                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 330                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 335                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 340                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 345                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 350                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 355                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 360                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 365                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 370                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 375                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 380                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 385                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 390                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 395                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 400                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 405                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 410                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 415                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 420                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 425                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 430                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 435                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 440                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 445                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 450                    |                                                        |      |                                                                   |                    |                    |                  |                                        |
| 455                    |                                                        |      |                                                                   |                    |                    |                  |                                        |

Notes:

Figure Number A-1

# KEY TO SYMBOLS

## Symbol Description

### Strata symbols



Asphaltic Concrete



Fill



Fractured Rock

### Misc. Symbols



Boring continues

### Soil Samplers



Standard penetration test



California sampler

### Notes:

#### Granular Soils

Blows Per Foot (Uncorrected)

|              | MCS   | SPT   |
|--------------|-------|-------|
| Very loose   | <5    | <4    |
| Loose        | 5-15  | 4-10  |
| Medium dense | 16-40 | 11-30 |
| Dense        | 41-65 | 31-50 |
| Very dense   | >65   | >50   |

#### Cohesive Soils

Blows Per Foot (Uncorrected)

|            | MCS   | SPT   |
|------------|-------|-------|
| Very soft  | <3    | <2    |
| Soft       | 3-5   | 2-4   |
| Firm       | 6-10  | 5-8   |
| Stiff      | 11-20 | 9-15  |
| Very Stiff | 21-40 | 16-30 |
| Hard       | >40   | >30   |

MCS = Modified California Sampler

SPT = Standard Penetration Test Sampler

APPENDIX

# B



## **APPENDIX B**

### **LABORATORY TESTING**

Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM), Caltrans, or other suggested procedures. Selected samples were tested for in-situ density and moisture content, Atterberg limits, expansion index, grain size distribution, consolidation, shear strength, corrosivity, and soil resistivity. The results of the laboratory tests are summarized in the following figures.

# Direct Shear Test (ASTM D3080)

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

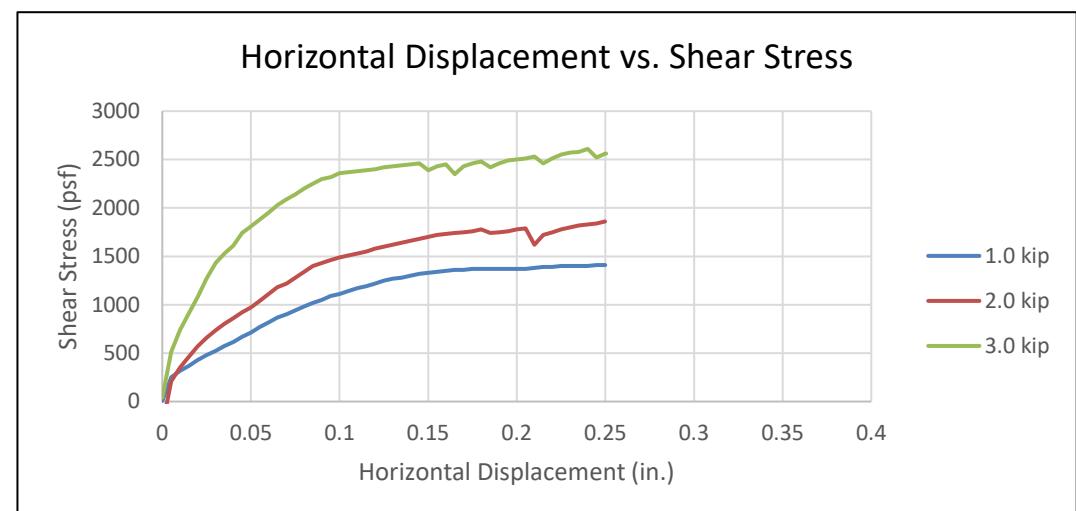
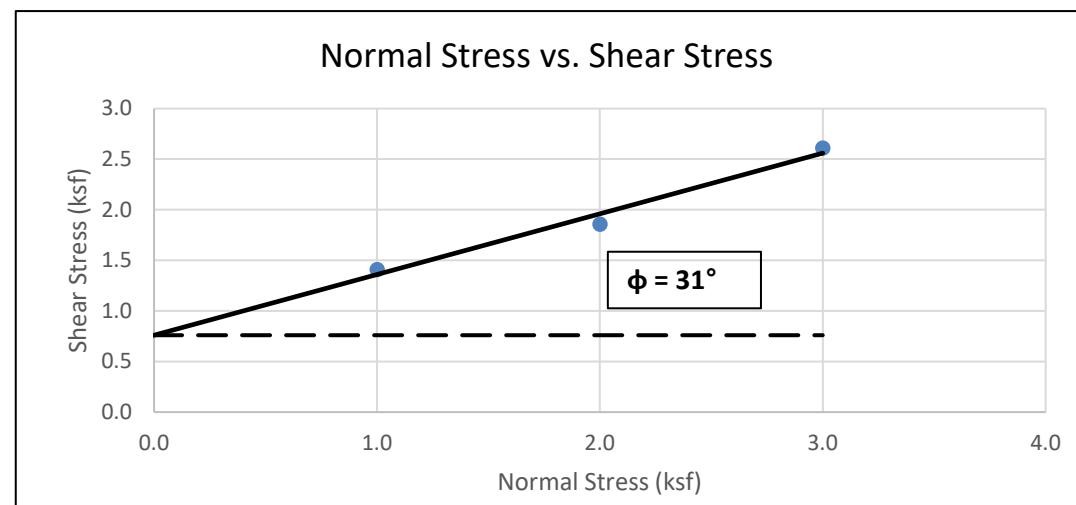
Client: Geist Engineering and Environmental Group, Inc.

Boring: B-1 @ 10'-11.5'

Soil Type: Clayey Sand with Gravel

Sample Type: Undisturbed Ring

Tested By: NL / MC



Reviewed By:

Date of Test: 1/12-13/26

Test Equipment: GeoComp ShearTrac II

|                         | Loading |         |         |
|-------------------------|---------|---------|---------|
|                         | 1.0 kip | 2.0 kip | 3.0 kip |
| Normal Stress (ksf)     | 1.00    | 2.00    | 3.00    |
| Shear Rate (in/min)     | 0.0040  | 0.0040  | 0.0040  |
| Peak Shear Stress (ksf) | 1.41    | 1.86    | 2.61    |

|                                   |       |       |       |
|-----------------------------------|-------|-------|-------|
| Initial Height of Sample (in)     | 1.000 | 1.000 | 1.000 |
| Post-Consol. Sample Height (in.)  | 0.966 | 0.931 | 0.928 |
| Post-Shear Sample Height (in.)    | 0.976 | 0.919 | 0.911 |
| Diameter of Sample (in)           | 2.416 | 2.416 | 2.416 |
| <b>Initial (pre-shear) Values</b> |       |       |       |
| Moisture Content (%)              | 13.3  |       |       |
| Dry Density (pcf)                 | 112.9 | 111.3 | 115.4 |
| Saturation %                      | 73.2  | 70.1  | 78.4  |
| Void Ratio                        | 0.49  | 0.51  | 0.46  |
| Consolidated Void Ratio           | 0.44  | 0.40  | 0.35  |
| <b>Final (post-shear) Values</b>  |       |       |       |
| Final Moisture Content (%)        | 21.0  | 20.4  | 20.9  |
| Dry Density (pcf)                 | 108.4 | 114.1 | 118.1 |
| Saturation %                      | 102.5 | 115.7 | 135.4 |
| Void Ratio                        | 0.55  | 0.48  | 0.42  |



| Peak Shear Strength Values |      |
|----------------------------|------|
| Slope                      | 0.60 |
| Friction Angle             | 31   |
| Cohesion (psf)             | 760  |

# Direct Shear Test (ASTM D3080)

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

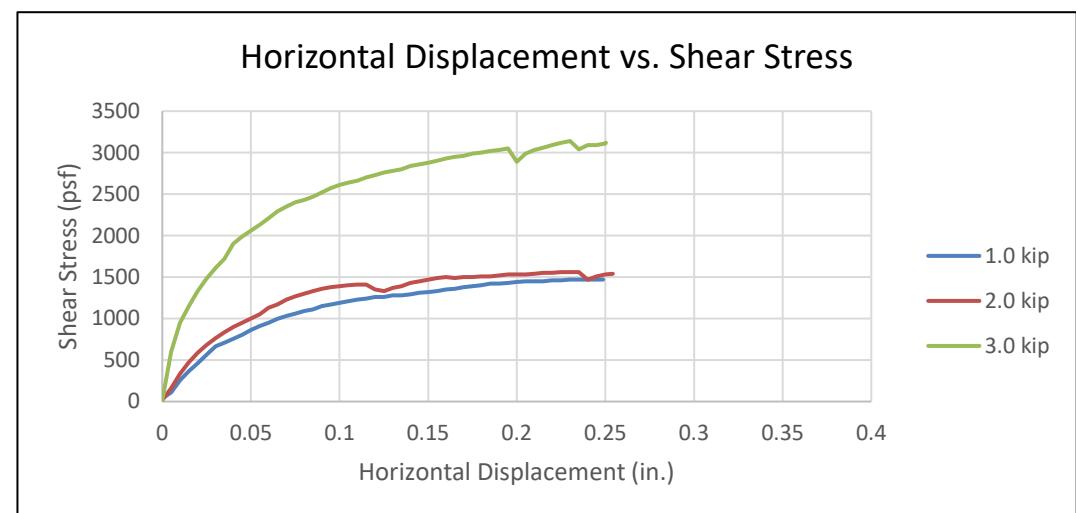
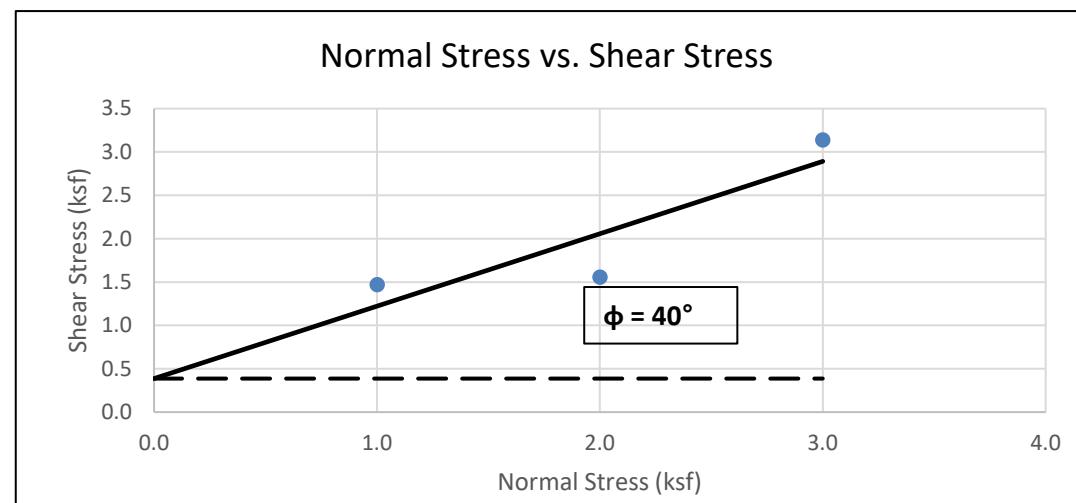
Client: Geist Engineering and Environmental Group, Inc.

Boring: B-1 @ 35'-36.5'

Soil Type: Clayey Sand with Gravel

Sample Type: Undisturbed Ring

Tested By: MC / NL



Reviewed By:

Date of Test: 1/13/26

Test Equipment: GeoComp ShearTrac II

|                         | Loading |         |         |
|-------------------------|---------|---------|---------|
|                         | 1.0 kip | 2.0 kip | 3.0 kip |
| Normal Stress (ksf)     | 1.00    | 2.00    | 3.00    |
| Shear Rate (in/min)     | 0.0040  | 0.0040  | 0.0040  |
| Peak Shear Stress (ksf) | 1.47    | 1.56    | 3.14    |

|                                   |       |       |       |
|-----------------------------------|-------|-------|-------|
| Initial Height of Sample (in)     | 1.000 | 1.000 | 1.000 |
| Post-Consol. Sample Height (in.)  | 0.972 | 0.924 | 0.935 |
| Post-Shear Sample Height (in.)    | 0.972 | 0.914 | 0.919 |
| Diameter of Sample (in)           | 2.416 | 2.416 | 2.416 |
| <b>Initial (pre-shear) Values</b> |       |       |       |
| Moisture Content (%)              | 15.8  |       |       |
| Dry Density (pcf)                 | 110.7 | 105.4 | 109.5 |
| Saturation %                      | 82.6  | 71.8  | 79.8  |
| Void Ratio                        | 0.52  | 0.59  | 0.53  |
| Consolidated Void Ratio           | 0.47  | 0.47  | 0.43  |
| <b>Final (post-shear) Values</b>  |       |       |       |
| Final Moisture Content (%)        | 23.5  | 22.9  | 22.4  |
| Dry Density (pcf)                 | 107.0 | 109.1 | 111.2 |
| Saturation %                      | 110.8 | 113.1 | 123.2 |
| Void Ratio                        | 0.57  | 0.55  | 0.49  |



| Peak Shear Strength Values |      |
|----------------------------|------|
| Slope                      | 0.84 |
| Friction Angle             | 40   |
| Cohesion (psf)             | 387  |

# Direct Shear Test (ASTM D3080)

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

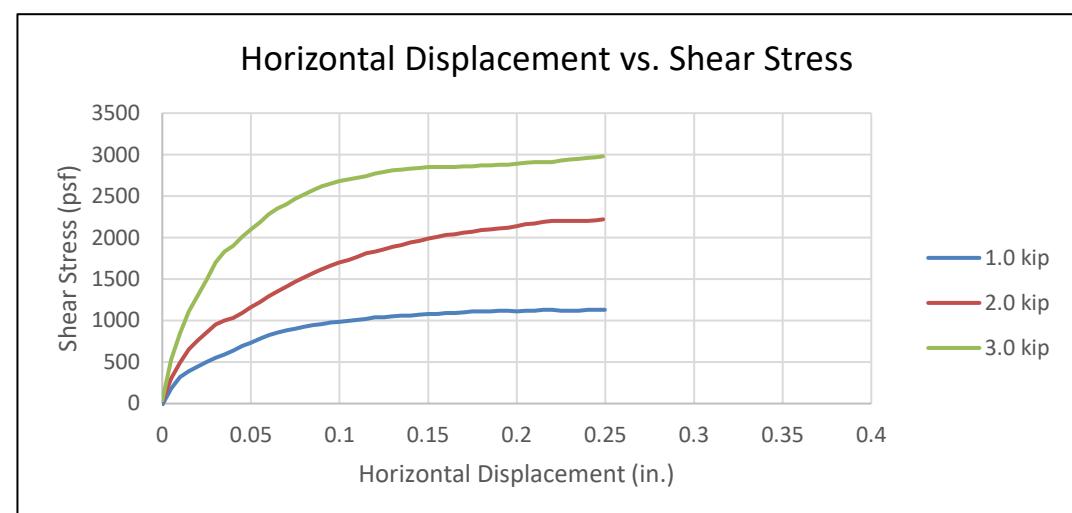
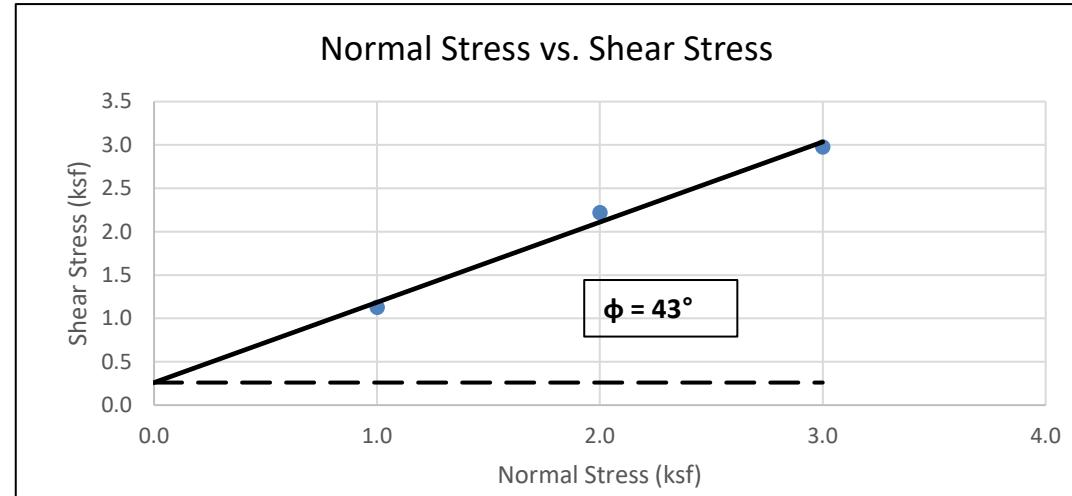
Client: Geist Engineering and Environmental Group, Inc.

Boring: B-1 @ 60'-61.5'

Soil Type: Clayey Sand with Gravel

Sample Type: Undisturbed Ring

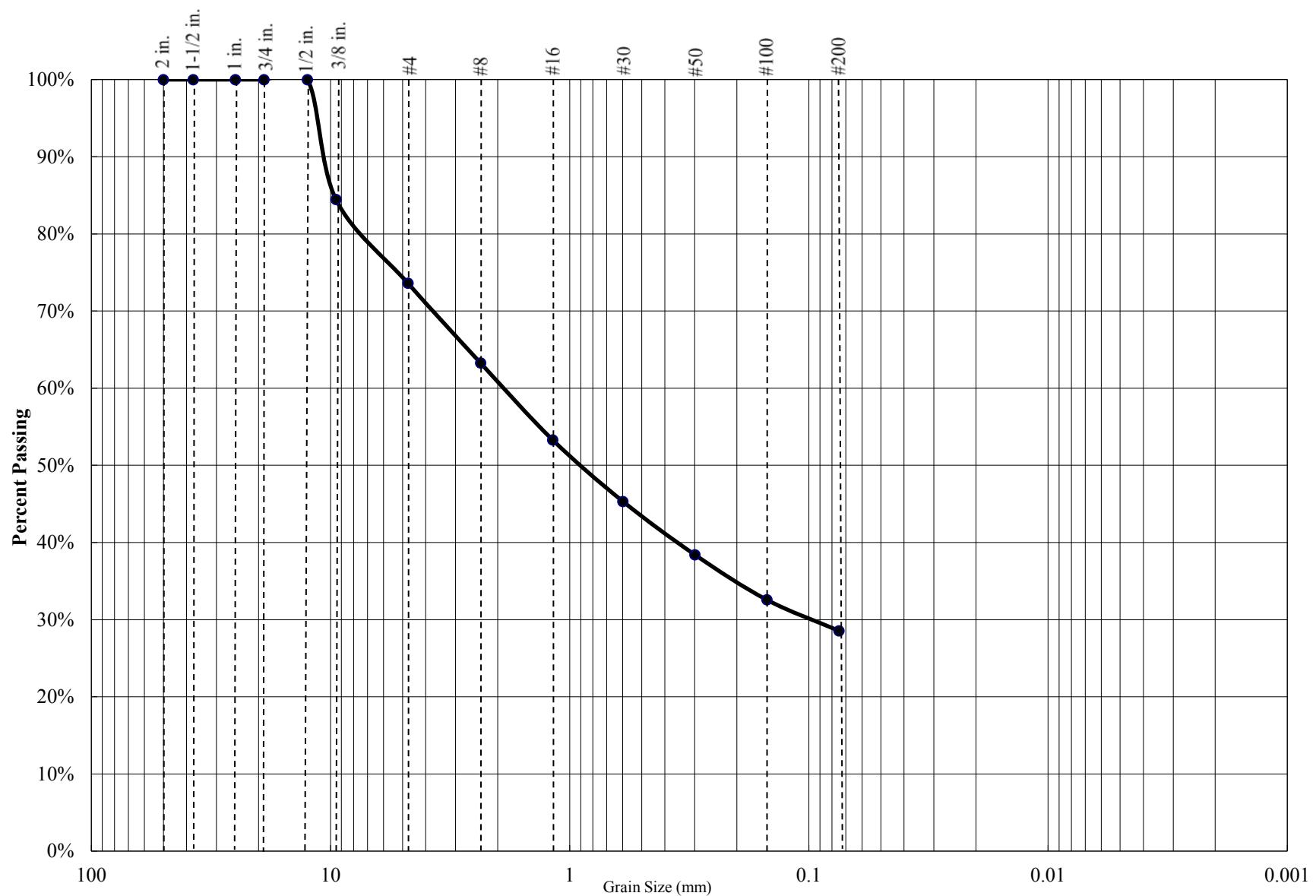
Tested By: NL / MC



Reviewed By:

Date of Test: 1/13-14/26

Test Equipment: GeoComp ShearTrac II

|                         | Loading |         |         |
|-------------------------|---------|---------|---------|
|                         | 1.0 kip | 2.0 kip | 3.0 kip |
| Normal Stress (ksf)     | 1.00    | 2.00    | 3.00    |
| Shear Rate (in/min)     | 0.0025  | 0.0025  | 0.0025  |
| Peak Shear Stress (ksf) | 1.13    | 2.22    | 2.98    |


|                                   |       |       |       |
|-----------------------------------|-------|-------|-------|
| Initial Height of Sample (in)     | 1.000 | 1.000 | 1.000 |
| Post-Consol. Sample Height (in.)  | 0.954 | 0.940 | 0.915 |
| Post-Shear Sample Height (in.)    | 0.948 | 0.933 | 0.904 |
| Diameter of Sample (in)           | 2.416 | 2.416 | 2.416 |
| <b>Initial (pre-shear) Values</b> |       |       |       |
| Moisture Content (%)              | 16.9  |       |       |
| Dry Density (pcf)                 | 106.8 | 112.5 | 112.0 |
| Saturation %                      | 77.9  | 90.3  | 89.0  |
| Void Ratio                        | 0.59  | 0.51  | 0.52  |
| Consolidated Void Ratio           | 0.52  | 0.42  | 0.39  |
| <b>Final (post-shear) Values</b>  |       |       |       |
| Final Moisture Content (%)        | 22.5  | 20.0  | 20.6  |
| Dry Density (pcf)                 | 107.9 | 117.9 | 119.3 |
| Saturation %                      | 105.6 | 122.1 | 135.0 |
| Void Ratio                        | 0.58  | 0.45  | 0.41  |



| Peak Shear Strength Values |      |
|----------------------------|------|
| Slope                      | 0.93 |
| Friction Angle             | 43   |
| Cohesion (psf)             | 260  |

## PARTICLE SIZE DISTRIBUTION DIAGRAM

### GRADATION TEST - ASTM C136

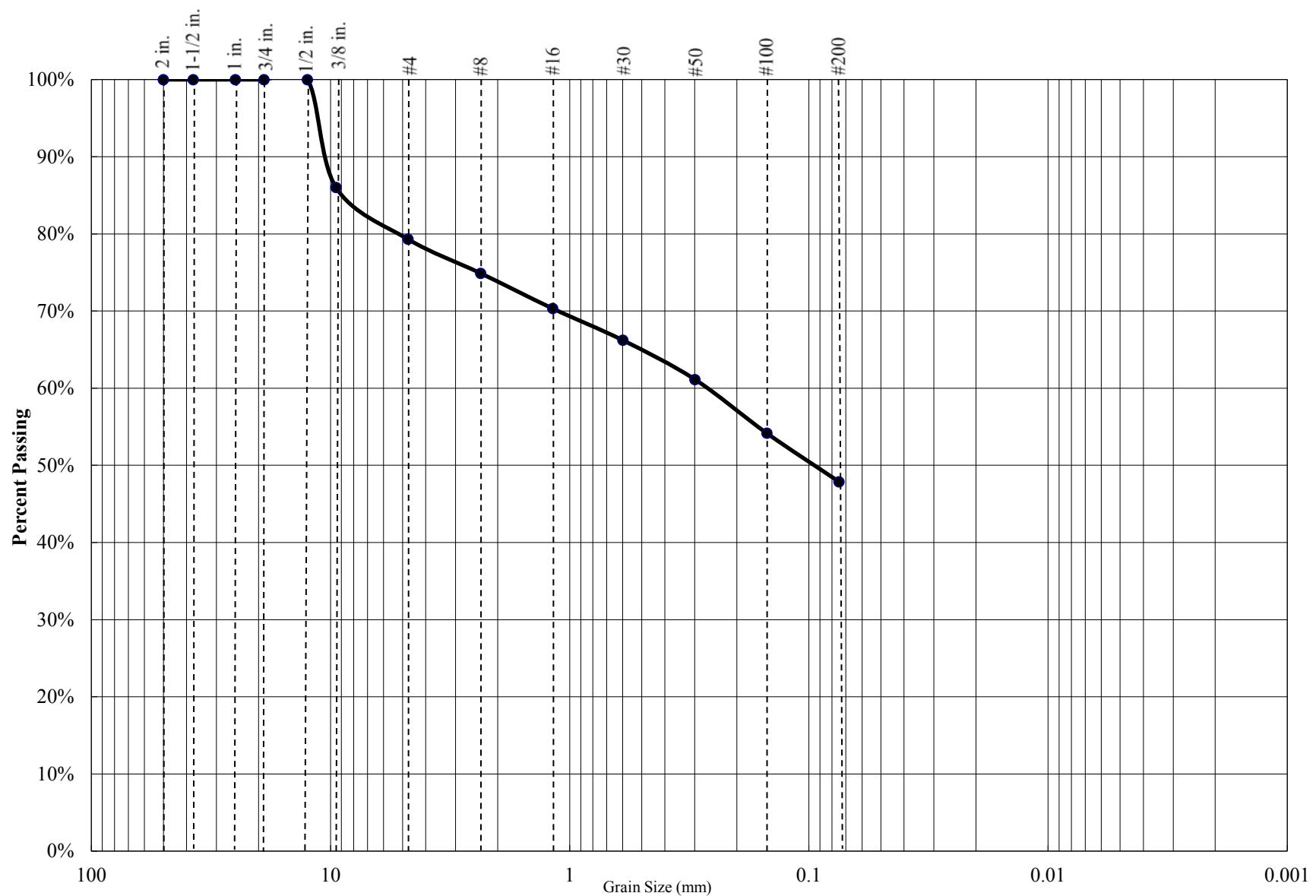


| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 26%            | 45%          | 29%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 84.5%           |
| #4         | 73.6%           |
| #8         | 63.3%           |
| #16        | 53.3%           |
| #30        | 45.3%           |
| #50        | 38.4%           |
| #100       | 32.6%           |
| #200       | 28.6%           |

| Atterberg Limits             |      |                      |
|------------------------------|------|----------------------|
| PL=                          | LL=  | PI=                  |
| Coefficients                 |      |                      |
| D85=                         | D60= | D50=                 |
| D30=                         | D15= | D10=                 |
| C <sub>u</sub> =             | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION          |      |                      |
| Clayey Sand with Gravel (SC) |      |                      |

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA


Project Number: 5-225-1076

Boring: B-1 @ 5'-6.5'

 **SALEM**  
engineering group, inc.

## PARTICLE SIZE DISTRIBUTION DIAGRAM

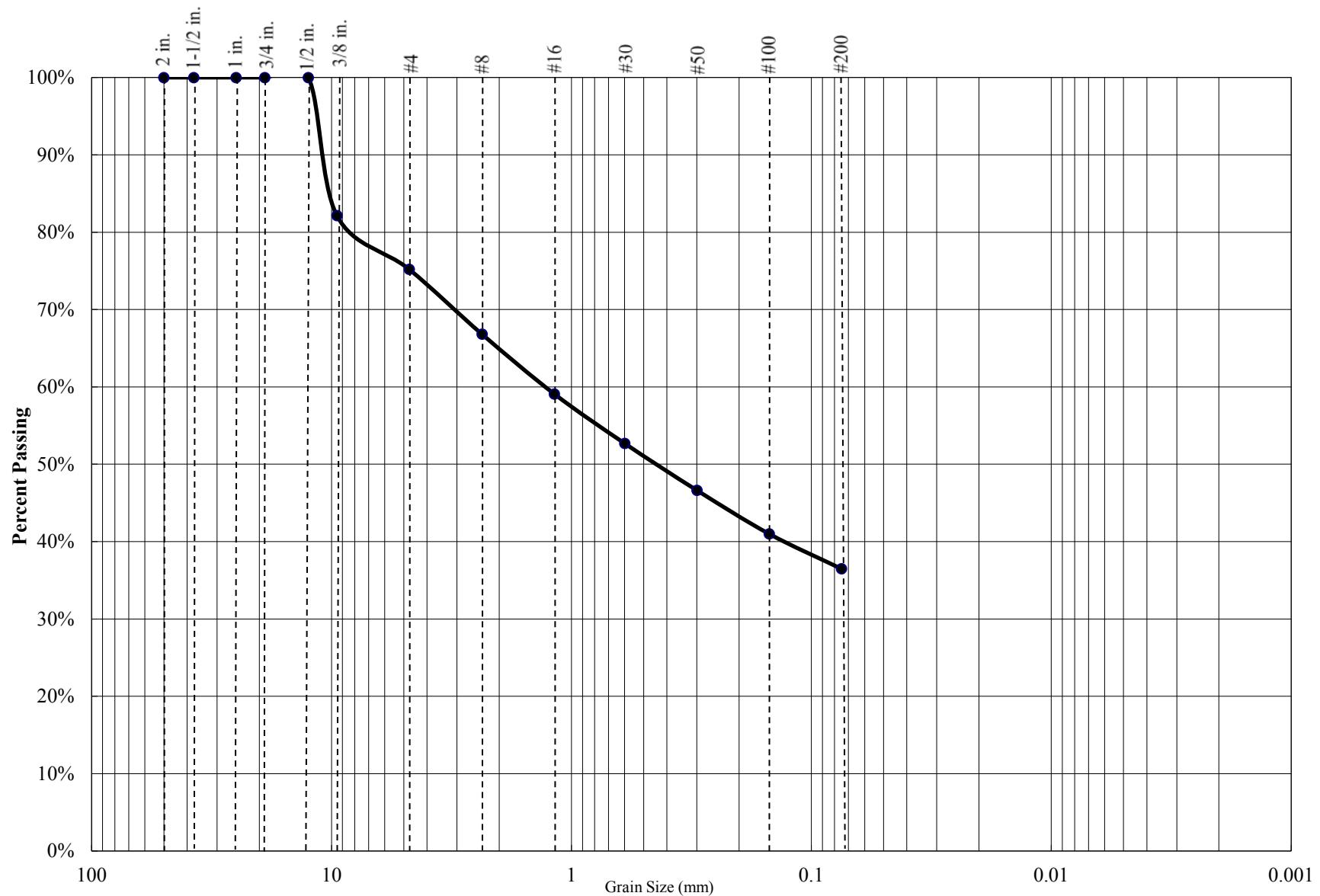
### GRADATION TEST - ASTM C136



| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 21%            | 31%          | 48%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 86.0%           |
| #4         | 79.3%           |
| #8         | 74.9%           |
| #16        | 70.3%           |
| #30        | 66.2%           |
| #50        | 61.1%           |
| #100       | 54.2%           |
| #200       | 47.9%           |

| Atterberg Limits             |      |                      |
|------------------------------|------|----------------------|
| PL=                          | LL=  | PI=                  |
| Coefficients                 |      |                      |
| D85=                         | D60= | D50=                 |
| D30=                         | D15= | D10=                 |
| C <sub>u</sub> =             | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION          |      |                      |
| Clayey Sand with Gravel (SC) |      |                      |


Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Boring: B-1 @ 25'-26.5'

 **SALEM**  
engineering group, inc.

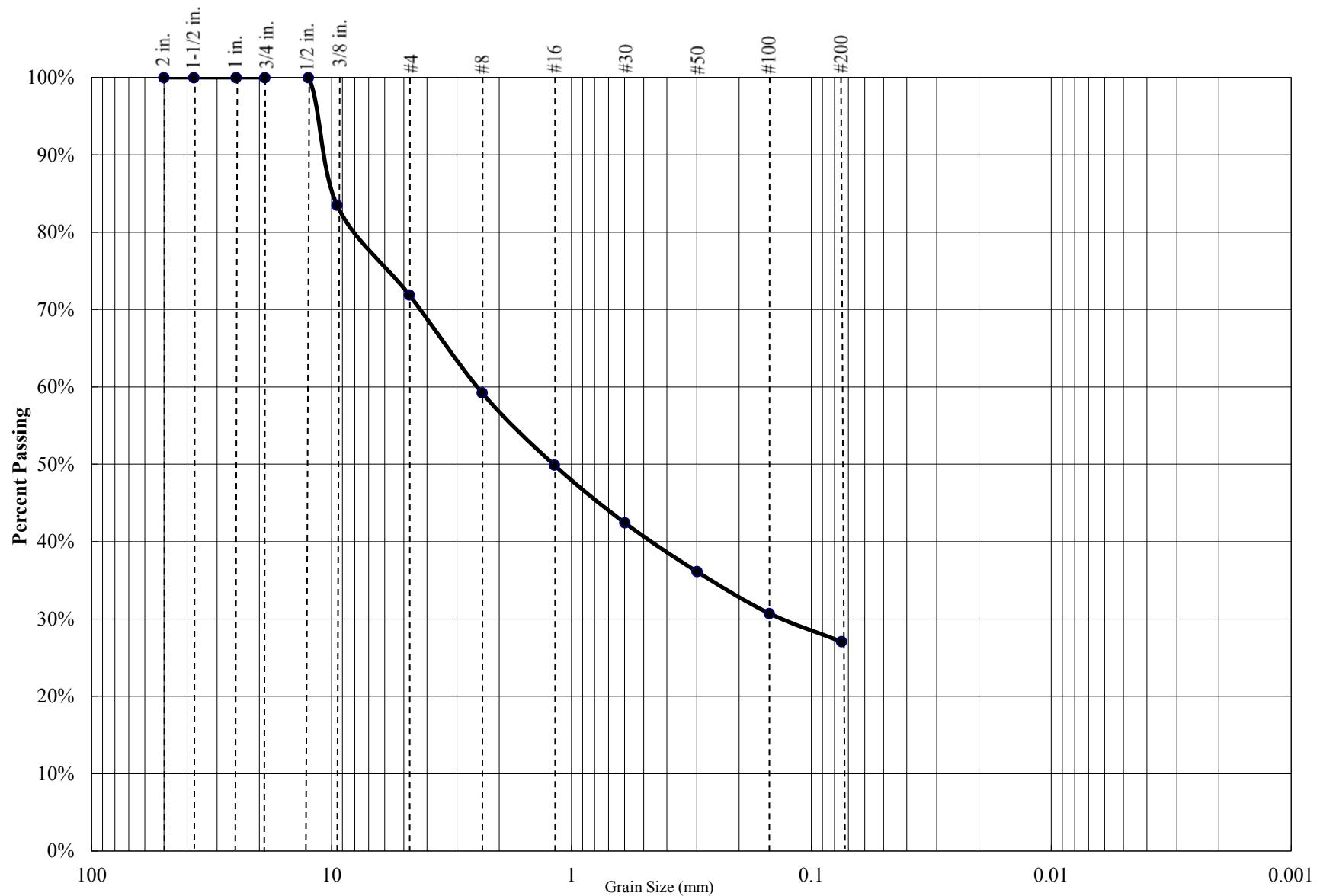
**PARTICLE SIZE DISTRIBUTION DIAGRAM**  
**GRADATION TEST - ASTM C136**



| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 25%            | 39%          | 36%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 82.1%           |
| #4         | 75.2%           |
| #8         | 66.8%           |
| #16        | 59.1%           |
| #30        | 52.7%           |
| #50        | 46.6%           |
| #100       | 41.0%           |
| #200       | 36.5%           |

| Atterberg Limits    |      |                      |
|---------------------|------|----------------------|
| PL=                 | LL=  | PI=                  |
| Coefficients        |      |                      |
| D85=                | D60= | D50=                 |
| D30=                | D15= | D10=                 |
| C <sub>u</sub> =    | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION |      |                      |
| 0                   |      |                      |


Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Boring: B-1 @ 45'-46.5'

 **SALEM**  
engineering group, inc.

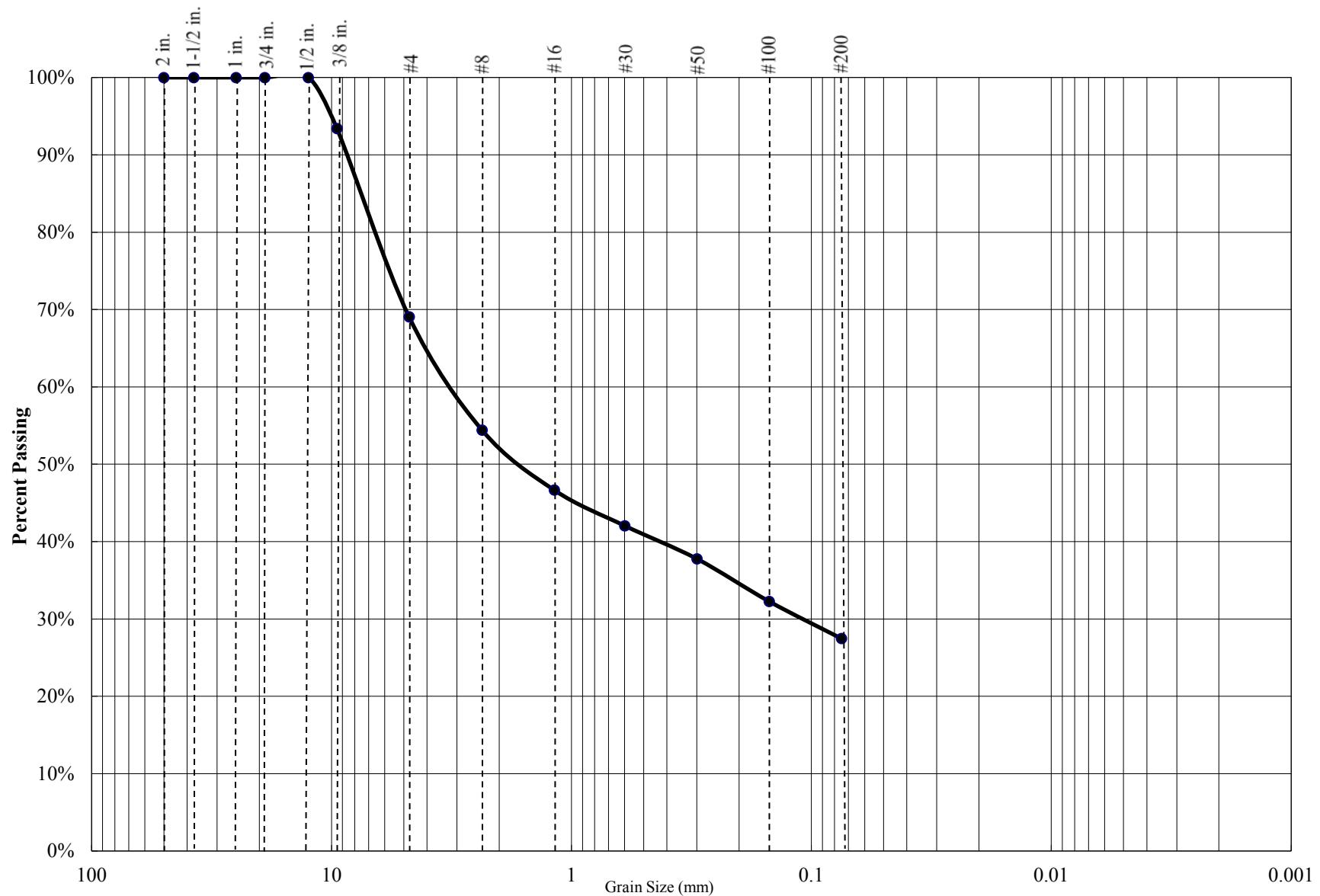
**PARTICLE SIZE DISTRIBUTION DIAGRAM**  
**GRADATION TEST - ASTM C136**



| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 28%            | 45%          | 27%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 83.5%           |
| #4         | 71.9%           |
| #8         | 59.2%           |
| #16        | 49.9%           |
| #30        | 42.4%           |
| #50        | 36.1%           |
| #100       | 30.7%           |
| #200       | 27.1%           |

| Atterberg Limits             |      |                      |
|------------------------------|------|----------------------|
| PL=                          | LL=  | PI=                  |
| Coefficients                 |      |                      |
| D85=                         | D60= | D50=                 |
| D30=                         | D15= | D10=                 |
| C <sub>u</sub> =             | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION          |      |                      |
| Clayey Sand with Gravel (SC) |      |                      |


Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Boring: B-1 @ 55'-56.5'

 **SALEM**  
engineering group, inc.

**PARTICLE SIZE DISTRIBUTION DIAGRAM**  
**GRADATION TEST - ASTM C136**

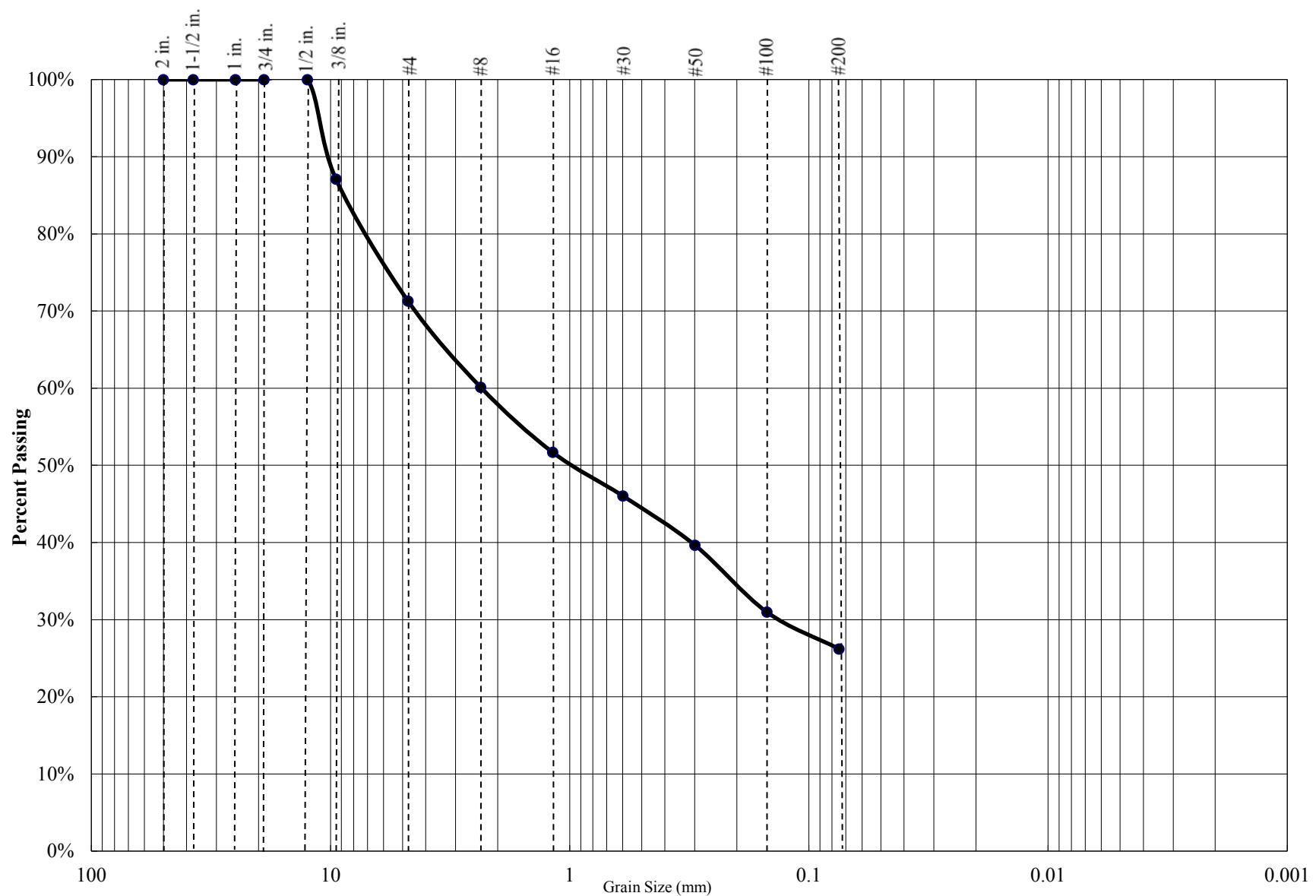


| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 31%            | 42%          | 27%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 93.4%           |
| #4         | 69.0%           |
| #8         | 54.4%           |
| #16        | 46.7%           |
| #30        | 42.1%           |
| #50        | 37.8%           |
| #100       | 32.3%           |
| #200       | 27.5%           |

| Atterberg Limits             |      |                      |
|------------------------------|------|----------------------|
| PL=                          | LL=  | PI=                  |
| Coefficients                 |      |                      |
| D85=                         | D60= | D50=                 |
| D30=                         | D15= | D10=                 |
| C <sub>u</sub> =             | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION          |      |                      |
| Clayey Sand with Gravel (SC) |      |                      |

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA


Project Number: 5-225-1076

Boring: B-1 @ 63.5'-65'

 **SALEM**  
engineering group, inc.

## PARTICLE SIZE DISTRIBUTION DIAGRAM

### GRADATION TEST - ASTM C136



| Percent Gravel | Percent Sand | Percent Silt/Clay |
|----------------|--------------|-------------------|
| 29%            | 45%          | 26%               |

| Sieve Size | Percent Passing |
|------------|-----------------|
| 3/4 inch   | 100.0%          |
| 1/2 inch   | 100.0%          |
| 3/8 inch   | 87.1%           |
| #4         | 71.3%           |
| #8         | 60.1%           |
| #16        | 51.7%           |
| #30        | 46.0%           |
| #50        | 39.7%           |
| #100       | 31.0%           |
| #200       | 26.2%           |

| Atterberg Limits             |      |                      |
|------------------------------|------|----------------------|
| PL=                          | LL=  | PI=                  |
| Coefficients                 |      |                      |
| D85=                         | D60= | D50=                 |
| D30=                         | D15= | D10=                 |
| C <sub>u</sub> =             | N/A  | C <sub>c</sub> = N/A |
| USCS CLASSIFICATION          |      |                      |
| Clayey Sand with Gravel (SC) |      |                      |

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Boring: B-1 @ 73.5'-75'

 **SALEM**  
engineering group, inc.

## CHEMICAL ANALYSIS

### SO<sub>4</sub> - Modified CTM 417 & Cl - Modified CTM 417/422

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC

Soil Type: Clayey Sand with Gravel (SC)

| Sample Number   | Sample Location | Soluble Sulfate SO <sub>4</sub> -S | Soluble Chloride Cl | pH         |
|-----------------|-----------------|------------------------------------|---------------------|------------|
| 1a.             | B-1 @ 10'-11.5' | 450 mg/kg                          | 82 mg/kg            | 7.2        |
| 1b.             | B-1 @ 10'-11.5' | 430 mg/kg                          | 79 mg/kg            | 7.2        |
| 1c.             | B-1 @ 10'-11.5' | 410 mg/kg                          | 80 mg/kg            | 7.2        |
| <b>Average:</b> |                 | <b>430 mg/kg</b>                   | <b>80 mg/kg</b>     | <b>7.2</b> |

**CHEMICAL ANALYSIS**  
**SO<sub>4</sub> - Modified CTM 417 & Cl - Modified CTM 417/422**

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC

Soil Type: Clayey Sand with Gravel (SC)

| Sample Number   | Sample Location | Soluble Sulfate SO <sub>4</sub> -S | Soluble Chloride Cl | pH         |
|-----------------|-----------------|------------------------------------|---------------------|------------|
| 1a.             | B-1 @ 30'-31.5' | 190 mg/kg                          | 52 mg/kg            | 7.3        |
| 1b.             | B-1 @ 30'-31.5' | 180 mg/kg                          | 52 mg/kg            | 7.3        |
| 1c.             | B-1 @ 30'-31.5' | 180 mg/kg                          | 52 mg/kg            | 7.3        |
| <b>Average:</b> |                 | <b>183 mg/kg</b>                   | <b>52 mg/kg</b>     | <b>7.3</b> |

## CHEMICAL ANALYSIS

### SO<sub>4</sub> - Modified CTM 417 & Cl - Modified CTM 417/422

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC

Soil Type: Clayey Sand with Gravel (SC)

| Sample Number   | Sample Location | Soluble Sulfate SO <sub>4</sub> -S | Soluble Chloride Cl | pH         |
|-----------------|-----------------|------------------------------------|---------------------|------------|
| 1a.             | B-1 @ 51.5'-53' | 210 mg/kg                          | 54 mg/kg            | 7.2        |
| 1b.             | B-1 @ 51.5'-53' | 220 mg/kg                          | 55 mg/kg            | 7.2        |
| 1c.             | B-1 @ 51.5'-53' | 230 mg/kg                          | 54 mg/kg            | 7.2        |
| <b>Average:</b> |                 | <b>220 mg/kg</b>                   | <b>54 mg/kg</b>     | <b>7.2</b> |

## CHEMICAL ANALYSIS

### SO<sub>4</sub> - Modified CTM 417 & Cl - Modified CTM 417/422

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC

Soil Type: Clayey Sand with Gravel (SC)

| Sample Number   | Sample Location | Soluble Sulfate SO <sub>4</sub> -S | Soluble Chloride Cl | pH         |
|-----------------|-----------------|------------------------------------|---------------------|------------|
| 1a.             | B-1 @ 61.5'-63' | 340 mg/kg                          | 56 mg/kg            | 7.4        |
| 1b.             | B-1 @ 61.5'-63' | 330 mg/kg                          | 58 mg/kg            | 7.4        |
| 1c.             | B-1 @ 61.5'-63' | 330 mg/kg                          | 57 mg/kg            | 7.4        |
| <b>Average:</b> |                 | <b>333 mg/kg</b>                   | <b>57 mg/kg</b>     | <b>7.4</b> |

# SOIL RESISTIVITY

CTM 643

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sample Location: B-1 @ 10'-11.5'

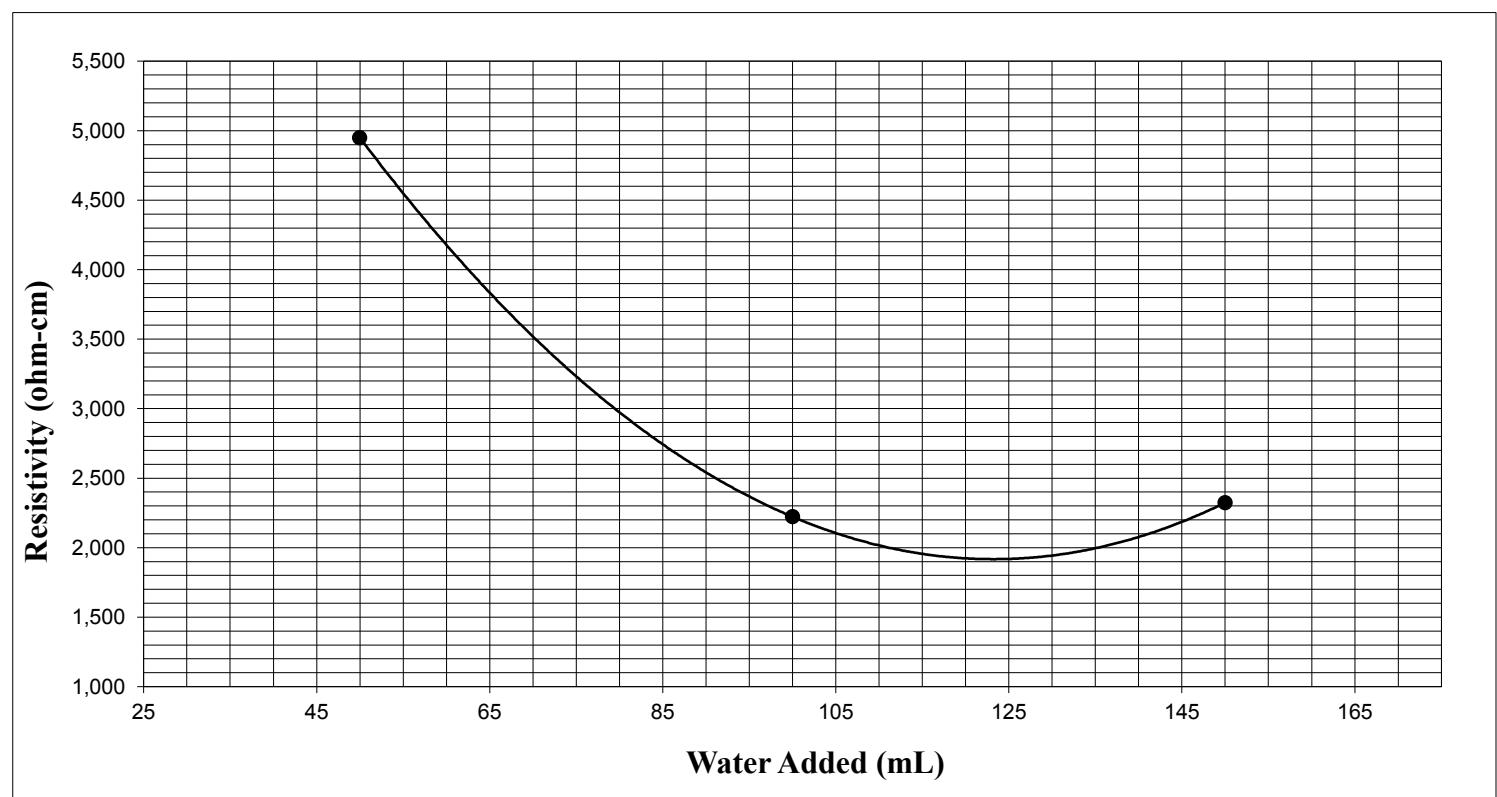
Sampled By: SEG

Tested By: FP

Soil Type: Clayey Sand with Gravel (SC)

Chloride Content: 80 mg/Kg

Initial Sample Weight: 700 gms


Sulfate Content: 430 mg/Kg

Test Box Constant: 1.010 cm

Soil pH: 7.2

## Test Data:

| Trial # | Water Added (mL) | Meter Dial Reading | Multiplier Setting | Resistance (ohms) | Resistivity (ohm-cm) |
|---------|------------------|--------------------|--------------------|-------------------|----------------------|
| 1       | 50               | 4.9                | 1,000              | 4,900             | 4,949                |
| 2       | 100              | 2.2                | 1,000              | 2,200             | 2,222                |
| 3       | 150              | 2.3                | 1,000              | 2,300             | 2,323                |
|         |                  |                    |                    |                   |                      |
|         |                  |                    |                    |                   |                      |
|         |                  |                    |                    |                   |                      |
|         |                  |                    |                    |                   |                      |



Minimum Resistivity:

**1,916**

ohm-cm

## Atterberg Limits Determination

ASTM D4318

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

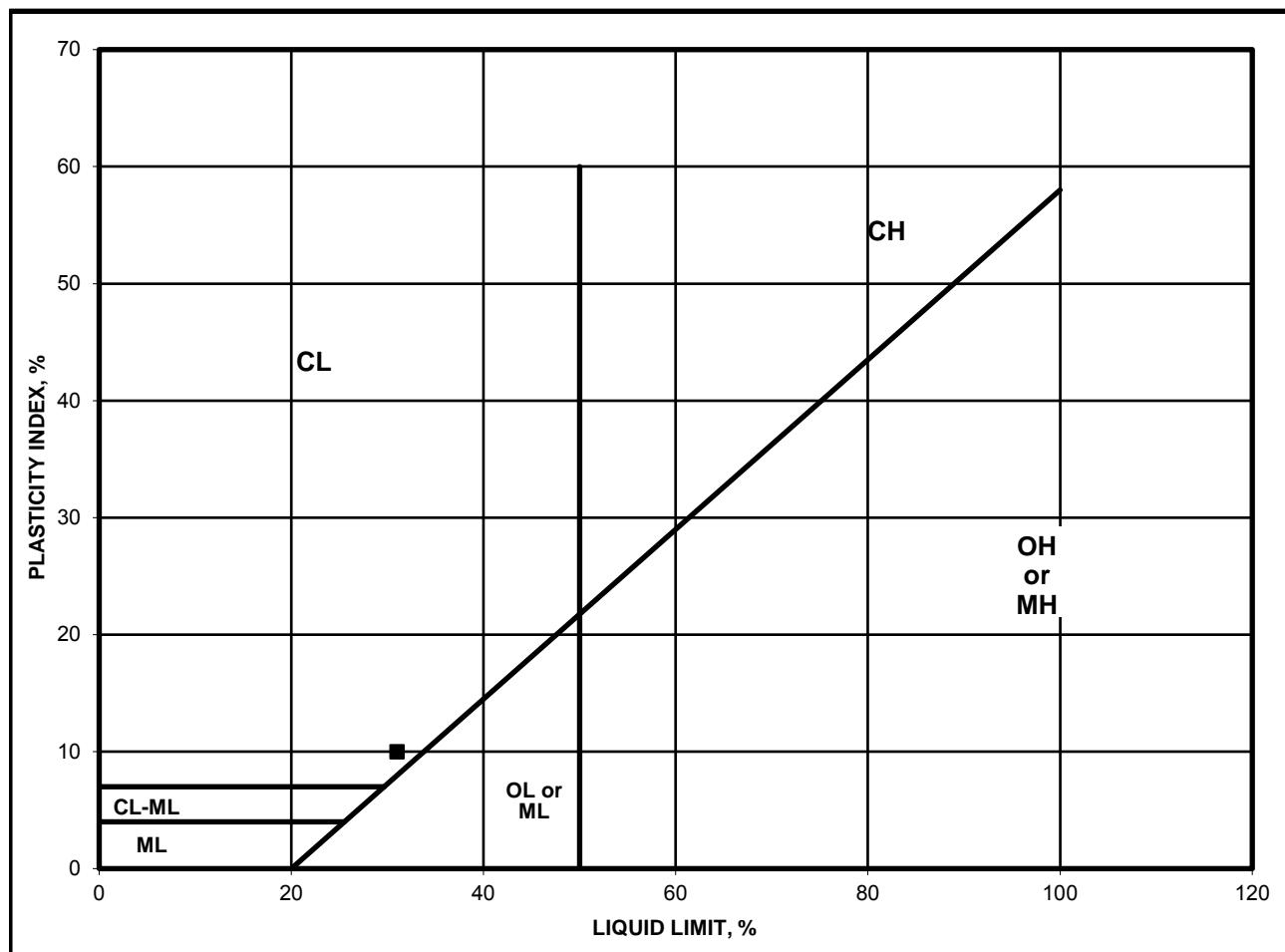
Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/12/26

Sampled By: SEG

Tested By: MC


Sample Location: B-1 @ 5'-6.5'

| Run Number                | Plastic Limit |       |       | Liquid Limit |       |       |
|---------------------------|---------------|-------|-------|--------------|-------|-------|
|                           | 1             | 2     | 3     | 1            | 2     | 3     |
| Weight of Wet Soil & Tare | 23.21         | 23.14 | 23.15 | 27.26        | 28.03 | 27.73 |
| Weight of Dry Soil & Tare | 21.89         | 21.86 | 21.85 | 24.53        | 25.09 | 24.77 |
| Weight of Water           | 1.32          | 1.28  | 1.30  | 2.73         | 2.94  | 2.96  |
| Weight of Tare            | 15.60         | 15.78 | 15.70 | 15.62        | 15.71 | 15.64 |
| Weight of Dry Soil        | 6.29          | 6.08  | 6.15  | 8.91         | 9.38  | 9.13  |
| Water Content             | 21.0          | 21.1  | 21.1  | 30.6         | 31.3  | 32.4  |
| Number of Blows           |               |       |       | 28           | 24    | 19    |

Plastic Limit : 21

Liquid Limit : 31

Plasticity Index : 10  
Unified Soil Classification : CL



## Atterberg Limits Determination

ASTM D4318

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

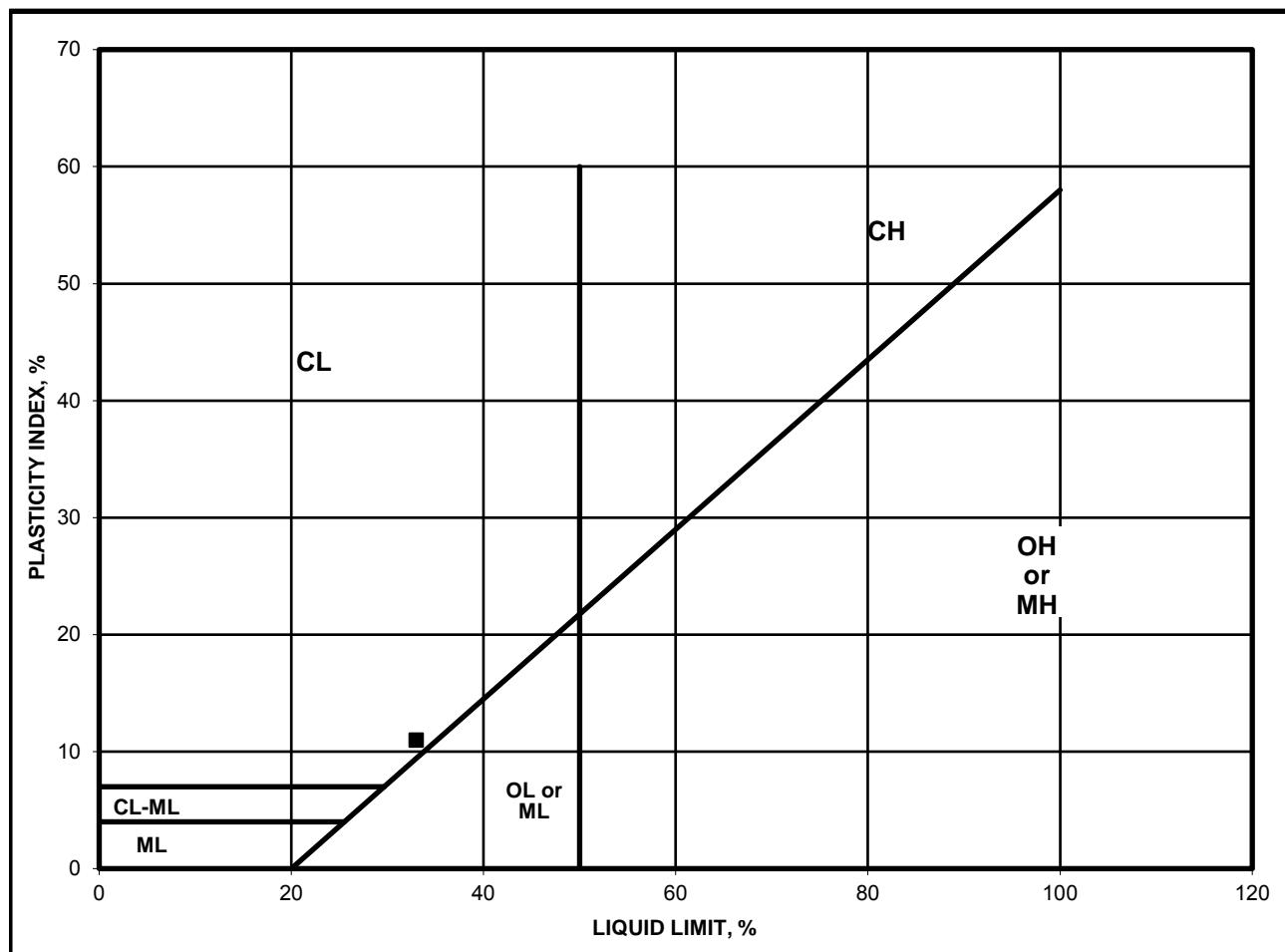
Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC


Sample Location: B-1 @ 25'-26.5'

| Run Number                | Plastic Limit |       |       | Liquid Limit |       |       |
|---------------------------|---------------|-------|-------|--------------|-------|-------|
|                           | 1             | 2     | 3     | 1            | 2     | 3     |
| Weight of Wet Soil & Tare | 22.95         | 23.03 | 23.20 | 29.34        | 28.80 | 29.35 |
| Weight of Dry Soil & Tare | 21.62         | 21.67 | 21.85 | 26.01        | 25.50 | 25.87 |
| Weight of Water           | 1.33          | 1.36  | 1.35  | 3.33         | 3.30  | 3.48  |
| Weight of Tare            | 15.55         | 15.44 | 15.55 | 15.71        | 15.57 | 15.66 |
| Weight of Dry Soil        | 6.07          | 6.23  | 6.30  | 10.30        | 9.93  | 10.21 |
| Water Content             | 21.9          | 21.8  | 21.4  | 32.3         | 33.2  | 34.1  |
| Number of Blows           |               |       |       | 29           | 24    | 18    |

Plastic Limit : 22

Liquid Limit : 33

Plasticity Index : 11  
Unified Soil Classification : CL



## Atterberg Limits Determination

### ASTM D4318

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

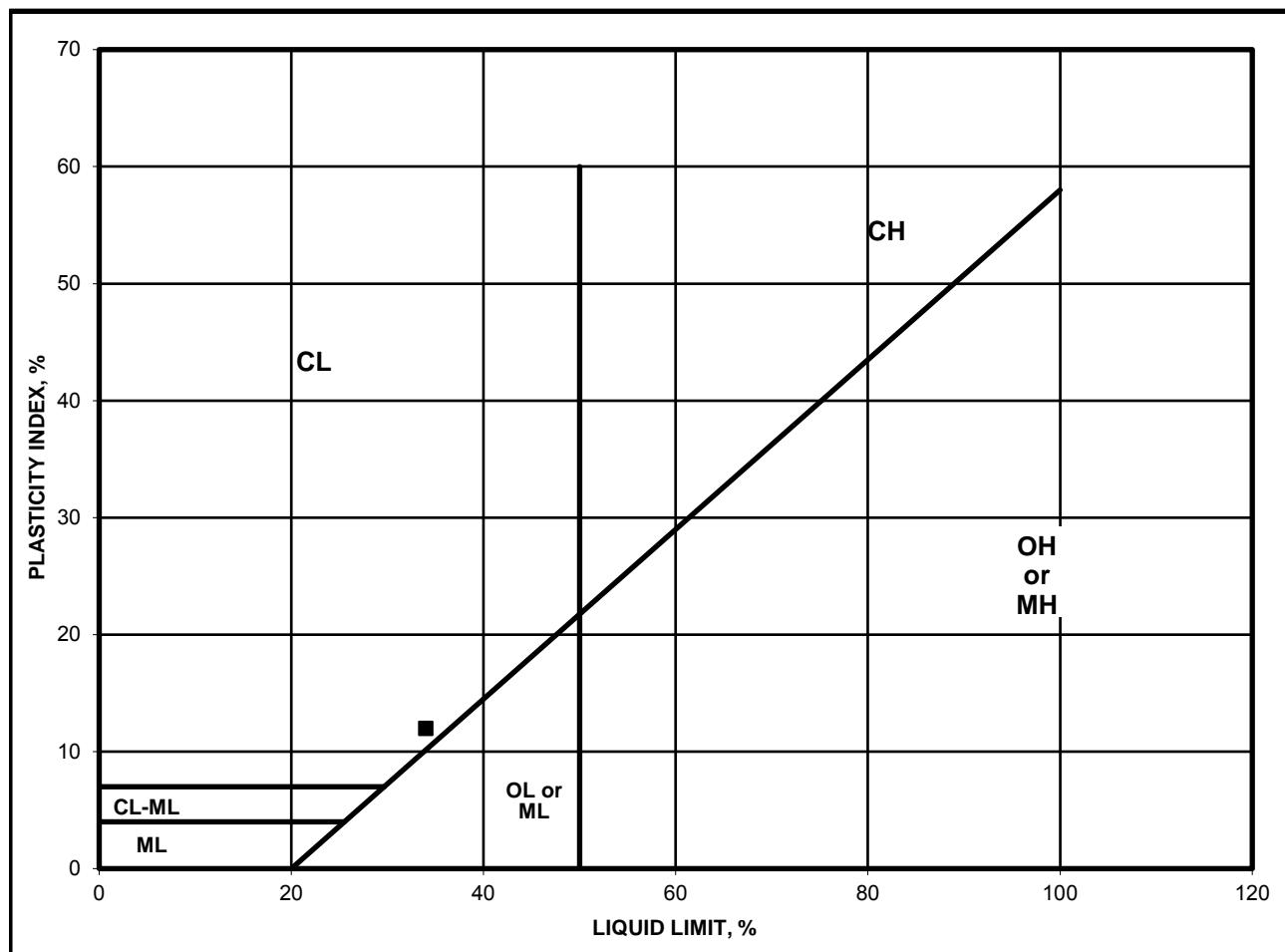
Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC


Sample Location: B-1 @ 45'-46.5'

| Run Number                | Plastic Limit |       |       | Liquid Limit |       |       |
|---------------------------|---------------|-------|-------|--------------|-------|-------|
|                           | 1             | 2     | 3     | 1            | 2     | 3     |
| Weight of Wet Soil & Tare | 29.59         | 29.38 | 29.79 | 34.94        | 34.30 | 33.61 |
| Weight of Dry Soil & Tare | 28.18         | 27.96 | 28.36 | 31.55        | 30.89 | 30.53 |
| Weight of Water           | 1.41          | 1.42  | 1.43  | 3.39         | 3.41  | 3.08  |
| Weight of Tare            | 21.79         | 21.51 | 22.03 | 21.35        | 21.01 | 21.73 |
| Weight of Dry Soil        | 6.39          | 6.45  | 6.33  | 10.20        | 9.88  | 8.80  |
| Water Content             | 22.1          | 22.0  | 22.6  | 33.2         | 34.5  | 35.0  |
| Number of Blows           |               |       |       | 30           | 25    | 19    |

Plastic Limit : 22

Liquid Limit : 34

Plasticity Index : 12  
Unified Soil Classification : CL



## Atterberg Limits Determination

ASTM D4318

Project Name: AT&T 103' Monopole CCL05350: SF Police Academy - San Francisco, CA

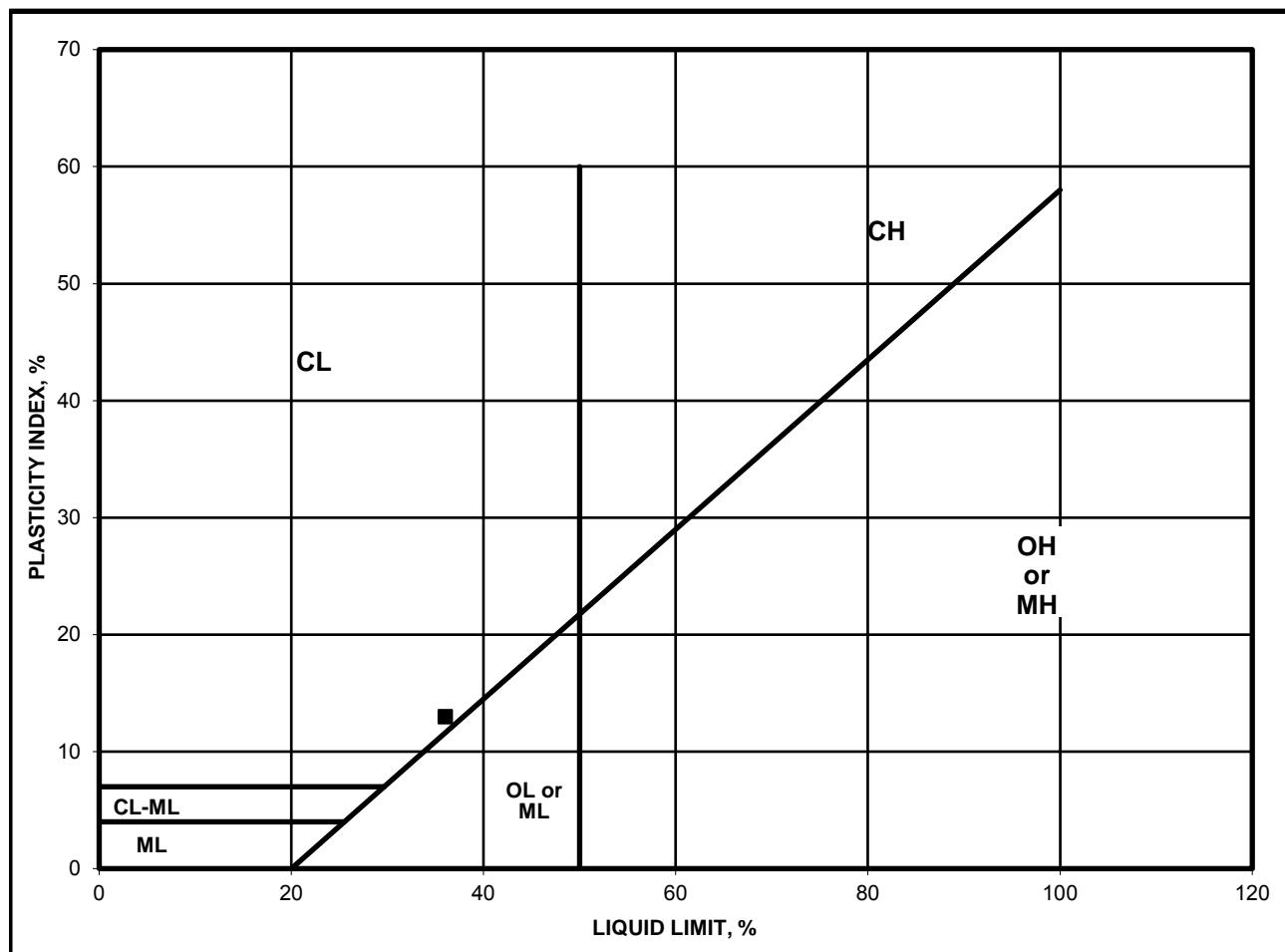
Project Number: 5-225-1076

Date Sampled: 12/29-30/25

Date Tested: 1/9/26

Sampled By: SEG

Tested By: MC


Sample Location: B-1 @ 55'-56.5'

| Run Number                | Plastic Limit |       |       | Liquid Limit |       |       |
|---------------------------|---------------|-------|-------|--------------|-------|-------|
|                           | 1             | 2     | 3     | 1            | 2     | 3     |
| Weight of Wet Soil & Tare | 22.88         | 22.87 | 22.98 | 28.34        | 28.77 | 27.44 |
| Weight of Dry Soil & Tare | 21.54         | 21.53 | 21.59 | 25.02        | 25.21 | 24.27 |
| Weight of Water           | 1.34          | 1.34  | 1.39  | 3.32         | 3.56  | 3.17  |
| Weight of Tare            | 15.57         | 15.62 | 15.41 | 15.65        | 15.35 | 15.68 |
| Weight of Dry Soil        | 5.97          | 5.91  | 6.18  | 9.37         | 9.86  | 8.59  |
| Water Content             | 22.4          | 22.7  | 22.5  | 35.4         | 36.1  | 36.9  |
| Number of Blows           |               |       |       | 31           | 26    | 21    |

Plastic Limit : 23

Liquid Limit : 36

Plasticity Index : 13  
Unified Soil Classification : CL



APPENDIX

C



## APPENDIX C GENERAL EARTHWORK SPECIFICATIONS

When the text of the report conflicts with the general specifications in this appendix, the recommendations in the report have precedence.

**1.0 SCOPE OF WORK:** These specifications and applicable plans pertain to and include all earthwork associated with the site rough grading, including, but not limited to, the furnishing of all labor, tools and equipment necessary for site clearing and grubbing, stripping, preparation of foundation materials for receiving fill, excavation, processing, placement and compaction of fill and backfill materials to the lines and grades shown on the project grading plans and disposal of excess materials.

**2.0 PERFORMANCE:** The Contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications. This work shall be inspected and tested by a representative of SALEM Engineering Group, Incorporated, hereinafter referred to as the Soils Engineer and/or Testing Agency. Attainment of design grades, when achieved, shall be certified by the project Civil Engineer. Both the Soils Engineer and the Civil Engineer are the Owner's representatives. If the Contractor should fail to meet the technical or design requirements embodied in this document and on the applicable plans, he shall make the necessary adjustments until all work is deemed satisfactory as determined by both the Soils Engineer and the Civil Engineer. No deviation from these specifications shall be made except upon written approval of the Soils Engineer, Civil Engineer, or project Architect.

No earthwork shall be performed without the physical presence or approval of the Soils Engineer. The Contractor shall notify the Soils Engineer at least 2 working days prior to the commencement of any aspect of the site earthwork.

The Contractor shall assume sole and complete responsibility for job site conditions during the course of construction of this project, including safety of all persons and property; that this requirement shall apply continuously and not be limited to normal working hours; and that the Contractor shall defend, indemnify and hold the Owner and the Engineers harmless from any and all liability, real or alleged, in connection with the performance of work on this project, except for liability arising from the sole negligence of the Owner or the Engineers.

**3.0 TECHNICAL REQUIREMENTS:** All compacted materials shall be densified to no less than 90 percent of relative compaction (based on ASTM D1557 Test Method (latest edition), or as specified in the technical portion of the Soil Engineer's report. The location and frequency of field density tests shall be determined by the Soils Engineer. The results of these tests and compliance with these specifications shall be the basis upon which satisfactory completion of work will be judged by the Soils Engineer.

**4.0 SOILS AND FOUNDATION CONDITIONS:** The Contractor is presumed to have visited the site and to have familiarized himself with existing site conditions and the contents of the data presented in the Geotechnical Engineering Report. The Contractor shall make his own interpretation of the data contained in the Geotechnical Engineering Report and the Contractor shall not be relieved of liability for any loss sustained as a result of any variance between conditions indicated by or deduced from said report and the actual conditions encountered during the progress of the work.

**5.0 DUST CONTROL:** The work includes dust control as required for the alleviation or prevention of any dust nuisance on or about the site or the borrow area, or off-site if caused by the Contractor's operation

either during the performance of the earthwork or resulting from the conditions in which the Contractor leaves the site. The Contractor shall assume all liability, including court costs of codefendants, for all claims related to dust or wind-blown materials attributable to his work. Site preparation shall consist of site clearing and grubbing and preparation of foundation materials for receiving fill.

**6.0 CLEARING AND GRUBBING:** The Contractor shall accept the site in this present condition and shall demolish and/or remove from the area of designated project earthwork all structures, both surface and subsurface, trees, brush, roots, debris, organic matter and all other matter determined by the Soils Engineer to be deleterious. Such materials shall become the property of the Contractor and shall be removed from the site.

Tree root systems in proposed improvement areas should be removed to a minimum depth of 3 feet and to such an extent which would permit removal of all roots greater than 1 inch in diameter. Tree roots removed in parking areas may be limited to the upper 1½ feet of the ground surface. Backfill of tree root excavations is not permitted until all exposed surfaces have been inspected and the Soils Engineer is present for the proper control of backfill placement and compaction. Burning in areas which are to receive fill materials shall not be permitted.

**7.0 SUBGRADE PREPARATION:** Surfaces to receive Engineered Fill and/or building or slab loads shall be prepared as outlined above, scarified to a minimum of 12 inches, moisture-conditioned as necessary, and compacted to 90 percent relative compaction.

Loose soil areas and/or areas of disturbed soil shall be moisture-conditioned as necessary and compacted to 90 percent relative compaction. All ruts, hummocks, or other uneven surface features shall be removed by surface grading prior to placement of any fill materials. All areas which are to receive fill materials shall be approved by the Soils Engineer prior to the placement of any fill material.

**8.0 EXCAVATION:** All excavation shall be accomplished to the tolerance normally defined by the Civil Engineer as shown on the project grading plans. All over-excavation below the grades specified shall be backfilled at the Contractor's expense and shall be compacted in accordance with the applicable technical requirements.

**9.0 FILL AND BACKFILL MATERIAL:** No material shall be moved or compacted without the presence or approval of the Soils Engineer. Material from the required site excavation may be utilized for construction site fills, provided prior approval is given by the Soils Engineer. All materials utilized for constructing site fills shall be free from vegetation or other deleterious matter as determined by the Soils Engineer.

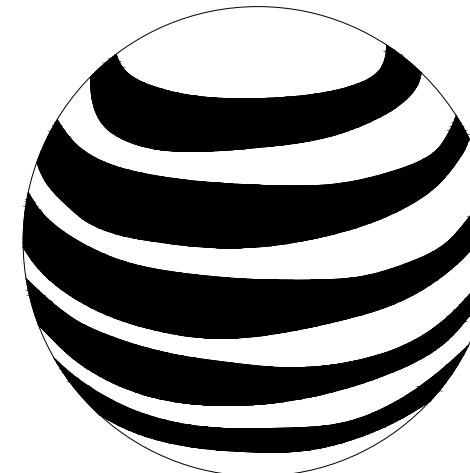
**10.0 PLACEMENT, SPREADING AND COMPACTION:** The placement and spreading of approved fill materials and the processing and compaction of approved fill and native materials shall be the responsibility of the Contractor. Compaction of fill materials by flooding, ponding, or jetting shall not be permitted unless specifically approved by local code, as well as the Soils Engineer. Both cut and fill shall be surface-compacted to the satisfaction of the Soils Engineer prior to final acceptance.

**11.0 SEASONAL LIMITS:** No fill material shall be placed, spread, or rolled while it is frozen or thawing, or during unfavorable wet weather conditions. When the work is interrupted by heavy rains, fill operations shall not be resumed until the Soils Engineer indicates that the moisture content and density of previously placed fill is as specified.

**12.0 DEFINITIONS** - The term "pavement" shall include asphaltic concrete surfacing, untreated aggregate base, and aggregate subbase. The term "subgrade" is that portion of the area on which surfacing, base, or subbase is to be placed.

The term "Standard Specifications": hereinafter referred to, is the most recent edition of the Standard Specifications of the State of California, Department of Transportation. The term "relative compaction" refers to the field density expressed as a percentage of the maximum laboratory density as determined by ASTM D1557 Test Method (latest edition).

**13.0 PREPARATION OF THE SUBGRADE** - The Contractor shall prepare the surface of the various subgrades receiving subsequent pavement courses to the lines, grades, and dimensions given on the plans. The upper 12 inches of the soil subgrade beneath the pavement section shall be compacted to a minimum relative compaction of 90 percent based upon ASTM D1557. The finished subgrades shall be tested and approved by the Soils Engineer prior to the placement of additional pavement courses.


**14.0 AGGREGATE BASE** - The aggregate base material shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate base material shall conform to the requirements of Section 26 of the Standard Specifications for Class 2 material,  $\frac{3}{4}$ -inch or  $1\frac{1}{2}$ -inches maximum size. The aggregate base material shall be compacted to a minimum relative compaction of 90 percent based upon ASTM D1557. The aggregate base material shall be spread in layers not exceeding 6 inches and each layer of aggregate material course shall be tested and approved by the Soils Engineer prior to the placement of successive layers.

**15.0 AGGREGATE SUBBASE** - The aggregate subbase shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate subbase material shall conform to the requirements of Section 25 of the Standard Specifications for Class 2 Subbase material, and it shall be spread and compacted in accordance with the Standard Specifications. Each layer of aggregate subbase shall be tested and approved by the Soils Engineer prior to the placement of successive layers.

**16.0 ASPHALTIC CONCRETE SURFACING** - Asphaltic concrete surfacing shall consist of a mixture of mineral aggregate and paving grade asphalt, mixed at a central mixing plant and spread and compacted on a prepared base in conformity with the lines, grades, and dimensions shown on the plans. The viscosity grade of the asphalt shall be PG 64-10, unless otherwise stipulated or local conditions warrant more stringent grade. The mineral aggregate shall be Type A or B,  $\frac{1}{2}$  inch maximum size, medium grading, and shall conform to the requirements set forth in Section 39 of the Standard Specifications. The drying, proportioning, and mixing of the materials shall conform to Section 39. The prime coat, spreading and compacting equipment, and spreading and compacting the mixture shall conform to the applicable chapters of Section 39, with the exception that no surface course shall be placed when the atmospheric temperature is below 50 degrees F. The surfacing shall be rolled with a combination steel-wheel and pneumatic rollers, as described in the Standard Specifications. The surface course shall be placed with an approved self-propelled mechanical spreading and finishing machine.

# **Exhibit C**

# **Exhibit C**



at&t

# SF POLICE ACADEMY

**SITE #: CCL05350  
103'-0" MONOPOLE**

## LOCATION:

350 AMBER DRIVE  
SAN FRANCISCO, CA 94131  
SAN FRANCISCO COUNTY

## DRAWING INDEX

T1 TITLE SHEET  
N1 NOTES & SPECIFICATIONS  
S1 ELEVATION VIEWS  
S2-S3 DETAILS  
S4 DRILLED PIER

AT&T

**TITLE SHEET**

---

**SF POLICE ACADEMY**

**SITE #: CCL05350**

**103'-0" MONOPOLE**

**350 AMBER DRIVE**

**SAN FRANCISCO, CA 94131**

**SAN FRANCISCO COUNTY**



01/28/2026

U1133.0725.261

T1

NOTE: FOR ORDERING CONTACT  
PAUL MARY - PROJECT MANAGER/  
SENIOR ESTIMATOR  
STEELHEAD METAL & FAB  
O - (971) 915-2843  
C - (503) 735-5456  
PAULM@STEELHEADMETAL.NET

## DESIGN CRITERIA

STRUCTURAL DESIGN IS BASED ON THE CALIFORNIA BUILDING CODE, 2025 EDITION (2024 IBC) AND THE TIA-222-I STANDARD

### DESIGN LOADS:

- WIND:
  - WIND SPEED = 99 MPH (3-SEC GUST) PER THE ASCE7-22 STANDARD
  - RISK CATEGORY: III
  - EXPOSURE: C
  - Kzt: 1
  - ELEVATION: 560 FT ABOVE SEA LEVEL

- ICE:
  - NONE PER THE TIA-222-I STANDARD

- SEISMIC:
  - IMPORTANCE FACTOR: 1.25
  - RISK CATEGORY: III
  - MAPPED SPECTRAL RESPONSE ACCELERATIONS:
    - $S_s = 1.840g$ ,  $S_i = 0.700g$

- SITE CLASS: D
- SPECTRAL RESPONSE COEFFICIENTS:
  - $S_{D5} = 1.300g$ ,  $S_{D1} = 1.380g$
- SEISMIC DESIGN CATEGORY: D
- BASIC SEISMIC-FORCE-RESISTING-SYSTEM:
  - TELECOM: STEEL POLE
- SEISMIC BASE SHEAR, V: 6.0 K
- SEISMIC RESPONSE COEFFICIENT, Cs: 0.359
- RESPONSE MODIFICATION FACTOR, R: 1.5
- ANALYSIS PROCEDURE: EQUIVALENT LATERAL FORCE

## STRUCTURAL STEEL

1. POLYGONAL MONPOLE SHAFT STEEL SHALL CONFORM w/ ASTM A572 GR. 65, UNO
2. BASEPLATE STEEL SHALL CONFORM w/ ASTM A572 GR 50, UNO
3. ALL STEEL PIPE SHALL CONFORM w/ ASTM A53 GR B (35 KSI), UNO ACCEPTABLE PIPE MATERIAL ALTERNATIVES INCLUDE: A500 GR B., A106 GR B. AND API 5LX 42KSI.
4. ALL STEEL RECTANGULAR TUBES (HSS) SHALL CONFORM w/ ASTM A500 GR B (46 KSI), UNO
5. REINFORCED PORT STEEL SHALL CONFORM w/ ASTM A572 GR 50 OR EQUIVALENT, UNO
6. ALL OTHER STEEL SHAPES & PLATES SHALL CONFORM w/ ASTM A36, UNO
7. ALL BOLTS FOR STEEL-TO-STEEL CONNECTIONS SHALL CONFORM w/ ASTM F3125 GR A325, UNO
8. ALL U-BOLTS SHALL CONFORM w/ ASTM A36, UNO
9. ALL ANCHOR BOLTS SHALL CONFORM w/ ASTM F1554 GR. 55, UNO
10. ALL WELDING SHALL BE PERFORMED IN ACCORDANCE WITH THE SPECIFICATIONS AND PROCEDURES OF THE AMERICAN WELDING SOCIETY (AWS) BY CERTIFIED WELDERS PER AWS D1.1. WELDS SHALL BE PERFORMED WITH MINIMUM E70XX OR E71XX LOW-HYDROGEN ELECTRODE EXCEPT WHERE HIGHER STRENGTH ELECTRODE IS REQUIRED BY AWS D1.1.
11. ALL STEEL SURFACES SHALL BE GALVANIZED IN ACCORDANCE w/ ASTM A123 AND ASTM F2329 STANDARDS.
12. ALL STRUCTURAL BOLTS SHALL BE TIGHTENED PER AN APPROVED PRETENSIONING METHOD AS DEFINED BY AISC. FOR EASE OF INSPECTION, THE "TURN-OF-NUT" METHOD AS DEFINED BY AISC WITH MATCH-MARKING TECHNIQUES IS RECOMMENDED.
13. ALL BOLT HOLES SHALL BE STANDARD SIZE PER TABLE J3.3 OF AISC UNO WASHERS ARE REQUIRED FOR ANY CONNECTION THAT HAS LARGER THAN STANDARD SIZED BOLT HOLES.
14. ALL HEAVY HEX NUTS SHALL BE ASTM A563 GR C OR DH OR EQUIVALENT.
15. ALL HARDENED WASHERS SHALL BE ASTM F436 OR EQUIVALENT.

## BASE DESIGN REACTIONS

- MOMENT, M = 798 K-FT (1.0 WIND)
- SHEAR, V = 9.6 K (1.0 WIND)
- AXIAL, R = 20.0 K (1.2 DEAD)

## GENERAL NOTES

- 1) CONTRACTOR SHALL FIELD VERIFY SITE OR LAYOUT RESTRICTIONS, SITE CONDITIONS, DIMENSIONS, AND ELEVATIONS BEFORE START OF CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF STEELHEAD, INC. PRIOR TO BEGINNING PROJECT. ALL WORK SHALL BE PERFORMED USING ACCEPTED CONSTRUCTION PRACTICES. CONTRACTOR TO VERIFY MATERIALS PROVIDED BY STEELHEAD PRIOR TO INSTALLATION.
- 2) ALL ENGINEERING PLANS, DRAWINGS, DESIGNS, CALCULATIONS AND SPECIFICATIONS (COLLECTIVELY, "PLANS") ARE DESIGNED TO THE PROPRIETARY MANUFACTURING SPECIFICATIONS OF STEELHEAD METAL AND FAB., LLC ("STEELHEAD") INTENDED AND AUTHORIZED SOLELY FOR USE WITH PRODUCT PRODUCED BY STEELHEAD. UNAUTHORIZED USE IS STRICTLY PROHIBITED. CUSTOMER AGREES TO DEFEND, INDEMNIFY AND HOLD STEELHEAD HARMLESS FROM AND AGAINST ANY AND ALL DEMANDS, CLAIMS, SUITS, PROCEEDINGS, LOSSES, LIABILITIES, DAMAGES, FEES, COSTS AND EXPENSES (INCLUDING, WITHOUT LIMITATION, REASONABLE ATTORNEYS' FEES AND COSTS) ARISING FROM OR RELATING TO ANY UNAUTHORIZED USE OF STEELHEAD'S PLANS BY CUSTOMER.
- 3) NO FIELD MODIFICATIONS MAY BE MADE TO STRUCTURE WITHOUT THE EXPRESS WRITTEN CONSENT FROM THE ENGINEER OF RECORD. STEELHEAD, INC AND ENGINEER OF RECORD ASSUME NO RESPONSIBILITY FOR THE STRUCTURE IF ALTERATIONS AND/OR ADDITIONS ARE MADE TO THE DESIGN AS SHOWN IN THESE DRAWINGS.
- 4) THE CONTRACTORS AND ALL SUBCONTRACTORS SHALL COMPLY WITH ALL LOCAL CODES, REGULATIONS, AND ORDINANCES AS WELL AS STATE DEPARTMENT OF INDUSTRIAL REGULATIONS AND DIVISION OF INDUSTRIAL SAFETY (OSHA) REQUIREMENTS.
- 5) THE CONTRACTOR SHALL SUPERVISE AND DIRECT ALL WORK TO THE BEST OF HIS/HER ABILITY AND SKILL. CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, PROCEDURES, AND SEQUENCES, AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 6) THE CONTRACTOR SHALL VERIFY, COORDINATE, AND PROVIDE ALL NECESSARY BLOCKING, BACKING, FRAMING, HANGERS OR OTHER SUPPORTS FOR ALL ITEMS REQUIRING SAME. WHETHER SHOWN OR NOT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY BRACING, SHORING, FORMWORK, ETC., AND SHALL CONFORM TO ALL NATIONAL, STATE, AND LOCAL ORDINANCES AND CODES, IN ORDER TO SAFELY EXECUTE ALL STAGES OF WORK TO COMPLETE THIS PROJECT.
- 7) IT IS THE INTENT OF THESE DRAWINGS TO SHOW THE COMPLETED INSTALLATION OF THE STRUCTURE SHOWN.
- 8) CONTRACTOR ASSUMES RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT, INCLUDING THE SAFETY OF ALL PERSONS AND PROPERTY IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES. THIS REQUIREMENT APPLIES CONTINUOUSLY, AND IS NOT LIMITED TO NORMAL WORKING HOURS.
- 9) IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE ALL EXISTING UTILITIES, SHOWN OR NOT SHOWN. THE CONTRACTOR IS FINANCIALLY RESPONSIBLE FOR REPAIR OR REPLACEMENT OF UTILITIES OR OTHER PROPERTY DAMAGED IN CONJUNCTION WITH THE EXECUTION OF WORK ON THIS PROJECT.

## SPECIAL INSPECTIONS, TESTING & STRUCTURAL OBSERVATION

1. STEEL FABRICATION SHALL BE DONE ON THE PREMISES OF A FABRICATOR REGISTERED AND APPROVED AS REQUIRED BY THE BUILDING OFFICIAL TO PERFORM SUCH WORK WITHOUT SPECIAL INSPECTION. ALTERNATIVELY, SPECIAL INSPECTION OF MATERIALS, WELDING, AND FABRICATION PROCEDURES SHALL BE REQUIRED FOR FABRICATION BY AN UNAPPROVED FABRICATOR.
2. NO FIELD WELDING SHALL BE PERMITTED
3. NONDESTRUCTIVE TESTING IS REQUIRED FOR CJP GROOVE WELDS IN MATERIAL 5/16" THICK OR GREATER.
4. THE FOLLOWING SPECIAL INSPECTIONS SHALL BE REQUIRED PER CHAPTER 17 OF THE BUILDING CODE:
  - SPECIAL INSPECTION OF HIGH-STRENGTH BOLTING (WHEN APPLICABLE):
    - PERIODIC SPECIAL INSPECTION IF BOLTS ARE PRETENSIONED WITH MATCH-MARKING TECHNIQUES
    - CONTINUOUS SPECIAL INSPECTION OF ALL OTHER HIGH-STRENGTH BOLTING
  - PERIODIC SPECIAL INSPECTION OF PLACEMENT OF REINFORCING STEEL
  - PERIODIC SPECIAL INSPECTION OF ANCHOR BOLTS PRIOR TO AND DURING CONCRETE PLACEMENT
  - CONTINUOUS SPECIAL INSPECTION OF CONCRETE PLACEMENT
  - CONTINUOUS SPECIAL INSPECTION OF DRILLING OPERATIONS FOR PIER FOUNDATIONS
  - CONTINUOUS SPECIAL INSPECTION TO VERIFY LOCATION, PLUMBNESS, DIAMETER, AND LENGTH OF PIER FOUNDATIONS
  - SAMPLING & TESTING OF CONCRETE PER CHAPTER 17 OF THE BUILDING CODE TO VERIFY STRENGTH AND SLUMP
4. SPECIAL INSPECTION IS NOT REQUIRED FOR WORK OF A MINOR NATURE OR AS WARRANTED BY CONDITIONS IN THE JURISDICTION AS APPROVED BY THE BUILDING OFFICIAL. THUS, SPECIAL INSPECTION ITEMS ABOVE MAY BE WAIVED AS DEEMED APPROPRIATE BY THE BUILDING OFFICIAL.
5. NO STRUCTURAL OBSERVATION IS REQUIRED UNLESS NOTED IN CHAPTER 17 OF THE BUILDING CODE OR BY THE JURISDICTION.

## DISCLAIMERS

1. ALL STRUCTURAL COMPONENTS TO BE CONNECTED TOGETHER SHALL BE COMPLETELY FIT UP ON THE GROUND OR OTHERWISE VERIFIED FOR COMPATIBILITY PRIOR TO LIFTING ANY COMPONENT INTO PLACE. REPAIRS REQUIRED DUE TO FIT-UP OR CONNECTION COMPATIBILITY PROBLEMS AFTER PARTIAL ERECTION ARE THE FINANCIAL RESPONSIBILITY OF THE CONTRACTOR.
2. SOME TELECOMMUNICATION STRUCTURES ARE SUSCEPTIBLE TO WIND-INDUCED OSCILLATIONS. OSCILLATIONS MAY OCCUR AT LOW OR MODERATE WIND SPEEDS AND MAY CAUSE STRUCTURAL DAMAGE. TIA PROVIDES NO PRACTICAL ANALYTICAL METHOD TO PREDICT AND PREVENT WIND-INDUCED STRUCTURAL OSCILLATIONS. VECTOR STRUCTURAL ENGINEERING RECOMMENDS FREQUENT MONITORING TO IDENTIFY WIND-INDUCED OSCILLATION AND REGULAR CONDITION ASSESSMENTS TO IDENTIFY FATIGUE CRACKING, LOOSE OR MISSING BOLTS, AND ANY OTHER STRUCTURAL DEFECTS. ANY OSCILLATION OR DEFECTS OBSERVED SHALL BE IMMEDIATELY REPORTED TO VECTOR STRUCTURAL ENGINEERING FOR FURTHER EVALUATION AND POSSIBLE REPAIRS OR MODIFICATIONS WHICH MAY BE REQUIRED AT THE OWNER'S EXPENSE.
3. WHERE EFFECTIVE PROJECTED AREAS (EPA) ARE USED, IT IS THE RESPONSIBILITY OF OTHERS TO VERIFY INSTALLED EQUIPMENT DOES NOT EXCEED LISTED EPA.



651 W. Galena Park Blvd., Suite 101 (801) 990-1775  
Draper, UT 84020



P.O. Box 3850 Salem OR, 97302  
Ph: (503) 763-0114  
Toll Free: 1-877-900-6789  
Fax (503) 763-6280  
www.steelheadmetals.com

DATE: 1/28/26 DESIGNED: MAR DRAFTER: MAR

## REVISIONS

| REV | DATE | DESCRIPTION |
|-----|------|-------------|
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |

## AT&T

|                   |                                                                                    |
|-------------------|------------------------------------------------------------------------------------|
| SF POLICE ACADEMY | SITE #: CCL05350<br>103'-0" MONOPOLE<br>350 AMBER DRIVE<br>SAN FRANCISCO, CA 94131 |
|-------------------|------------------------------------------------------------------------------------|



01/28/2026

U1133.0725.261

N1 REV 0

DESIGN LOADING:  
 ANTENNA CL @ 100'-0" AGL:  
 (3) QUINTEL QD668-2 PANEL ANTENNAS  
 (3) ERICSSON AIR6419 B77G PANEL ANTENNAS  
 (3) ERICSSON AIR6419 B77D PANEL ANTENNAS  
 (3) QUINTEL QD6612-2  
 (3) RRU 4490 B5/B12A  
 (3) RRU 4478 B14  
 (3) RRU 4890 B25/B66  
 (3) DC9 SURGE SUPPRESSORS  
 (1) SITEPRO1 RMVD12-NPNH MOUNT

ANTENNA CL @ 90'-0" AGL: SAME AS 100'-0" AGL

NOTE: ANTENNAS &  
 PORTS ARE SHOWN FOR  
 ILLUSTRATIVE PURPOSES  
 & ARE NOT NECESSARILY  
 SHOWN TO SCALE

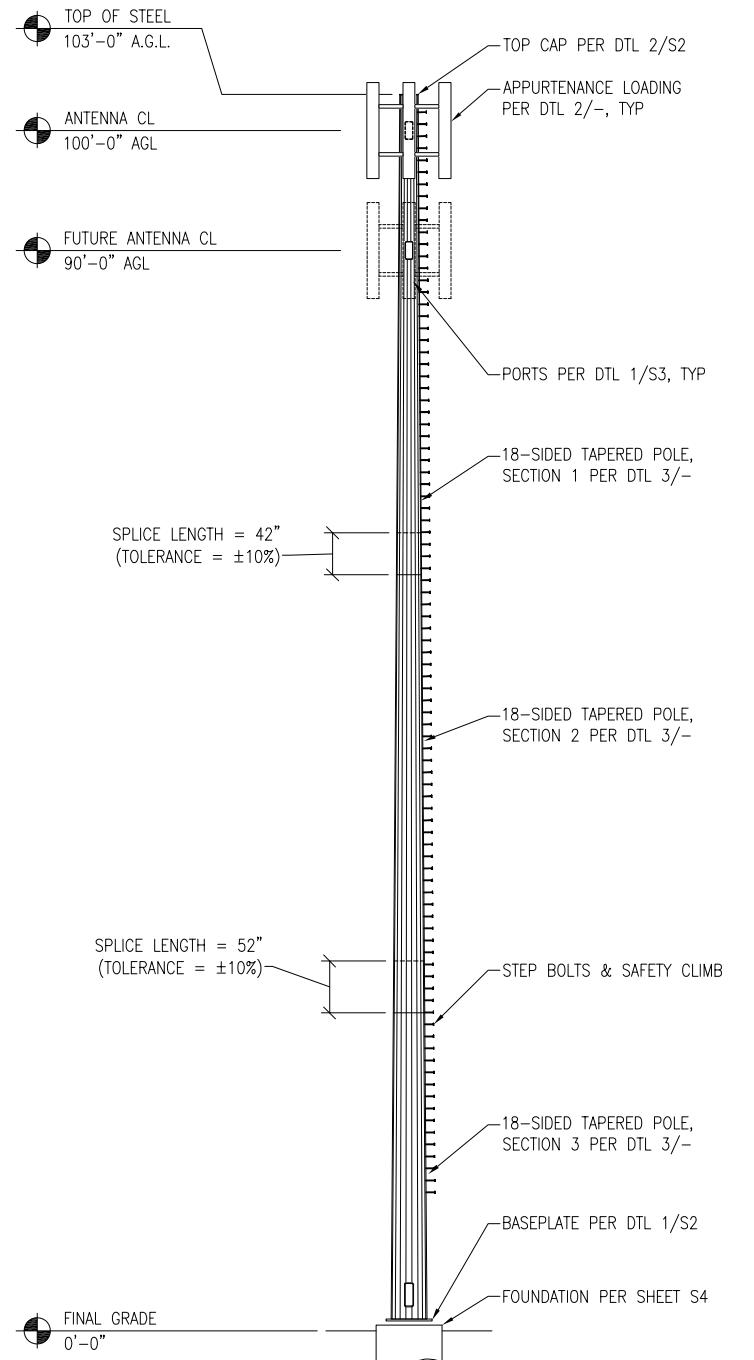
**VECTOR**  
 ENGINEERS®  
 651 W. Galena Park Blvd., Suite 101 (801) 990-1775  
 Draper, UT 84020  
 www.vectorse.com



P.O. Box 3850 Salem OR, 97302  
 Ph: (503) 763-0114  
 Toll Free: 1-877-900-6789  
 Fax (503) 763-6280  
 www.steelheadmetals.com

| DATE: 1/28/26 | DESIGNED: MAR | DRAFTER: MAR |
|---------------|---------------|--------------|
| REVISIONS     |               |              |
| REV           | DATE          | DESCRIPTION  |
|               |               |              |
|               |               |              |
|               |               |              |
|               |               |              |
|               |               |              |
|               |               |              |

AT&T


ELEVATION VIEWS  
**SF POLICE ACADEMY**  
 SITE #: CCL05350  
 103'-0" MONOPOLE  
 350 AMBER DRIVE  
 SAN FRANCISCO, CA 94131



01/28/2026

U1133.0725.261

**S1** REV 0



ELEVATIONS  
 N.T.S.

**APPURTEINANCES**  
 N.T.S.

(2)

| MONOPOLE SECTION CHART <sup>2</sup> |         |                   |                      |           |                       |
|-------------------------------------|---------|-------------------|----------------------|-----------|-----------------------|
| SECTION                             | LENGTH  | ØTOP <sup>4</sup> | ØBOTTOM <sup>4</sup> | THICKNESS | WEIGHT <sup>1,3</sup> |
| 1                                   | 40'-0"  | 18.00"            | 25.00"               | 3/16"     | 1.8 K                 |
| 2                                   | 40'-0"  | 24.01"            | 31.01"               | 3/16"     | 2.3 K                 |
| 3                                   | 29'-10" | 29.88"            | 35.10"               | 3/16"     | 2.6 K                 |

NOTES:

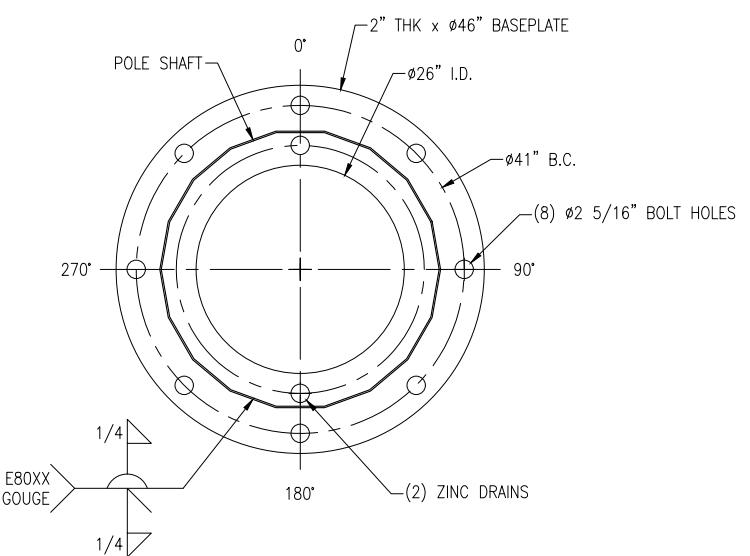
1. SECTION WEIGHT DOES NOT INCLUDE COATINGS, PORTS AND OTHER MINOR ATTACHMENTS.
2. LOWEST SECTION WEIGHT INCLUDES BASEPLATE WEIGHT.
3. DESIGN TAPER = 0.175 in/ft.
4. WEIGHTS LISTED IN THIS CHART ARE RAW STEEL WEIGHTS. FINAL WEIGHTS MAY BE UP TO 22% GREATER DUE TO GALVANIZING AND OTHER MISCELLANEOUS ITEMS.
5. DIAMETER OF POLE SECTIONS AT LAP SPLICES MAY BE ADJUSTED BY UP TO 0.06" TO ACCOUNT FOR THE THICKNESS OF COATINGS.

**POLE SECTIONS**  
 N.T.S.

(3)

| REV | DATE | DESCRIPTION |
|-----|------|-------------|
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |

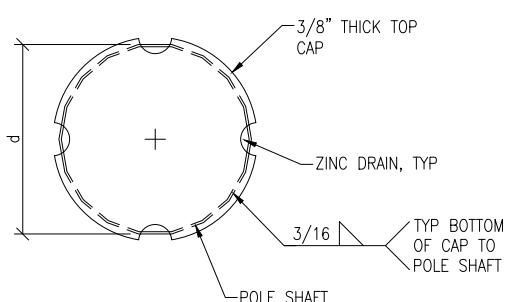
AT&T


**SF POLICE ACADEMY**  
SITE #: CCL05350  
103'-0" MONOPOLE  
350 AMBER DRIVE  
SAN FRANCISCO, CA 94131



01/28/2026

U1133.0725.261


**S2** REV 0



**BASEPLATE**

N.T.S.

1



**TOP CAP**

N.T.S.

2



P.O. Box 3850 Salem OR, 97302  
Ph: (503) 763-0114  
Toll Free: 1-877-900-6789  
Fax (503) 763-6280  
[www.steelheadmetals.com](http://www.steelheadmetals.com)

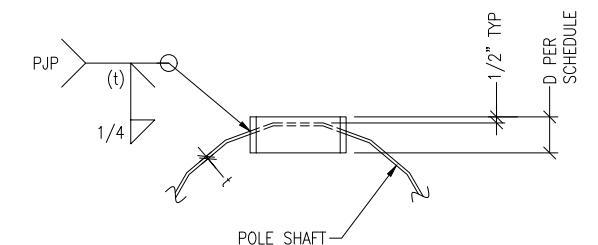
DATE: 1/28/26 DESIGNED: MAR DRAFTER: MAR

REVISIONS

| REV | DATE | DESCRIPTION |
|-----|------|-------------|
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |

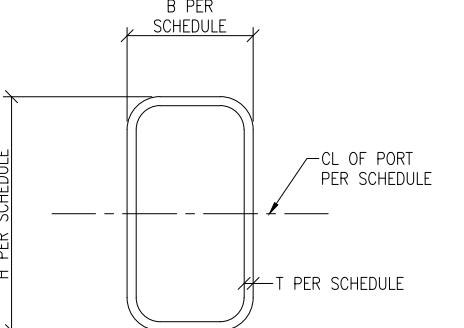
AT&T

|         |                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------|
| DETAILS | SF POLICE ACADEMY<br>SITE #: CCL05350<br>103'-0" MONOPOLE<br>350 AMBER DRIVE<br>SAN FRANCISCO, CA 94131 |
|---------|---------------------------------------------------------------------------------------------------------|




01/28/2026

U1133.0725.261


S3

REV  
0



SECTION VIEW

NOTE: SEE GENERAL  
NOTES FOR REINFORCED  
PORT MATERIAL GRADE.



ELEVATION VIEW

| PORT SCHEDULE |                   |    |      |     |                 |
|---------------|-------------------|----|------|-----|-----------------|
| CL ELEV.      | PORT SIZE (B x H) | D  | T    | QTY | AZIMUTH(S)      |
| 100'-0"       | 6"x12"            | 2" | 1/2" | 3   | 120° SEPARATION |
| 90'-0"        | 6"x12"            | 2" | 1/2" | 3   | 120° SEPARATION |
| 3'-0"         | 12"x25"           | 3" | 3/4" | 2   | 180° SEPARATION |

PORTS  
N.T.S.

1

## FOUNDATION NOTES

1. FOUNDATION DESIGN IS BASED ON THE FOLLOWING GEOTECHNICAL REPORT:

SALEM ENGINEERING GROUP, INC  
REPORT: 5-225-1076  
DATE: JANUARY 19, 2026

2. ALL CONCRETE SHALL USE TYPE II PORTLAND CEMENT AND HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS. CONCRETE SHALL HAVE A MINIMUM OF 6% ENTRAINED AIR (WHERE FROST DEPTH > 0'). CONCRETE SHALL HAVE A MAXIMUM WATER/CEMENT RATIO OF 0.50. CONCRETE SHALL HAVE A SLUMP OF 5" ( $\pm 1"$ ) UNLESS OTHERWISE SPECIFIED IN THE GEOTECHNICAL REPORT. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH "THE BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE," ACI 318-19. FOUNDATION INSTALLATION SHALL BE IN ACCORDANCE WITH ACI 336, "STANDARD SPECIFICATIONS FOR THE CONSTRUCTION OF DRILLED PIERS," LATEST EDITION.

3. REINFORCING STEEL SHALL CONFORM WITH THE REQUIREMENTS OF ASTM A-615, GRADE 60. ALL REINFORCING DETAILS SHALL CONFORM TO "MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES," ACI 315, LATEST EDITION, UNLESS DETAILED OTHERWISE ON THIS DRAWING. CONTRACTOR SHALL USE STEEL WIRE TO HOLD REINFORCING BARS TOGETHER. IF WELDING REBAR IS PREFERRED, SUBSTITUTE A706 GR 60 DEFORMED BARS.

4. CONTRACTOR IS RESPONSIBLE FOR CHECKING AREA FOR UNDERGROUND FACILITIES PRIOR TO EXCAVATING ANY MATERIALS.

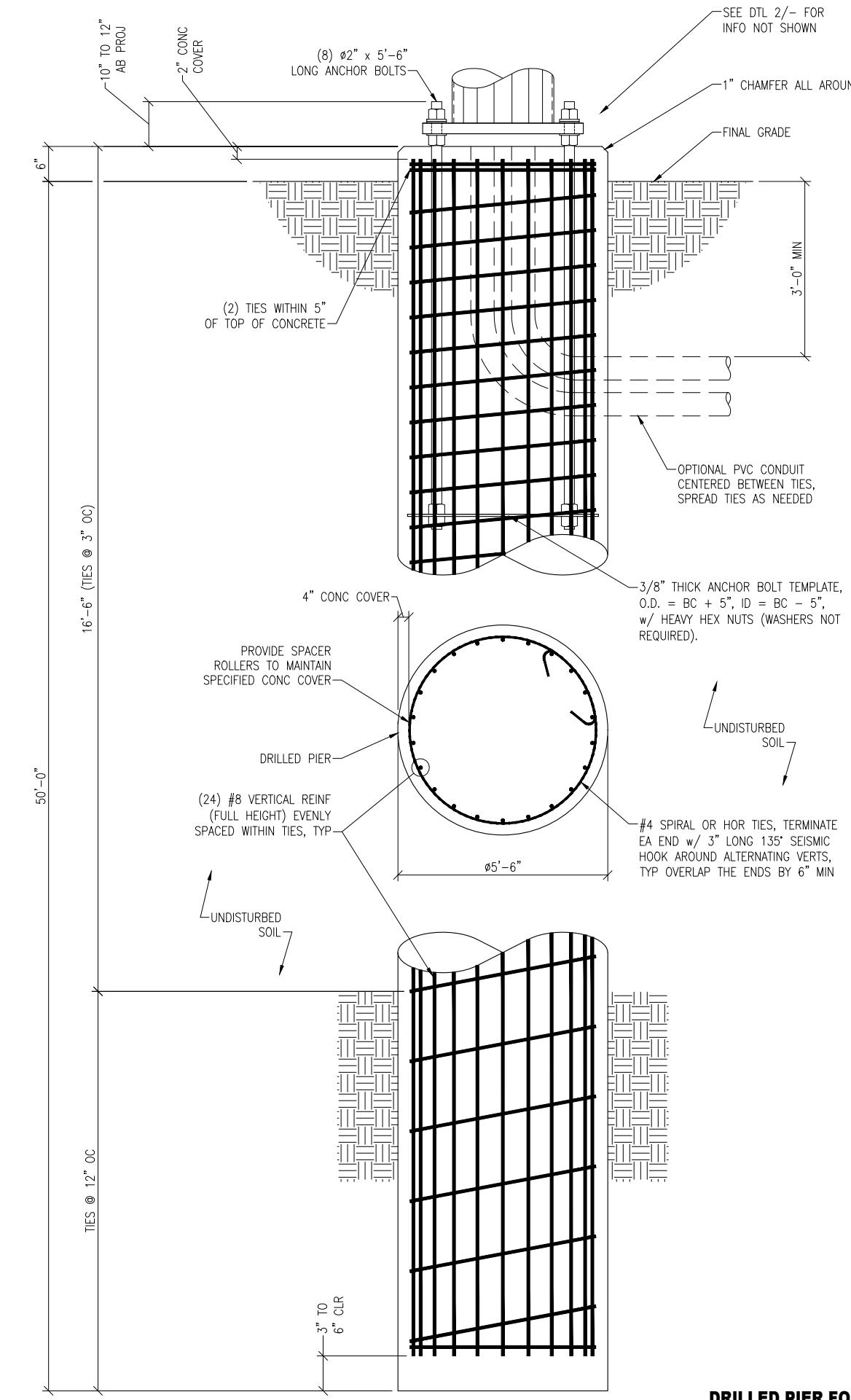
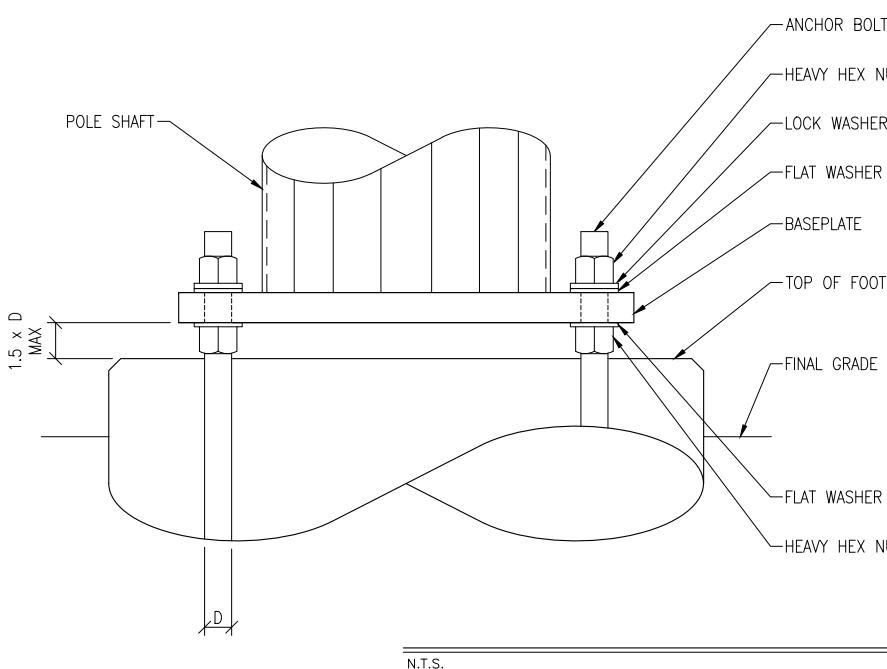
5. CONTRACTOR SHALL REFER TO SOILS REPORT FOR SITE CONDITIONS AND FURTHER CONSTRUCTION INFORMATION.

6. CONTRACTOR SHALL INSPECT AND REMOVE ALL DEBRIS FROM BOTTOM OF EXCAVATION.

7. CONTRACTOR SHALL VERIFY ANCHOR BOLT LAYOUT PRIOR TO AND IMMEDIATELY AFTER PLACING CONCRETE. ANCHOR BOLT LAYOUT IS CRITICAL FOR STRUCTURE INSTALLATION.

8. CONCRETE SHALL BE CONSOLIDATED USING VIBRATORY METHODS THROUGHOUT DEPTH OF FOUNDATION. VIBRATING LOWER DEPTHS MAY NOT BE ACCOMPLISHED BY TOUCHING REBAR CAGE WITH VIBRATOR.

9. DEPENDING ON SOIL CONDITIONS, CONTRACTOR SHOULD ANTICIPATE THE USE OF A FULL-LENGTH TEMPORARY CASING TO STABILIZE THE EXCAVATION. THE CASING SHALL BE WITHDRAWN DURING THE PLACEMENT OF CONCRETE IN THE EXCAVATED HOLE. CONCRETE SHALL NOT FREE FALL. CONCRETE MAY BE PLACED BELOW WATER USING TREMIE METHODS.



10. CONCRETE SHALL BE PLACED TO THE DEPTH INDICATED, AND THE ABOVE GRADE PORTION SHALL BE FORMED. THE REBAR CAGE, ANCHOR BOLTS, AND CONCRETE SHALL BE PLACED WITHIN 24 HOURS OF COMPLETING THE EXCAVATION. COLD JOINTS ARE NOT ALLOWED, UNO

11. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ADEQUATE CONCRETE COVERAGE OVER REINFORCING BARS. UNLESS OTHERWISE NOTED, CONTRACTOR SHALL USE 3" CONCRETE COVER OVER REBAR. TOP OF FOOTING SHALL BE TROWEL LEVEL AND SMOOTH.

12. INSTALLATION OF FOUNDATION MUST BE OBSERVED BY A REPRESENTATIVE OF THE GEOTECHNICAL ENGINEER FIRM. GEOTECHNICAL ENGINEER TO PROVIDE A NOTICE OF INSPECTION FOR THE BUILDING INSPECTOR FOR REVIEW AND RECORD PURPOSES.

13. CONTRACTOR SHALL REFER TO GEOTECHNICAL REPORT FOR INFORMATION REGARDING INSTALLATION METHOD, REQUIRED INSTALLATION EQUIPMENT, AND ALL OTHER REQUIREMENTS RELATED TO THE INSTALLATION OF THE FOUNDATION.

14. STRUCTURE MAY BE ERECTED 3-DAYS AFTER FOUNDATION IS INSTALLED AND ONCE CONCRETE STRENGTH IS AT LEAST 4000 PSI.



DRILLED PIER FOUNDATION

N.T.S.

| REV | DATE | DESCRIPTION |
|-----|------|-------------|
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |

AT&T

**SF POLICE ACADEMY**

SITE #: CCL05350  
103'-0" MONOPOLE  
350 AMBER DRIVE  
SAN FRANCISCO, CA 94131



U1133.0725.261

**S4** REV  
0

# **Exhibit D**

# **Exhibit D**



STRUCTURAL CALCULATIONS  
for  
SF POLICE ACADEMY (SITE#: CCL05350)

at  
350 AMBER DRIVE  
SAN FRANCISCO, CA 94131  
for  
AT&T  
&  
STEELHEAD METAL & FAB LLC



1/28/2026

BY: CASEY N. MILLARD, P.E.  
PROFESSIONAL ENGINEER

PROJECT #: U1133.0725.261

DATE: January 28, 2026

DESIGNED BY MAR; CHECKED BY CNM

Note:

*The calculations presented in this package are intended for a single use at the location indicated above, for the client listed above. These calculations shall not be reproduced, reused, "card filed", sold to a third party, or altered in any way without the written authorization of Vector Structural Engineering, LLC and Steelhead Metal & Fab LLC.*

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*

PROJECT: SF POLICE ACADEMY

### **Design Criteria:**

**Code:** Structural design is based on the California Building Code, 2025 Edition (2024 IBC) and the TIA-222-I standard.

**Wind:** Basic wind speed = 99 mph (3-second gust) per the ASCE 7-22 standard

Risk Category: III

Wind exposure: C

Kzt: 1

**Ice:** None per the ASCE 7-22 standard

**Seismic:** Seismic importance factor, I = 1.25

Risk Category: III

Mapped spectral response accelerations:  $S_S = 1.84g$   $S_1 = 0.7g$

Site class: D

Spectral response coefficients:  $S_{DS} = 1.3g$   $S_{D1} = 1.38g$

Seismic design category: D

Basic seismic-force-resisting-system: Telecom: Steel Pole

Seismic base shear, V = 6 k

Seismic response coefficient, Cs = 0.359

Response modification factor, R = 1.5

Analysis procedure: Equivalent Lateral Force

### **General Notes:**

- 1 The contractor shall verify dimensions, conditions and elevations before starting work. The engineer shall be notified immediately if any discrepancies are found.
- 2 The typical notes and details shall apply in all cases unless specifically detailed elsewhere. Where no detail is shown, the construction shall be as shown for other similar work and as required by the building code.
- 3 These calculations are limited to the structural members shown in these calculations only.
- 4 The contractor shall be responsible for compliance with local construction safety orders. Approval of shop drawings by the architect or structural engineer shall not be construed as accepting this responsibility.
- 5 All structural framing members shall be adequately shored and braced during erection and until full lateral and vertical support is provided by adjoining members.



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*

PROJECT: SF POLICE ACADEMY

### **Structural Steel:**

- 1 All structural steel code checks based on the AISC, 16th Edition per the TIA-222-I standard
- 2 All 18-sided, tapered shaft steel to be per ASTM A572 GR. 65, U.N.O.
- 3 The design length of slip splices is equal to 1.67 times the inside width of the base of the upper section. Slip splice length tolerance is equal to  $\pm 10\%$  of the design slip splice length.
- 4 All steel pipe to be per ASTM A53 GR. B (35 KSI), U.N.O.
- 5 All steel rectangular tubes (HSS) to be per ASTM A500 GR. B (46 KSI), U.N.O.
- 6 All other structural steel shapes & plates shall be per ASTM A36, U.N.O.
- 7 All anchor bolts shall be per ASTM F1554 GR. 55, U.N.O.
- 8 All bolts for steel-to-steel connections shall be per ASTM F3125 GR. A325 U.N.O.
- 9 All bolted connections shall be tightened per the "turn-of-nut" method as defined by AISC.
- 10 All welding shall be performed by certified welders in accordance with the latest edition of the American Welding Society (AWS) D1.1. Utilize minimum E70XX low-hydrogen electrode U.N.O. or where higher strength electrode is required by AWS D1.1
- 11 All steel surfaces shall be galvanized in accordance with ASTM A123 and ASTM F2329 standards, thoroughly coated with a zinc-rich primer, or otherwise protected as noted on the structural drawings.

### **Foundation / Concrete:**

- 1 All concrete mixing, placement, forming, and reinforcing installation shall be performed in accordance with the requirements of "Building Code Requirements for Reinforced Concrete", ACI 318-19. Foundation installation shall be in accordance with the requirements of "Standard Specifications for the Construction of Drilled Piers", ACI 336, latest edition
- 2 All concrete shall have a minimum compressive strength of 4000 psi at 28 days.
- 3 Cement for all concrete shall be Type II with 6% (+/- 1.5%) entrained air. Maximum aggregate size shall be 3/4".
- 4 Reinforcing steel shall be per ASTM A615 Gr. 60, U.N.O.
- 6 Foundation design is based on presumptive soil parameters. Vector Structural Engineering, LLC strongly recommends independent soils testing be performed by a licensed geotechnical engineer to verify soil bearing capacities, slope stability, and any other related soil parameters, as required.



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC  
 This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: SF POLICE ACADEMY

**Seismic Base Shear Calculations:**

|           |
|-----------|
| ASCE 7-22 |
| Method 1  |

**Seismic Parameters:**

|                          |      |
|--------------------------|------|
| Risk Category=           | III  |
| Seismic Design Category: | D    |
| Importance, I =          | 1.25 |
| Site Class:              | D    |
| R =                      | 1.5  |
| T <sub>L</sub> =         | 12   |

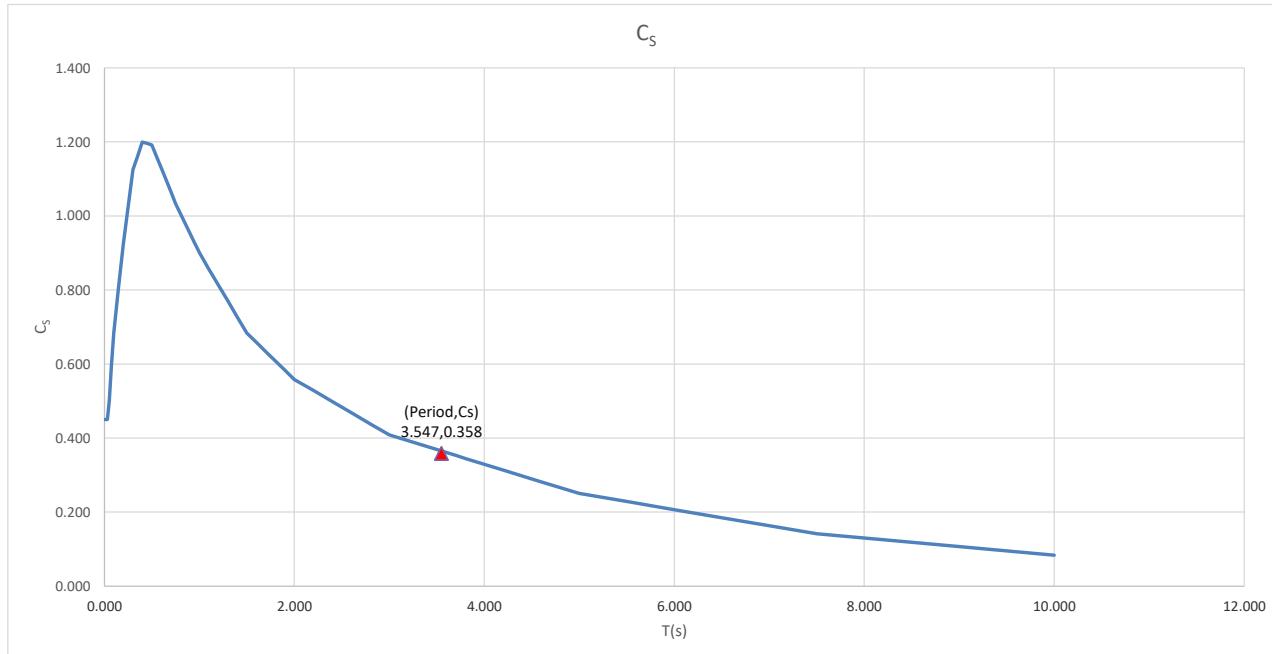
|                   |       |   |
|-------------------|-------|---|
| S <sub>0</sub> =  | 1.840 | g |
| S <sub>1</sub> =  | 0.700 | g |
| S <sub>MS</sub> = | 1.950 | g |
| SM1 =             | 2.070 | g |
| Sa(g) =           | 0.430 |   |

|                   |       |   |
|-------------------|-------|---|
| S <sub>DS</sub> = | 1.300 | g |
| S <sub>D1</sub> = | 1.380 | g |

**Seismic Base Shear:**

Structure Type = Telecom: Steel Pole

Period Type = Monopole Period


|                    |       |                 |
|--------------------|-------|-----------------|
| h =                | 102.0 | ft              |
| E =                | 29000 | ksi             |
| I <sub>avg</sub> = | 1369  | in <sup>4</sup> |

|                  |      |   |
|------------------|------|---|
| W <sub>u</sub> = | 5.31 | k |
| W <sub>1</sub> = | 16.7 | k |
| W <sub>L</sub> = | 11.4 | k |

|                  |      |      |
|------------------|------|------|
| f <sub>1</sub> = | 0.28 | Hz   |
| T =              | 3.55 | sec. |
| k <sub>e</sub> = | 2.00 |      |

|                                        |       |
|----------------------------------------|-------|
| C <sub>s</sub> =                       | 0.359 |
| Seismic Shear, V <sub>s(final)</sub> = | 6.0 k |
| Wind Shear =                           | 9.6 k |

ratio = 0.62

**Wind Controls, Seismic Analysis Still Required**



PROJECT: SF POLICE ACADEMY

**Equivalent Lateral Force:****Discrete Appurtenances:**

| Label                    | Height AGL, $h_z$ [ft] | Weight, $w_z$ [lb] | $w_z h_z^{ke}$ | $F_{sz}$ [lb] |
|--------------------------|------------------------|--------------------|----------------|---------------|
| (3) Quintel QD668-2      | 100.0                  | 167                | 1665000        | 96.7          |
| (6) Ericsson Air Stacked | 100.0                  | 484                | 4842000        | 281.3         |
| (3) Quintel QD6612-2     | 100.0                  | 363                | 3627000        | 210.7         |
| (3) RRU 4490             | 100.0                  | 210                | 2100000        | 122.0         |
| (3) RRU 4478             | 100.0                  | 180                | 1800000        | 104.6         |
| (3) RRU 4890             | 100.0                  | 209                | 2085000        | 121.1         |
| (3) Surge Suppressor     | 100.0                  | 79                 | 786000         | 45.7          |
| (1) RMVD-12              | 100.0                  | 2081               | 20810000       | 1209.1        |
| (3) Quintel QD668-2      | 100.0                  | 167                | 1665000        | 96.7          |
| (6) Ericsson Air Stacked | 100.0                  | 484                | 4842000        | 281.3         |
| (3) Quintel QD6612-2     | 100.0                  | 363                | 3627000        | 210.7         |
| (3) RRU 4490             | 100.0                  | 210                | 2100000        | 122.0         |
| (3) RRU 4478             | 100.0                  | 180                | 1800000        | 104.6         |
| (3) RRU 4890             | 100.0                  | 209                | 2085000        | 121.1         |
| (3) Surge Suppressor     | 100.0                  | 79                 | 786000         | 45.7          |
| (1) RMVD-12              | 100.0                  | 2081               | 20810000       | 1209.1        |
|                          |                        |                    |                |               |
|                          |                        |                    |                |               |

**Linear Appurtenances:**

| Label | $z$ [ft] | $w_z$ [lb] | $w_z h_z^{ke}$ | $F_{sz}$ [lb] |
|-------|----------|------------|----------------|---------------|
| Coax  | 92.9     | 320.9      | 2767067        | 160.8         |
| Coax  | 78.6     | 493.7      | 3047930        | 177.1         |
| Coax  | 64.3     | 493.7      | 2040350        | 118.5         |
| Coax  | 50.0     | 493.7      | 1234286        | 71.7          |
| Coax  | 35.7     | 493.7      | 629738         | 36.6          |
| Coax  | 21.4     | 493.7      | 226706         | 13.2          |
| Coax  | 7.1      | 493.7      | 25190          | 1.5           |

**Tapered Pole:**

| Label     | $z$ [ft] AGL | $w_z$ [lb] | $w_z h_z^{ke}$ | $F_{sz}$ [lb] |
|-----------|--------------|------------|----------------|---------------|
| Tapered 1 | 96.3         | 573.2      | 5319800        | 309.1         |
| Tapered 1 | 83.0         | 573.2      | 3949102        | 229.4         |
| Tapered 1 | 69.7         | 573.2      | 2782225        | 161.6         |
| Tapered 2 | 59.8         | 736.4      | 2636385        | 153.2         |
| Tapered 2 | 46.5         | 736.4      | 1592313        | 92.5          |
| Tapered 2 | 33.2         | 736.4      | 810077         | 47.1          |
| Tapered 3 | 25.9         | 650.4      | 435003         | 25.3          |
| Tapered 3 | 15.9         | 650.4      | 164779         | 9.6           |
| Tapered 3 | 6.0          | 650.4      | 23199          | 1.3           |
|           |              |            |                |               |
|           |              |            |                |               |

## DESIGNED APPURTENANCE LOADING

| TYPE                                                         | ELEVATION | TYPE                                                         | ELEVATION |
|--------------------------------------------------------------|-----------|--------------------------------------------------------------|-----------|
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 100       | Tapered 1 seismic                                            | 96.3      |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Coax seismic                                                 | 92.9      |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 100       | Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 90        |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 100       | Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 90        |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 100       | Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 90        |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 100       | Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 90        |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 100       | RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 90        |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 100       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 90        |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 100       | Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 90        |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 100       | Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 90        |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 100       | Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 90        |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 100       | Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 90        |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 100       | Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 90        |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 100       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 90        |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 100       | Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 100       | Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 90        |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 100       | Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 90        |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 100       | Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 90        |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 100       | Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 90        |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 100       | Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 90        |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 100       | Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 90        |
| (3) Quintel QD668-2 seismic                                  | 100       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 90        |
| (6) Ericsson Air Stacked seismic                             | 100       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 90        |
| (3) Quintel QD6612-2 seismic                                 | 100       | Tapered 1 seismic                                            | 83        |
| (3) RRU 4490 seismic                                         | 100       | Coax seismic                                                 | 78.6      |
| (3) RRU 4478 seismic                                         | 100       | Tapered 1 seismic                                            | 69.7      |
| (3) RRU 4890 seismic                                         | 100       | Coax seismic                                                 | 64.3      |
| (3) Surge Suppressor seismic                                 | 100       | Tapered 2 seismic                                            | 59.8      |
| (1) RMVD-12 seismic                                          | 100       | Coax seismic                                                 | 50        |
| (3) Quintel QD668-2 seismic                                  | 100       | Tapered 2 seismic                                            | 46.5      |
| (6) Ericsson Air Stacked seismic                             | 100       | Coax seismic                                                 | 35.7      |
| (3) Quintel QD6612-2 seismic                                 | 100       | Tapered 2 seismic                                            | 33.2      |
| (3) RRU 4490 seismic                                         | 100       | Tapered 3 seismic                                            | 25.9      |
| (3) RRU 4478 seismic                                         | 100       | Coax seismic                                                 | 21.4      |
| (3) RRU 4890 seismic                                         | 100       | Tapered 3 seismic                                            | 15.9      |
| (3) Surge Suppressor seismic                                 | 100       | Coax seismic                                                 | 7.1       |
| (1) RMVD-12 seismic                                          | 100       | Tapered 3 seismic                                            | 6         |

## MATERIAL STRENGTH

| A  | GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
|----|---------|--------|--------|-------|----|----|
| 20 | A572-65 | 65 ksi | 80 ksi |       |    |    |

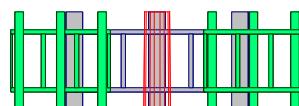
## TOWER DESIGN NOTES

1. Tower is located in San Francisco County, California.  
 2. Tower designed for Exposure C to the TIA-222-I Standard.  
 3. Tower designed for a 99 mph basic wind in accordance with the TIA-222-I Standard.  
 4. Deflections are based upon a 60 mph wind.  
 5. Tower Risk Category III.  
 6. Topographic Category 1 with Crest Height of 0.00 ft  
 7. TOWER RATING: 97.6%

Vector Structural Engineering

651 W Galena Park Blvd  
 Draper, UT 84020  
 Phone: (801) 990-1775  
 FAX: (801) 990-1776

Job: SF Police Academy


Project: U1133.0725.261

Client: Steelhead Drawn by: mrire App'd:

Code: TIA-222-I Date: 01/27/26 Scale: NTS

Path: Dwg No. E-1

103.0 ft



1726.4

63.0 ft

310125

A572-65

2213.4

26.5 ft

1.0 ft

29.83

18

0.1880

29.8798

35.1000

1956.5

5896.3

3

Length (ft)

Number of Sides

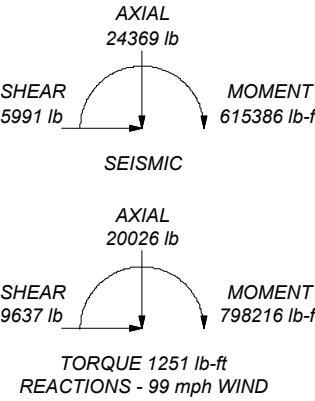
Thickness (in)

Socket Length (ft)

Top Dia (in)

Bot Dia (in)

Grade


Weight (lb)

**MATERIAL STRENGTH**

| GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
|---------|--------|--------|-------|----|----|
| A572-65 | 65 ksi | 80 ksi |       |    |    |

**TOWER DESIGN NOTES**

1. Tower is located in San Francisco County, California.
2. Tower designed for Exposure C to the TIA-222-I Standard.
3. Tower designed for a 99 mph basic wind in accordance with the TIA-222-I Standard.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category III.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 97.6%

ALL REACTIONS  
ARE FACtORED**Vector Structural Engineering**

651 W Galena Park Blvd

Draper, UT 84020

Phone: (801) 990-1775

FAX: (801) 990-1776

Job: **SF Police Academy**Project: **U1133.0725.261**

Client: Steelhead Drawn by: mrire App'd:

Code: TIA-222-I Date: 01/28/26 Scale: NTS

Path: Dwg No. E-1

|                                                                                                                                                           |         |                   |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy | Page 8 of 94           |
|                                                                                                                                                           | Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
|                                                                                                                                                           | Client  | Steelhead         | Designed by mrire      |

## Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-I standard.

The following design criteria apply:

Tower is located in San Francisco County, California.

Tower base elevation above sea level: 561.00 ft.

Basic wind speed of 99 mph is used.

Risk Category III.

Exposure Category C.

Crest Height: 0.00 ft.

Deflections calculated using a wind speed of 60 mph.

Fatigue along-wind analysis loads are applied.

Non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

|                                     |                                      |                                           |
|-------------------------------------|--------------------------------------|-------------------------------------------|
| Consider Moments - Legs             | ✓ Assume Legs Pinned                 | ✓ Calculate Redundant Bracing Forces      |
| Consider Moments - Horizontals      | ✓ Assume Rigid Index Plate           | Ignore Redundant Members in FEA           |
| Consider Moments - Diagonals        | ✓ Use Clear Spans For Wind Area      | SR Leg Bolts Resist Compression           |
| Use Moment Magnification            | ✓ Use Clear Spans For KL/r           | ✓ All Leg Panels Have Same Allowable      |
| ✓ Use Code Stress Ratios            | ✓ Retension Guys To Initial Tension  | Offset Girt At Foundation                 |
| ✓ Use Code Safety Factors - Guys    | ✓ Bypass Mast Stability Checks       | Consider Feed Line Torque                 |
| Escalate Ice                        | ✓ Use Azimuth Dish Coefficients      | Include Angle Block Shear Check           |
| Always Use Max Kz                   | ✓ Project Wind Area of Appurtenances | Use TIA-222-H Bracing Resist. Exemption   |
| Kz In Exposure D Hurricane Region   | Alternative Appurt. EPA Calculation  | Use TIA-222-H Tension Splice Exemption    |
| ✓ Include Bolts In Member Capacity  | ✓ Autocalc Torque Arm Areas          | Poles                                     |
| ✓ Leg Bolts Are At Top Of Section   | Add IBC .6D+W Combination            | Include Shear-Torsion Interaction         |
| ✓ Secondary Horizontal Braces Leg   | Sort Capacity Reports By Component   | Always Use Sub-Critical Flow              |
| Use Diamond Inner Bracing (4 Sided) | ✓ Triangulate Diamond Inner Bracing  | Use Top Mounted Sockets                   |
| SR Members Have Cut Ends            | Treat Feed Line Bundles As Cylinder  | Pole Without Linear Attachments           |
| SR Members Are Concentric           | Ignore KL/ry For 60 Deg. Angle Legs  | Pole With Shroud Or No Appurtenances      |
| Distribute Leg Loads As Uniform     | Use ASCE 10 X-Brace Ly Rules         | Outside and Inside Corner Radii Are Known |
| Use Special Wind Profile            |                                      | Use Fatigue Analysis Exemption for Gh     |

## Tapered Pole Section Geometry

| Section | Elevation<br>ft | Section<br>Length<br>ft | Splice<br>Length<br>ft | Number<br>of<br>Sides | Top<br>Diameter<br>in | Bottom<br>Diameter<br>in | Wall<br>Thickness<br>in | Bend<br>Radius<br>in | Pole Grade          |
|---------|-----------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------|
| L1      | 103.00-63.00    | 40.00                   | 3.50                   | 18                    | 18.0000               | 25.0000                  | 0.1875                  | 0.7500               | A572-65<br>(65 ksi) |
| L2      | 63.00-26.50     | 40.00                   | 4.33                   | 18                    | 24.0125               | 31.0125                  | 0.1875                  | 0.7500               | A572-65<br>(65 ksi) |
| L3      | 26.50-1.00      | 29.83                   |                        | 18                    | 29.8798               | 35.1000                  | 0.1880                  | 0.7520               | A572-65<br>(65 ksi) |

## Tapered Pole Properties

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 9 of 94           |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

| Section | Tip Dia.<br>in | Area<br>in <sup>2</sup> | I<br>in <sup>4</sup> | r<br>in | C<br>in | I/C<br>in <sup>3</sup> | J<br>in <sup>4</sup> | I <sub>t</sub> /Q<br>in <sup>2</sup> | w<br>in | w/t    |
|---------|----------------|-------------------------|----------------------|---------|---------|------------------------|----------------------|--------------------------------------|---------|--------|
| L1      | 18.2488        | 10.6007                 | 424.9328             | 6.3234  | 9.1440  | 46.4712                | 850.4248             | 5.3013                               | 2.8380  | 15.136 |
|         | 25.3567        | 14.7665                 | 1148.5693            | 8.8084  | 12.7000 | 90.4385                | 2298.6500            | 7.3847                               | 4.0700  | 21.707 |
| L2      | 24.9760        | 14.1789                 | 1016.8207            | 8.4579  | 12.1983 | 83.3572                | 2034.9793            | 7.0908                               | 3.8962  | 20.78  |
|         | 31.4620        | 18.3447                 | 2202.1906            | 10.9429 | 15.7544 | 139.7830               | 4407.2789            | 9.1741                               | 5.1282  | 27.35  |
| L3      | 31.0811        | 17.7174                 | 1973.3749            | 10.5406 | 15.1789 | 130.0077               | 3949.3465            | 8.8604                               | 4.9280  | 26.213 |
|         | 35.6125        | 20.8324                 | 3207.9413            | 12.3938 | 17.8308 | 179.9101               | 6420.1036            | 10.4182                              | 5.8467  | 31.1   |

| Tower Elevation | Gusset Area<br>(per face) | Gusset Thickness | Gusset Grade | Adjust. Factor<br><i>A<sub>f</sub></i> | Adjust. Factor<br><i>A<sub>r</sub></i> | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals | Double Angle Stitch Bolt Spacing Horizontals | Double Angle Stitch Bolt Spacing Redundants |
|-----------------|---------------------------|------------------|--------------|----------------------------------------|----------------------------------------|--------------|--------------------------------------------|----------------------------------------------|---------------------------------------------|
| ft              | ft <sup>2</sup>           | in               |              |                                        |                                        |              | in                                         | in                                           | in                                          |
| L1              |                           |                  |              | 1                                      | 1                                      | 1            |                                            |                                              |                                             |
| 103.00-63.00    |                           |                  |              |                                        |                                        |              |                                            |                                              |                                             |
| L2              | 63.00-26.50               |                  |              | 1                                      | 1                                      | 1            |                                            |                                              |                                             |
| L3              | 26.50-1.00                |                  |              | 1                                      | 1                                      | 1            |                                            |                                              |                                             |

## Monopole Base Plate Data

### Base Plate Data

|                       |             |
|-----------------------|-------------|
| Base plate is square  |             |
| Base plate is grouted |             |
| Anchor bolt grade     | F1554-55    |
| Anchor bolt size      | 2.0000 in   |
| Number of bolts       | 8           |
| Embedment length      | 60.0000 in  |
| <i>f<sub>c</sub></i>  | 4 ksi       |
| Grout space           | 3.0000 in   |
| Base plate grade      | A572-50     |
| Base plate thickness  | 2.0000 in   |
| Bolt circle diameter  | 41.0000 in  |
| Outer diameter        | 46.0000 in  |
| Inner diameter        | 26.0000 in  |
| Base plate type       | Plain Plate |

## Feed Line/Linear Appurtenances - Entered As Area

| Description           | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement ft  | Total Number | <i>C<sub>A</sub>A<sub>4</sub></i> | Weight |
|-----------------------|-------------|--------------|---------------------------------|----------------|---------------|--------------|-----------------------------------|--------|
|                       |             |              |                                 |                |               |              | ft <sup>2</sup> /ft               | plf    |
| 1 5/8 Coax (Enclosed) | C           | No           | Yes                             | Inside Pole    | 100.00 - 1.00 | 24           | No Ice                            | 0.00   |
| 1 5/8 Coax (Enclosed) | C           | No           | Yes                             | Inside Pole    | 90.00 - 1.00  | 24           | No Ice                            | 0.00   |

## Feed Line/Linear Appurtenances Section Areas

| Tower Section | Tower Elevation | Face | $A_R$<br>ft <sup>2</sup> | $A_F$<br>ft <sup>2</sup> | $C_A A_A$<br>In Face<br>ft <sup>2</sup> | $C_A A_A$<br>Out Face<br>ft <sup>2</sup> | Weight<br>lb |
|---------------|-----------------|------|--------------------------|--------------------------|-----------------------------------------|------------------------------------------|--------------|
| L1            | 103.00-63.00    | A    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | B    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | C    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 1105.92      |
| L2            | 63.00-26.50     | A    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | B    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | C    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 1261.44      |
| L3            | 26.50-1.00      | A    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | B    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 0.00         |
|               |                 | C    | 0.000                    | 0.000                    | 0.000                                   | 0.000                                    | 881.28       |

### User Defined Loads - Seismic

| Description                      | Elevation | Offset From Centroid | Azimuth Angle | $E_v$  | $E_{hx}$ | $E_{hz}$ | $E_h$   |
|----------------------------------|-----------|----------------------|---------------|--------|----------|----------|---------|
|                                  | ft        | ft                   | °             | lb     | lb       | lb       | lb      |
| (3) Quintel QD668-2 seismic      | 100.00    | 0.00                 | 0.0000        | 43.30  | 0.00     | 0.00     | 96.70   |
| (6) Ericsson Air Stacked seismic | 100.00    | 0.00                 | 0.0000        | 125.90 | 0.00     | 0.00     | 281.30  |
| (3) Quintel QD6612-2 seismic     | 100.00    | 0.00                 | 0.0000        | 94.30  | 0.00     | 0.00     | 210.70  |
| (3) RRU 4490 seismic             | 100.00    | 0.00                 | 0.0000        | 54.60  | 0.00     | 0.00     | 122.00  |
| (3) RRU 4478 seismic             | 100.00    | 0.00                 | 0.0000        | 46.80  | 0.00     | 0.00     | 104.60  |
| (3) RRU 4890 seismic             | 100.00    | 0.00                 | 0.0000        | 54.20  | 0.00     | 0.00     | 121.10  |
| (3) Surge Suppressor seismic     | 100.00    | 0.00                 | 0.0000        | 20.40  | 0.00     | 0.00     | 45.70   |
| (1) RMVD-12 seismic              | 100.00    | 0.00                 | 0.0000        | 541.10 | 0.00     | 0.00     | 1209.10 |
| (3) Quintel QD668-2 seismic      | 100.00    | 0.00                 | 0.0000        | 43.30  | 0.00     | 0.00     | 96.70   |
| (6) Ericsson Air Stacked seismic | 100.00    | 0.00                 | 0.0000        | 125.90 | 0.00     | 0.00     | 281.30  |
| (3) Quintel QD6612-2 seismic     | 100.00    | 0.00                 | 0.0000        | 94.30  | 0.00     | 0.00     | 210.70  |
| (3) RRU 4490 seismic             | 100.00    | 0.00                 | 0.0000        | 54.60  | 0.00     | 0.00     | 122.00  |
| (3) RRU 4478 seismic             | 100.00    | 0.00                 | 0.0000        | 46.80  | 0.00     | 0.00     | 104.60  |
| (3) RRU 4890 seismic             | 100.00    | 0.00                 | 0.0000        | 54.20  | 0.00     | 0.00     | 121.10  |
| (3) Surge Suppressor seismic     | 100.00    | 0.00                 | 0.0000        | 20.40  | 0.00     | 0.00     | 45.70   |
| (1) RMVD-12 seismic              | 100.00    | 0.00                 | 0.0000        | 541.10 | 0.00     | 0.00     | 1209.10 |
| Coax seismic                     | 92.90     | 0.00                 | 0.0000        | 83.40  | 0.00     | 0.00     | 160.80  |
| Coax seismic                     | 78.60     | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 177.10  |
| Coax seismic                     | 64.30     | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 118.50  |
| Coax seismic                     | 50.00     | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 71.70   |
| Coax seismic                     | 35.70     | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 36.60   |
| Coax seismic                     | 21.40     | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 13.20   |
| Coax seismic                     | 7.10      | 0.00                 | 0.0000        | 128.40 | 0.00     | 0.00     | 1.50    |
| Tapered 1 seismic                | 96.30     | 0.00                 | 0.0000        | 149.00 | 0.00     | 0.00     | 309.10  |
| Tapered 1 seismic                | 83.00     | 0.00                 | 0.0000        | 149.00 | 0.00     | 0.00     | 229.40  |
| Tapered 1 seismic                | 69.70     | 0.00                 | 0.0000        | 149.00 | 0.00     | 0.00     | 161.60  |
| Tapered 2 seismic                | 59.80     | 0.00                 | 0.0000        | 191.50 | 0.00     | 0.00     | 153.20  |
| Tapered 2 seismic                | 46.50     | 0.00                 | 0.0000        | 191.50 | 0.00     | 0.00     | 92.50   |
| Tapered 2 seismic                | 33.20     | 0.00                 | 0.0000        | 191.50 | 0.00     | 0.00     | 47.10   |
| Tapered 3 seismic                | 25.90     | 0.00                 | 0.0000        | 169.10 | 0.00     | 0.00     | 25.30   |
| Tapered 3 seismic                | 15.90     | 0.00                 | 0.0000        | 169.10 | 0.00     | 0.00     | 9.60    |
| Tapered 3 seismic                | 6.00      | 0.00                 | 0.0000        | 169.10 | 0.00     | 0.00     | 1.30    |

### Discrete Tower Loads

|                                                                                                                                                       |                           |  |  |  |  |  |  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|----------------------------------|
| <b>tnxTower</b><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  | <b>Page</b> 11 of 94             |
|                                                                                                                                                       | Project<br>U1133.0725.261 |  |  |  |  |  |  | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                       | Client<br>Steelhead       |  |  |  |  |  |  | <b>Designed by</b><br>mrire      |

| Description                                                     | Face or Leg | Offset Type | Offsets: Horz<br>Lateral<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | CAA Front ft <sup>2</sup> | CAA Side ft <sup>2</sup> | Weight lb |        |
|-----------------------------------------------------------------|-------------|-------------|----------------------------------------------------|----------------------|--------------|---------------------------|--------------------------|-----------|--------|
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 11.45                    | 8.22      | 55.50  |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP         | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP         | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                   | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 13.58                    | 8.22      | 120.90 |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)              | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.68                     | 1.22      | 70.00  |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                 | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.02                     | 1.25      | 60.00  |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)           | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.70                     | 1.25      | 69.50  |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)<br>**** | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 1.21                     | 1.21      | 26.20  |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 11.45                    | 8.22      | 55.50  |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP         | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP         | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                   | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 13.58                    | 8.22      | 120.90 |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)              | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.68                     | 1.22      | 70.00  |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                 | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.02                     | 1.25      | 60.00  |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)           | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.70                     | 1.25      | 69.50  |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)<br>**** | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 1.21                     | 1.21      | 26.20  |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 11.45                    | 8.22      | 55.50  |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP         | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |
| Ericsson Air 6419 B77D                                          | C           | From Face   | 2.00                                               | 0.0000               | 100.00       | No Ice                    | 4.15                     | 2.80      | 80.70  |

|                                                                                                                                                           |                           |  |  |  |  |  |  |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|----------------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  | <b>Page</b> 12 of 94             |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  | <b>Designed by</b><br>mririe     |

| Description                                                       | Face or Leg | Offset Type | Offsets: Horz<br>Lateral<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | CAA Front ft <sup>2</sup> | CAA Side ft <sup>2</sup> | Weight lb |
|-------------------------------------------------------------------|-------------|-------------|----------------------------------------------------|----------------------|--------------|---------------------------|--------------------------|-----------|
| (28.3"x16.1"x7.9", 66.1lb) w/ MP                                  |             |             | 0.00<br>0.00<br>0.00                               |                      |              |                           |                          |           |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                     | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 13.58                    | 8.22      |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)                | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.68                     | 1.22      |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                   | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.02                     | 1.25      |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)             | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 2.70                     | 1.25      |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)           | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 100.00       | No Ice                    | 1.21                     | 1.21      |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors **** | C           | None        |                                                    | 0.0000               | 100.00       | No Ice                    | 21.51                    | 20.57     |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                  | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 11.45                    | 8.22      |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP           | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 4.15                     | 2.80      |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP           | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 4.15                     | 2.80      |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                     | A           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 13.58                    | 8.22      |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)                | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 2.68                     | 1.22      |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                   | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 2.02                     | 1.25      |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)             | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 2.70                     | 1.25      |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb) ****      | A           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 1.21                     | 1.21      |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                  | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 11.45                    | 8.22      |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP           | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 4.15                     | 2.80      |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP           | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 4.15                     | 2.80      |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                     | B           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                    | 13.58                    | 8.22      |

|                                                                                                                                                           |                           |  |  |  |  |  |  |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|---------------------------|--|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  | Page 13 of 94             |  |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  | Date<br>17:53:37 01/27/26 |  |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  | Designed by<br>mririe     |  |

| Description                                                  | Face or Leg | Offset Type | Offsets: Horz<br>Lateral<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | CA A <sub>Front</sub> | CA A <sub>Side</sub> | Weight lb |         |
|--------------------------------------------------------------|-------------|-------------|----------------------------------------------------|----------------------|--------------|-----------------------|----------------------|-----------|---------|
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | B           | From Face   | 0.00<br>1.00<br>0.00<br>0.00                       | 0.0000               | 90.00        | No Ice                | 2.68                 | 1.22      | 70.00   |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 2.02                 | 1.25      | 60.00   |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 2.70                 | 1.25      | 69.50   |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb) **** | B           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 1.21                 | 1.21      | 26.20   |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 11.45                | 8.22      | 55.50   |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 4.15                 | 2.80      | 80.70   |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 4.15                 | 2.80      | 80.70   |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | C           | From Face   | 2.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 13.58                | 8.22      | 120.90  |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 2.68                 | 1.22      | 70.00   |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 2.02                 | 1.25      | 60.00   |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 2.70                 | 1.25      | 69.50   |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | C           | From Face   | 1.00<br>0.00<br>0.00                               | 0.0000               | 90.00        | No Ice                | 1.21                 | 1.21      | 26.20   |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | C           | None        |                                                    | 0.0000               | 90.00        | No Ice                | 21.51                | 20.57     | 2081.00 |

## Tower Pressures - No Ice

$$G_H = 0.950$$

| Section Elevation | z  | K <sub>z</sub> | q <sub>z</sub> | A <sub>G</sub>  | F <sub>a</sub><br>c<br>e | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg % | C <sub>A</sub> A <sub>In</sub><br>Face | C <sub>A</sub> A <sub>Out</sub><br>Face |
|-------------------|----|----------------|----------------|-----------------|--------------------------|-----------------|-----------------|------------------|-------|----------------------------------------|-----------------------------------------|
| ft                | ft |                | psf            | ft <sup>2</sup> |                          | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |       | ft <sup>2</sup>                        | ft <sup>2</sup>                         |

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 14 of 94          |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

| Section Elevation  | z     | K <sub>Z</sub> | q <sub>z</sub> | A <sub>G</sub>  | F <sub>a</sub> | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg %  | C <sub>A</sub> A <sub>A</sub> In Face ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Out Face ft <sup>2</sup> |
|--------------------|-------|----------------|----------------|-----------------|----------------|-----------------|-----------------|------------------|--------|-------------------------------------------------------|--------------------------------------------------------|
| ft                 | ft    |                | psf            | ft <sup>2</sup> | e              | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |        |                                                       |                                                        |
| L1<br>103.00-63.00 | 82.16 | 1.204          | 28             | 72.676          | A              | 0.000           | 72.676          | 72.676           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L2 63.00-26.50     | 44.44 | 1.062          | 25             | 85.833          | A              | 0.000           | 85.833          | 85.833           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L3 26.50-1.00      | 13.46 | 0.850          | 20             | 70.862          | A              | 0.000           | 70.862          | 70.862           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |

### Tower Pressure - Service

$G_H = 0.950$

| Section Elevation  | z     | K <sub>Z</sub> | q <sub>z</sub> | A <sub>G</sub>  | F <sub>a</sub> | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg %  | C <sub>A</sub> A <sub>A</sub> In Face ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Out Face ft <sup>2</sup> |
|--------------------|-------|----------------|----------------|-----------------|----------------|-----------------|-----------------|------------------|--------|-------------------------------------------------------|--------------------------------------------------------|
| ft                 | ft    |                | psf            | ft <sup>2</sup> | e              | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |        |                                                       |                                                        |
| L1<br>103.00-63.00 | 82.16 | 1.204          | 9              | 72.676          | A              | 0.000           | 72.676          | 72.676           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L2 63.00-26.50     | 44.44 | 1.062          | 8              | 85.833          | A              | 0.000           | 85.833          | 85.833           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L3 26.50-1.00      | 13.46 | 0.850          | 7              | 70.862          | A              | 0.000           | 70.862          | 70.862           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | B              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                |                 | C              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |

### Tower Pressure - Along-Wind Gust

$G_H = 1.000$

| Section Elevation  | z     | K <sub>Z</sub> | q <sub>wg</sub> | A <sub>G</sub>  | F <sub>a</sub> | A <sub>F</sub>  | A <sub>R</sub>  | A <sub>leg</sub> | Leg %  | C <sub>A</sub> A <sub>A</sub> In Face ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Out Face ft <sup>2</sup> |
|--------------------|-------|----------------|-----------------|-----------------|----------------|-----------------|-----------------|------------------|--------|-------------------------------------------------------|--------------------------------------------------------|
| ft                 | ft    |                | psf             | ft <sup>2</sup> | e              | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>  |        |                                                       |                                                        |
| L1<br>103.00-63.00 | 82.16 | 1.000          | 5               | 72.676          | A              | 0.000           | 72.676          | 72.676           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | B              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | C              | 0.000           | 72.676          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L2 63.00-26.50     | 44.44 | 1.000          | 5               | 85.833          | A              | 0.000           | 85.833          | 85.833           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | B              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | C              | 0.000           | 85.833          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
| L3 26.50-1.00      | 13.46 | 1.000          | 5               | 70.862          | A              | 0.000           | 70.862          | 70.862           | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | B              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |
|                    |       |                |                 |                 | C              | 0.000           | 70.862          |                  | 100.00 | 0.000                                                 | 0.000                                                  |

### Tower Forces - No Ice - Wind Normal To Face

|                                                                                                                                                           |                           |  |  |  |  |  |  |  |  |  |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|---------------------------|--|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  |  |  |  | Page 15 of 94             |  |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  |  |  |  | Date<br>17:53:37 01/27/26 |  |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  |  |  |  | Designed by<br>mririe     |  |

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>     | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|--------------------|---------|-------|------------|
|                         |                  |                   |             |             |                      |                       |                |                | ft <sup>2</sup>    | lb      | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 28                    | 1              | 1              | 72.676             | 1415.20 | 35.38 | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 25                    | 1              | 1              | 85.833             | 1469.29 | 40.25 | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 20                    | 1              | 1              | 70.862             | 975.68  | 38.26 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 190834.97<br>lb·ft | 3860.17 |       |            |

### Tower Forces - No Ice - Wind 45 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>     | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|--------------------|---------|-------|------------|
|                         |                  |                   |             |             |                      |                       |                |                | ft <sup>2</sup>    | lb      | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 28                    | 1              | 1              | 72.676             | 1415.20 | 35.38 | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 25                    | 1              | 1              | 85.833             | 1469.29 | 40.25 | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 20                    | 1              | 1              | 70.862             | 975.68  | 38.26 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 190834.97<br>lb·ft | 3860.17 |       |            |

### Tower Forces - No Ice - Wind 60 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>     | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|--------------------|---------|-------|------------|
|                         |                  |                   |             |             |                      |                       |                |                | ft <sup>2</sup>    | lb      | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 28                    | 1              | 1              | 72.676             | 1415.20 | 35.38 | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 25                    | 1              | 1              | 85.833             | 1469.29 | 40.25 | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 20                    | 1              | 1              | 70.862             | 975.68  | 38.26 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 190834.97<br>lb·ft | 3860.17 |       |            |

|                                                                                                                                                           |                           |  |  |  |  |  |  |  |  |  |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|---------------------------|--|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  |  |  |  | Page 16 of 94             |  |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  |  |  |  | Date<br>17:53:37 01/27/26 |  |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  |  |  |  | Designed by<br>mririe     |  |

### Tower Forces - No Ice - Wind 90 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e | e | C <sub>F</sub> | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb | w<br>plf | Ctrl. Face |
|-------------------------|------------------|-------------------|---------|---|----------------|-----------------------|----------------|----------------|-----------------------------------|---------|----------|------------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A       | 1 | 0.73           | 28                    | 1              | 1              | 72.676                            | 1415.20 | 35.38    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A       | 1 | 0.73           | 25                    | 1              | 1              | 85.833                            | 1469.29 | 40.25    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |
| L3 26.50-1.00           | 881.28           | 1956.51           | A       | 1 | 0.73           | 20                    | 1              | 1              | 70.862                            | 975.68  | 38.26    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 70.862                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 70.862                            |         |          |            |
| Sum Weight:             | 3248.64          | 5896.31           |         |   |                |                       | OTM            |                | 190834.97<br>lb-ft                | 3860.17 |          |            |

### Tower Forces - Service - Wind Normal To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e | e | C <sub>F</sub> | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb | w<br>plf | Ctrl. Face |
|-------------------------|------------------|-------------------|---------|---|----------------|-----------------------|----------------|----------------|-----------------------------------|---------|----------|------------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A       | 1 | 0.73           | 9                     | 1              | 1              | 72.676                            | 465.10  | 11.63    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A       | 1 | 0.73           | 8                     | 1              | 1              | 85.833                            | 482.87  | 13.23    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |
| L3 26.50-1.00           | 881.28           | 1956.51           | A       | 1 | 0.73           | 7                     | 1              | 1              | 70.862                            | 320.65  | 12.57    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 70.862                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 70.862                            |         |          |            |
| Sum Weight:             | 3248.64          | 5896.31           |         |   |                |                       | OTM            |                | 62717.02<br>lb-ft                 | 1268.63 |          |            |

### Tower Forces - Service - Wind 45 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e | e | C <sub>F</sub> | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb | w<br>plf | Ctrl. Face |
|-------------------------|------------------|-------------------|---------|---|----------------|-----------------------|----------------|----------------|-----------------------------------|---------|----------|------------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A       | 1 | 0.73           | 9                     | 1              | 1              | 72.676                            | 465.10  | 11.63    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 72.676                            |         |          |            |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A       | 1 | 0.73           | 8                     | 1              | 1              | 85.833                            | 482.87  | 13.23    | C          |
|                         |                  |                   | B       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |
|                         |                  |                   | C       | 1 | 0.73           |                       | 1              | 1              | 85.833                            |         |          |            |

|                                                                                                                                                           |                           |  |  |  |  |  |  |  |  |  |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|---------------------------|--|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  |  |  |  | Page 17 of 94             |  |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  |  |  |  | Date<br>17:53:37 01/27/26 |  |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  |  |  |  | Designed by<br>mririe     |  |

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>             | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|----------------------------|---------|-------|------------|
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 7                     | 1<br>1<br>1    | 1<br>1<br>1    | 70.862<br>70.862<br>70.862 | 320.65  | 12.57 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 62717.02<br>lb·ft          | 1268.63 |       |            |

### Tower Forces - Service - Wind 60 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>             | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|----------------------------|---------|-------|------------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 9                     | 1<br>1<br>1    | 1<br>1<br>1    | 72.676<br>72.676<br>72.676 | 465.10  | 11.63 | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 8                     | 1<br>1<br>1    | 1<br>1<br>1    | 85.833<br>85.833<br>85.833 | 482.87  | 13.23 | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 7                     | 1<br>1<br>1    | 1<br>1<br>1    | 70.862<br>70.862<br>70.862 | 320.65  | 12.57 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 62717.02<br>lb·ft          | 1268.63 |       |            |

### Tower Forces - Service - Wind 90 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>       | q <sub>z</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>             | F       | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|----------------------|-----------------------|----------------|----------------|----------------------------|---------|-------|------------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 9                     | 1<br>1<br>1    | 1<br>1<br>1    | 72.676<br>72.676<br>72.676 | 465.10  | 11.63 | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 8                     | 1<br>1<br>1    | 1<br>1<br>1    | 85.833<br>85.833<br>85.833 | 482.87  | 13.23 | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73 | 7                     | 1<br>1<br>1    | 1<br>1<br>1    | 70.862<br>70.862<br>70.862 | 320.65  | 12.57 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                      |                       |                | OTM            | 62717.02<br>lb·ft          | 1268.63 |       |            |

### Tower Forces - Along-Wind Gust - Wind Normal To Face

|                                                                                                                                                           |                           |  |  |  |  |  |  |  |  |  |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|----------------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job<br>SF Police Academy  |  |  |  |  |  |  |  |  |  | <b>Page</b> 18 of 94             |
|                                                                                                                                                           | Project<br>U1133.0725.261 |  |  |  |  |  |  |  |  |  | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                           | Client<br>Steelhead       |  |  |  |  |  |  |  |  |  | <b>Designed by</b><br>mririe     |

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>          | q <sub>wg</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>    | F      | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|-------------------------|------------------------|----------------|----------------|-------------------|--------|-------|------------|
|                         |                  |                   |             |             |                         |                        |                |                | ft <sup>2</sup>   | lb     | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.864<br>0.864<br>0.864 | 5                      | 1              | 1              | 72.676            | 314.00 | 7.85  | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 85.833            | 313.29 | 8.58  | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 70.862            | 258.65 | 10.14 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                         |                        |                | OTM            | 42315.33<br>lb-ft | 885.94 |       |            |

### Tower Forces - Along-Wind Gust - Wind 45 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>          | q <sub>wg</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>    | F      | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|-------------------------|------------------------|----------------|----------------|-------------------|--------|-------|------------|
|                         |                  |                   |             |             |                         |                        |                |                | ft <sup>2</sup>   | lb     | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.864<br>0.864<br>0.864 | 5                      | 1              | 1              | 72.676            | 314.00 | 7.85  | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 85.833            | 313.29 | 8.58  | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 70.862            | 258.65 | 10.14 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                         |                        |                | OTM            | 42315.33<br>lb-ft | 885.94 |       |            |

### Tower Forces - Along-Wind Gust - Wind 60 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e     | e           | C <sub>F</sub>          | q <sub>wg</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub>    | F      | w     | Ctrl. Face |
|-------------------------|------------------|-------------------|-------------|-------------|-------------------------|------------------------|----------------|----------------|-------------------|--------|-------|------------|
|                         |                  |                   |             |             |                         |                        |                |                | ft <sup>2</sup>   | lb     | plf   |            |
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A<br>B<br>C | 1<br>1<br>1 | 0.864<br>0.864<br>0.864 | 5                      | 1              | 1              | 72.676            | 314.00 | 7.85  | C          |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 85.833            | 313.29 | 8.58  | C          |
| L3 26.50-1.00           | 881.28           | 1956.51           | A<br>B<br>C | 1<br>1<br>1 | 0.73<br>0.73<br>0.73    | 5                      | 1              | 1              | 70.862            | 258.65 | 10.14 | C          |
| Sum Weight:             | 3248.64          | 5896.31           |             |             |                         |                        |                | OTM            | 42315.33<br>lb-ft | 885.94 |       |            |

|                                                                                                                                                           |                        |  |  |  |  |  |  |  |  |  |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|----------------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | SF Police Academy      |  |  |  |  |  |  |  |  |  | <b>Page</b> 19 of 94             |
|                                                                                                                                                           | Project U1133.0725.261 |  |  |  |  |  |  |  |  |  | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                           | Client Steelhead       |  |  |  |  |  |  |  |  |  | <b>Designed by</b><br>miririe    |

## Tower Forces - Along-Wind Gust - Wind 90 To Face

| Section Elevation<br>ft | Add Weight<br>lb | Self Weight<br>lb | F a c e | e | C <sub>F</sub> | q <sub>wg</sub><br>psf | D <sub>F</sub> | D <sub>R</sub> | A <sub>E</sub><br>ft <sup>2</sup> | F<br>lb | w<br>plf | Crl. Face |
|-------------------------|------------------|-------------------|---------|---|----------------|------------------------|----------------|----------------|-----------------------------------|---------|----------|-----------|
| L1<br>103.00-63.00      | 1105.92          | 1726.39           | A       | 1 | 0.864          | 5                      | 1              | 1              | 72.676                            | 314.00  | 7.85     | C         |
|                         |                  |                   | B       | 1 | 0.864          |                        | 1              | 1              | 72.676                            |         |          |           |
|                         |                  |                   | C       | 1 | 0.864          |                        | 1              | 1              | 72.676                            |         |          |           |
| L2<br>63.00-26.50       | 1261.44          | 2213.42           | A       | 1 | 0.73           | 5                      | 1              | 1              | 85.833                            | 313.29  | 8.58     | C         |
|                         |                  |                   | B       | 1 | 0.73           |                        | 1              | 1              | 85.833                            |         |          |           |
|                         |                  |                   | C       | 1 | 0.73           |                        | 1              | 1              | 85.833                            |         |          |           |
| L3 26.50-1.00           | 881.28           | 1956.51           | A       | 1 | 0.73           | 5                      | 1              | 1              | 70.862                            | 258.65  | 10.14    | C         |
|                         |                  |                   | B       | 1 | 0.73           |                        | 1              | 1              | 70.862                            |         |          |           |
|                         |                  |                   | C       | 1 | 0.73           |                        | 1              | 1              | 70.862                            |         |          |           |
| Sum Weight:             | 3248.64          | 5896.31           |         |   |                |                        | OTM            |                | 42315.33<br>lb-ft                 | 885.94  |          |           |

## Discrete Appurtenance Pressures - No Ice *G<sub>H</sub> = 1.000*

| Description                                                      | Aiming Azimuth ° | Weight<br>lb | Offset <sub>x</sub><br>ft | Offset <sub>z</sub><br>ft | z<br>ft | K <sub>z</sub> | q <sub>z</sub><br>psf | C <sub>A</sub> A <sub>C</sub><br>Front<br>ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub><br>Side<br>ft <sup>2</sup> |
|------------------------------------------------------------------|------------------|--------------|---------------------------|---------------------------|---------|----------------|-----------------------|-----------------------------------------------------------|----------------------------------------------------------|
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6<br>lbs) w/ MP           | 300.0000         | 55.50        | -2.40                     | -1.39                     | 100.00  | 1.254          | 29                    | 11.45                                                     | 8.22                                                     |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP    | 300.0000         | 80.70        | -2.40                     | -1.39                     | 100.00  | 1.254          | 29                    | 4.15                                                      | 2.80                                                     |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP    | 300.0000         | 80.70        | -2.40                     | -1.39                     | 100.00  | 1.254          | 29                    | 4.15                                                      | 2.80                                                     |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP              | 300.0000         | 120.90       | -2.40                     | -1.39                     | 100.00  | 1.254          | 29                    | 13.58                                                     | 8.22                                                     |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)         | 300.0000         | 70.00        | -1.53                     | -0.89                     | 100.00  | 1.254          | 29                    | 2.68                                                      | 1.22                                                     |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)               | 300.0000         | 60.00        | -1.53                     | -0.89                     | 100.00  | 1.254          | 29                    | 2.02                                                      | 1.25                                                     |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5<br>lbs)   | 300.0000         | 69.50        | -1.53                     | -0.89                     | 100.00  | 1.254          | 29                    | 2.70                                                      | 1.25                                                     |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall,<br>26.2lb) | 300.0000         | 26.20        | -1.53                     | -0.89                     | 100.00  | 1.254          | 29                    | 1.21                                                      | 1.21                                                     |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6<br>lbs) w/ MP           | 60.0000          | 55.50        | 2.40                      | -1.39                     | 100.00  | 1.254          | 29                    | 11.45                                                     | 8.22                                                     |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP    | 60.0000          | 80.70        | 2.40                      | -1.39                     | 100.00  | 1.254          | 29                    | 4.15                                                      | 2.80                                                     |

|                                                                                                                                                       |         |                   |  |  |  |  |  |             |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--|--|--|--|--|-------------|-------------------|
| <b>tnxTower</b><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy |  |  |  |  |  | Page        | 20 of 94          |
|                                                                                                                                                       | Project | U1133.0725.261    |  |  |  |  |  | Date        | 17:53:37 01/27/26 |
|                                                                                                                                                       | Client  | Steelhead         |  |  |  |  |  | Designed by | miririe           |

| Description                                                  | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>AAC</sub> Front ft <sup>2</sup> | C <sub>AAC</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|--------------------|----------------------------------------|---------------------------------------|
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 60.0000          | 80.70     | 2.40                   | -1.39                  | 100.00 | 1.254          | 29                 | 4.15                                   | 2.80                                  |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 60.0000          | 120.90    | 2.40                   | -1.39                  | 100.00 | 1.254          | 29                 | 13.58                                  | 8.22                                  |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 60.0000          | 70.00     | 1.53                   | -0.89                  | 100.00 | 1.254          | 29                 | 2.68                                   | 1.22                                  |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 60.0000          | 60.00     | 1.53                   | -0.89                  | 100.00 | 1.254          | 29                 | 2.02                                   | 1.25                                  |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 60.0000          | 69.50     | 1.53                   | -0.89                  | 100.00 | 1.254          | 29                 | 2.70                                   | 1.25                                  |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 60.0000          | 26.20     | 1.53                   | -0.89                  | 100.00 | 1.254          | 29                 | 1.21                                   | 1.21                                  |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 180.0000         | 55.50     | 0.00                   | 2.77                   | 100.00 | 1.254          | 29                 | 11.45                                  | 8.22                                  |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.254          | 29                 | 4.15                                   | 2.80                                  |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.254          | 29                 | 4.15                                   | 2.80                                  |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 180.0000         | 120.90    | 0.00                   | 2.77                   | 100.00 | 1.254          | 29                 | 13.58                                  | 8.22                                  |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 180.0000         | 70.00     | 0.00                   | 1.77                   | 100.00 | 1.254          | 29                 | 2.68                                   | 1.22                                  |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 180.0000         | 60.00     | 0.00                   | 1.77                   | 100.00 | 1.254          | 29                 | 2.02                                   | 1.25                                  |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 180.0000         | 69.50     | 0.00                   | 1.77                   | 100.00 | 1.254          | 29                 | 2.70                                   | 1.25                                  |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 180.0000         | 26.20     | 0.00                   | 1.77                   | 100.00 | 1.254          | 29                 | 1.21                                   | 1.21                                  |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 100.00 | 1.254          | 29                 | 21.51                                  | 20.57                                 |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 300.0000         | 55.50     | -2.46                  | -1.42                  | 90.00  | 1.227          | 29                 | 11.45                                  | 8.22                                  |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.227          | 29                 | 4.15                                   | 2.80                                  |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.227          | 29                 | 4.15                                   | 2.80                                  |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 300.0000         | 120.90    | -2.46                  | -1.42                  | 90.00  | 1.227          | 29                 | 13.58                                  | 8.22                                  |
| Ericsson RRU 4490 B5/B12A                                    | 300.0000         | 70.00     | -1.60                  | -0.92                  | 90.00  | 1.227          | 29                 | 2.68                                   | 1.22                                  |

|                                                                                                                                                           |         |                   |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy | Page 21 of 94          |
|                                                                                                                                                           | Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
|                                                                                                                                                           | Client  | Steelhead         | Designed by mrire      |

| Description                                                              | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft  | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------------------|------------------|-----------|------------------------|------------------------|-------|----------------|--------------------|-----------------------------------------------------|----------------------------------------------------|
| (20.6"x15.6"x7", 70 lbs) Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb) | 300.0000         | 60.00     | -1.60                  | -0.92                  | 90.00 | 1.227          | 29                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)                    | 300.0000         | 69.50     | -1.60                  | -0.92                  | 90.00 | 1.227          | 29                 | 2.70                                                | 1.25                                               |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)                  | 300.0000         | 26.20     | -1.60                  | -0.92                  | 90.00 | 1.227          | 29                 | 1.21                                                | 1.21                                               |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                         | 60.0000          | 55.50     | 2.46                   | -1.42                  | 90.00 | 1.227          | 29                 | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP                  | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00 | 1.227          | 29                 | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP                  | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00 | 1.227          | 29                 | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                            | 60.0000          | 120.90    | 2.46                   | -1.42                  | 90.00 | 1.227          | 29                 | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)                       | 60.0000          | 70.00     | 1.60                   | -0.92                  | 90.00 | 1.227          | 29                 | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                          | 60.0000          | 60.00     | 1.60                   | -0.92                  | 90.00 | 1.227          | 29                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)                    | 60.0000          | 69.50     | 1.60                   | -0.92                  | 90.00 | 1.227          | 29                 | 2.70                                                | 1.25                                               |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)                  | 60.0000          | 26.20     | 1.60                   | -0.92                  | 90.00 | 1.227          | 29                 | 1.21                                                | 1.21                                               |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP                         | 180.0000         | 55.50     | 0.00                   | 2.84                   | 90.00 | 1.227          | 29                 | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP                  | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.227          | 29                 | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP                  | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.227          | 29                 | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                            | 180.0000         | 120.90    | 0.00                   | 2.84                   | 90.00 | 1.227          | 29                 | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)                       | 180.0000         | 70.00     | 0.00                   | 1.84                   | 90.00 | 1.227          | 29                 | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)                          | 180.0000         | 60.00     | 0.00                   | 1.84                   | 90.00 | 1.227          | 29                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)                    | 180.0000         | 69.50     | 0.00                   | 1.84                   | 90.00 | 1.227          | 29                 | 2.70                                                | 1.25                                               |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)                  | 180.0000         | 26.20     | 0.00                   | 1.84                   | 90.00 | 1.227          | 29                 | 1.21                                                | 1.21                                               |

|                                                                                                                                                           |         |                   |  |  |  |  |  |               |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--|--|--|--|--|---------------|-------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy |  |  |  |  |  | Page 22 of 94 |                   |
|                                                                                                                                                           | Project | U1133.0725.261    |  |  |  |  |  | Date          | 17:53:37 01/27/26 |
|                                                                                                                                                           | Client  | Steelhead         |  |  |  |  |  | Designed by   | miririe           |

| Description                                                  | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft  | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------|------------------|-----------|------------------------|------------------------|-------|----------------|--------------------|-----------------------------------------------------|----------------------------------------------------|
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 90.00 | 1.227          | 29                 | 21.51                                               | 20.57                                              |
|                                                              | Sum Weight:      | 7543.00   |                        |                        |       |                |                    |                                                     |                                                    |

### Discrete Appurtenance Pressures - Service $G_H = 1.000$

| Description                                             | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|---------------------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|--------------------|-----------------------------------------------------|----------------------------------------------------|
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP        | 300.0000         | 55.50     | -2.40                  | -1.39                  | 100.00 | 1.254          | 10                 | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP | 300.0000         | 80.70     | -2.40                  | -1.39                  | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP | 300.0000         | 80.70     | -2.40                  | -1.39                  | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP           | 300.0000         | 120.90    | -2.40                  | -1.39                  | 100.00 | 1.254          | 10                 | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)      | 300.0000         | 70.00     | -1.53                  | -0.89                  | 100.00 | 1.254          | 10                 | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)         | 300.0000         | 60.00     | -1.53                  | -0.89                  | 100.00 | 1.254          | 10                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)   | 300.0000         | 69.50     | -1.53                  | -0.89                  | 100.00 | 1.254          | 10                 | 2.70                                                | 1.25                                               |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb) | 300.0000         | 26.20     | -1.53                  | -0.89                  | 100.00 | 1.254          | 10                 | 1.37                                                | 1.37                                               |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP        | 60.0000          | 55.50     | 2.40                   | -1.39                  | 100.00 | 1.254          | 10                 | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP | 60.0000          | 80.70     | 2.40                   | -1.39                  | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP | 60.0000          | 80.70     | 2.40                   | -1.39                  | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP           | 60.0000          | 120.90    | 2.40                   | -1.39                  | 100.00 | 1.254          | 10                 | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)      | 60.0000          | 70.00     | 1.53                   | -0.89                  | 100.00 | 1.254          | 10                 | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)         | 60.0000          | 60.00     | 1.53                   | -0.89                  | 100.00 | 1.254          | 10                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)   | 60.0000          | 69.50     | 1.53                   | -0.89                  | 100.00 | 1.254          | 10                 | 2.70                                                | 1.25                                               |
| Raycap                                                  | 60.0000          | 26.20     | 1.53                   | -0.89                  | 100.00 | 1.254          | 10                 | 1.37                                                | 1.37                                               |

|  |         |                   |  |  |  |  |  |  |             |                   |
|--|---------|-------------------|--|--|--|--|--|--|-------------|-------------------|
|  | Job     | SF Police Academy |  |  |  |  |  |  | Page        | 23 of 94          |
|  | Project | U1133.0725.261    |  |  |  |  |  |  | Date        | 17:53:37 01/27/26 |
|  | Client  | Steelhead         |  |  |  |  |  |  | Designed by | mririe            |

| Description                                                  | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|--------------------|-----------------------------------------------------|----------------------------------------------------|
| DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)             |                  |           |                        |                        |        |                |                    |                                                     |                                                    |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 180.0000         | 55.50     | 0.00                   | 2.77                   | 100.00 | 1.254          | 10                 | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.254          | 10                 | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 180.0000         | 120.90    | 0.00                   | 2.77                   | 100.00 | 1.254          | 10                 | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 180.0000         | 70.00     | 0.00                   | 1.77                   | 100.00 | 1.254          | 10                 | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 180.0000         | 60.00     | 0.00                   | 1.77                   | 100.00 | 1.254          | 10                 | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 180.0000         | 69.50     | 0.00                   | 1.77                   | 100.00 | 1.254          | 10                 | 2.70                                                | 1.25                                               |
| Raycap                                                       | 180.0000         | 26.20     | 0.00                   | 1.77                   | 100.00 | 1.254          | 10                 | 1.37                                                | 1.37                                               |
| DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)             |                  |           |                        |                        |        |                |                    |                                                     |                                                    |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 100.00 | 1.254          | 10                 | 21.51                                               | 20.57                                              |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 300.0000         | 55.50     | -2.46                  | -1.42                  | 90.00  | 1.227          | 9                  | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.227          | 9                  | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.227          | 9                  | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 300.0000         | 120.90    | -2.46                  | -1.42                  | 90.00  | 1.227          | 9                  | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 300.0000         | 70.00     | -1.60                  | -0.92                  | 90.00  | 1.227          | 9                  | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 300.0000         | 60.00     | -1.60                  | -0.92                  | 90.00  | 1.227          | 9                  | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 300.0000         | 69.50     | -1.60                  | -0.92                  | 90.00  | 1.227          | 9                  | 2.70                                                | 1.25                                               |
| Raycap                                                       | 300.0000         | 26.20     | -1.60                  | -0.92                  | 90.00  | 1.227          | 9                  | 1.37                                                | 1.37                                               |
| DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)             |                  |           |                        |                        |        |                |                    |                                                     |                                                    |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 60.0000          | 55.50     | 2.46                   | -1.42                  | 90.00  | 1.227          | 9                  | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9",                    | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00  | 1.227          | 9                  | 4.15                                                | 2.80                                               |

| Description                                                                    | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft  | K <sub>z</sub> | q <sub>z</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------------------------|------------------|-----------|------------------------|------------------------|-------|----------------|--------------------|-----------------------------------------------------|----------------------------------------------------|
| 66.1lb) w/ MP<br>Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00 | 1.227          | 9                  | 4.15                                                | 2.80                                               |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP                            | 60.0000          | 120.90    | 2.46                   | -1.42                  | 90.00 | 1.227          | 9                  | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)                       | 60.0000          | 70.00     | 1.60                   | -0.92                  | 90.00 | 1.227          | 9                  | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)                             | 60.0000          | 60.00     | 1.60                   | -0.92                  | 90.00 | 1.227          | 9                  | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5<br>lbs)                 | 60.0000          | 69.50     | 1.60                   | -0.92                  | 90.00 | 1.227          | 9                  | 2.70                                                | 1.25                                               |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall,<br>26.2lb)               | 60.0000          | 26.20     | 1.60                   | -0.92                  | 90.00 | 1.227          | 9                  | 1.37                                                | 1.37                                               |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6<br>lbs) w/ MP                         | 180.0000         | 55.50     | 0.00                   | 2.84                   | 90.00 | 1.227          | 9                  | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP                  | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.227          | 9                  | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP                  | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.227          | 9                  | 4.15                                                | 2.80                                               |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP                            | 180.0000         | 120.90    | 0.00                   | 2.84                   | 90.00 | 1.227          | 9                  | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)                       | 180.0000         | 70.00     | 0.00                   | 1.84                   | 90.00 | 1.227          | 9                  | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)                             | 180.0000         | 60.00     | 0.00                   | 1.84                   | 90.00 | 1.227          | 9                  | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5<br>lbs)                 | 180.0000         | 69.50     | 0.00                   | 1.84                   | 90.00 | 1.227          | 9                  | 2.70                                                | 1.25                                               |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall,<br>26.2lb)               | 180.0000         | 26.20     | 0.00                   | 1.84                   | 90.00 | 1.227          | 9                  | 1.37                                                | 1.37                                               |
| RMVD12-NPNH-3xx<br>(EPA = 21.51 sqft front,<br>2081 lb), 3 Sectors             | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 90.00 | 1.227          | 9                  | 21.51                                               | 20.57                                              |
|                                                                                | Sum Weight:      | 7543.00   |                        |                        |       |                |                    |                                                     |                                                    |

### Discrete Appurtenance Pressures - Along-Wind Gust

G<sub>H</sub> = 1.000

| Description                              | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>wg</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|---------------------|-----------------------------------------------------|----------------------------------------------------|
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6 | 300.0000         | 55.50     | -2.40                  | -1.39                  | 100.00 | 1.000          | 5                   | 11.45                                               | 8.22                                               |

|  |         |                   |  |  |  |  |  |  |             |                   |
|--|---------|-------------------|--|--|--|--|--|--|-------------|-------------------|
|  | Job     | SF Police Academy |  |  |  |  |  |  | Page        | 25 of 94          |
|  | Project | U1133.0725.261    |  |  |  |  |  |  | Date        | 17:53:37 01/27/26 |
|  | Client  | Steelhead         |  |  |  |  |  |  | Designed by | mririe            |

| Description                                                                 | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>wg</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|-----------------------------------------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|---------------------|-----------------------------------------------------|----------------------------------------------------|
| lbs) w/ MP<br>Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP | 300.0000         | 80.70     | -2.40                  | -1.39                  | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP               | 300.0000         | 80.70     | -2.40                  | -1.39                  | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP                         | 300.0000         | 120.90    | -2.40                  | -1.39                  | 100.00 | 1.000          | 5                   | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)                    | 300.0000         | 70.00     | -1.53                  | -0.89                  | 100.00 | 1.000          | 5                   | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)                          | 300.0000         | 60.00     | -1.53                  | -0.89                  | 100.00 | 1.000          | 5                   | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5<br>lbs)              | 300.0000         | 69.50     | -1.53                  | -0.89                  | 100.00 | 1.000          | 5                   | 2.70                                                | 1.25                                               |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall,<br>26.2lb)            | 300.0000         | 26.20     | -1.53                  | -0.89                  | 100.00 | 1.000          | 5                   | 1.69                                                | 1.69                                               |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6<br>lbs) w/ MP                      | 60.0000          | 55.50     | 2.40                   | -1.39                  | 100.00 | 1.000          | 5                   | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP               | 60.0000          | 80.70     | 2.40                   | -1.39                  | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP               | 60.0000          | 80.70     | 2.40                   | -1.39                  | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP                         | 60.0000          | 120.90    | 2.40                   | -1.39                  | 100.00 | 1.000          | 5                   | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)                    | 60.0000          | 70.00     | 1.53                   | -0.89                  | 100.00 | 1.000          | 5                   | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)                          | 60.0000          | 60.00     | 1.53                   | -0.89                  | 100.00 | 1.000          | 5                   | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5<br>lbs)              | 60.0000          | 69.50     | 1.53                   | -0.89                  | 100.00 | 1.000          | 5                   | 2.70                                                | 1.25                                               |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall,<br>26.2lb)            | 60.0000          | 26.20     | 1.53                   | -0.89                  | 100.00 | 1.000          | 5                   | 1.69                                                | 1.69                                               |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6<br>lbs) w/ MP                      | 180.0000         | 55.50     | 0.00                   | 2.77                   | 100.00 | 1.000          | 5                   | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP               | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9",<br>66.1lb) w/ MP               | 180.0000         | 80.70     | 0.00                   | 2.77                   | 100.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/<br>MP                         | 180.0000         | 120.90    | 0.00                   | 2.77                   | 100.00 | 1.000          | 5                   | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490                                                           | 180.0000         | 70.00     | 0.00                   | 1.77                   | 100.00 | 1.000          | 5                   | 2.68                                                | 1.22                                               |

|                                                                                                                                                                                                |                |                   |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------------------------|
| <p><b><i>tnxTower</i></b></p> <p><b><i>Vector Structural Engineering</i></b></p> <p>651 W Galena Park Blvd</p> <p>Draper, UT 84020</p> <p>Phone: (801) 990-1775</p> <p>FAX: (801) 990-1776</p> | <b>Job</b>     | SF Police Academy | <b>Page</b> 26 of 94             |
|                                                                                                                                                                                                | <b>Project</b> | U1133.0725.261    | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                                                                | <b>Client</b>  | Steelhead         | <b>Designed by</b><br>mirie      |

| Description                                                     | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft   | K <sub>z</sub> | q <sub>wg</sub> psf | C <sub>AAc</sub> Front ft <sup>2</sup> | C <sub>AAc</sub> Side ft <sup>2</sup> |
|-----------------------------------------------------------------|------------------|-----------|------------------------|------------------------|--------|----------------|---------------------|----------------------------------------|---------------------------------------|
| B5/B12A<br>(20.6"x15.6"x7", 70 lbs)                             |                  |           |                        |                        |        |                |                     |                                        |                                       |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)              | 180.0000         | 60.00     | 0.00                   | 1.77                   | 100.00 | 1.000          | 5                   | 2.02                                   | 1.25                                  |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5 lbs)     | 180.0000         | 69.50     | 0.00                   | 1.77                   | 100.00 | 1.000          | 5                   | 2.70                                   | 1.25                                  |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall, 26.2lb)   | 180.0000         | 26.20     | 0.00                   | 1.77                   | 100.00 | 1.000          | 5                   | 1.69                                   | 1.69                                  |
| RMVD12-NPNH-3xx<br>(EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 100.00 | 1.000          | 5                   | 21.51                                  | 20.57                                 |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6 lbs) w/ MP             | 300.0000         | 55.50     | -2.46                  | -1.42                  | 90.00  | 1.000          | 5                   | 11.45                                  | 8.22                                  |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.000          | 5                   | 4.15                                   | 2.80                                  |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9", 66.1lb) w/ MP      | 300.0000         | 80.70     | -2.46                  | -1.42                  | 90.00  | 1.000          | 5                   | 4.15                                   | 2.80                                  |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/ MP                | 300.0000         | 120.90    | -2.46                  | -1.42                  | 90.00  | 1.000          | 5                   | 13.58                                  | 8.22                                  |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)        | 300.0000         | 70.00     | -1.60                  | -0.92                  | 90.00  | 1.000          | 5                   | 2.68                                   | 1.22                                  |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)              | 300.0000         | 60.00     | -1.60                  | -0.92                  | 90.00  | 1.000          | 5                   | 2.02                                   | 1.25                                  |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5 lbs)     | 300.0000         | 69.50     | -1.60                  | -0.92                  | 90.00  | 1.000          | 5                   | 2.70                                   | 1.25                                  |
| Raycap<br>DC9-48-60-24-8C-EV<br>(11" OD x 31.3" tall, 26.2lb)   | 300.0000         | 26.20     | -1.60                  | -0.92                  | 90.00  | 1.000          | 5                   | 1.69                                   | 1.69                                  |
| Quintel QD668-2<br>(72"x18.1"x9.6", 33.6 lbs) w/ MP             | 60.0000          | 55.50     | 2.46                   | -1.42                  | 90.00  | 1.000          | 5                   | 11.45                                  | 8.22                                  |
| Ericsson Air 6419 B77G<br>(28.3"x16.1"x7.9", 66.1lb) w/ MP      | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00  | 1.000          | 5                   | 4.15                                   | 2.80                                  |
| Ericsson Air 6419 B77D<br>(28.3"x16.1"x7.9", 66.1lb) w/ MP      | 60.0000          | 80.70     | 2.46                   | -1.42                  | 90.00  | 1.000          | 5                   | 4.15                                   | 2.80                                  |
| Quintel QD6612-2<br>(72"x22"x9.6", 99 lbs) w/ MP                | 60.0000          | 120.90    | 2.46                   | -1.42                  | 90.00  | 1.000          | 5                   | 13.58                                  | 8.22                                  |
| Ericsson RRU 4490<br>B5/B12A<br>(20.6"x15.6"x7", 70 lbs)        | 60.0000          | 70.00     | 1.60                   | -0.92                  | 90.00  | 1.000          | 5                   | 2.68                                   | 1.22                                  |
| Ericsson RRU 4478 B14<br>(18.1"x13.4"x8.26", 60lb)              | 60.0000          | 60.00     | 1.60                   | -0.92                  | 90.00  | 1.000          | 5                   | 2.02                                   | 1.25                                  |
| Ericsson RRU 4890<br>B2/B66<br>(20.6"x15.7"x7.2", 69.5 lbs)     | 60.0000          | 69.50     | 1.60                   | -0.92                  | 90.00  | 1.000          | 5                   | 2.70                                   | 1.25                                  |

|                                                                                                                                                           |         |                   |  |  |  |  |  |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--|--|--|--|--|------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy |  |  |  |  |  | Page 27 of 94          |
|                                                                                                                                                           | Project | U1133.0725.261    |  |  |  |  |  | Date 17:53:37 01/27/26 |
|                                                                                                                                                           | Client  | Steelhead         |  |  |  |  |  | Designed by mririe     |

| Description                                                  | Aiming Azimuth ° | Weight lb | Offset <sub>x</sub> ft | Offset <sub>z</sub> ft | z ft  | K <sub>z</sub> | q <sub>wg</sub> psf | C <sub>A</sub> A <sub>C</sub> Front ft <sup>2</sup> | C <sub>A</sub> A <sub>C</sub> Side ft <sup>2</sup> |
|--------------------------------------------------------------|------------------|-----------|------------------------|------------------------|-------|----------------|---------------------|-----------------------------------------------------|----------------------------------------------------|
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 60.0000          | 26.20     | 1.60                   | -0.92                  | 90.00 | 1.000          | 5                   | 1.69                                                | 1.69                                               |
| Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP             | 180.0000         | 55.50     | 0.00                   | 2.84                   | 90.00 | 1.000          | 5                   | 11.45                                               | 8.22                                               |
| Ericsson Air 6419 B77G (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Ericsson Air 6419 B77D (28.3"x16.1"x7.9", 66.1lb) w/ MP      | 180.0000         | 80.70     | 0.00                   | 2.84                   | 90.00 | 1.000          | 5                   | 4.15                                                | 2.80                                               |
| Quintel QD6612-2 (72"x22"x9.6", 99 lbs) w/ MP                | 180.0000         | 120.90    | 0.00                   | 2.84                   | 90.00 | 1.000          | 5                   | 13.58                                               | 8.22                                               |
| Ericsson RRU 4490 B5/B12A (20.6"x15.6"x7", 70 lbs)           | 180.0000         | 70.00     | 0.00                   | 1.84                   | 90.00 | 1.000          | 5                   | 2.68                                                | 1.22                                               |
| Ericsson RRU 4478 B14 (18.1"x13.4"x8.26", 60lb)              | 180.0000         | 60.00     | 0.00                   | 1.84                   | 90.00 | 1.000          | 5                   | 2.02                                                | 1.25                                               |
| Ericsson RRU 4890 B2/B66 (20.6"x15.7"x7.2", 69.5 lbs)        | 180.0000         | 69.50     | 0.00                   | 1.84                   | 90.00 | 1.000          | 5                   | 2.70                                                | 1.25                                               |
| Raycap DC9-48-60-24-8C-EV (11" OD x 31.3" tall, 26.2lb)      | 180.0000         | 26.20     | 0.00                   | 1.84                   | 90.00 | 1.000          | 5                   | 1.69                                                | 1.69                                               |
| RMVD12-NPNH-3xx (EPA = 21.51 sqft front, 2081 lb), 3 Sectors | 0.0000           | 2081.00   | 0.00                   | 0.00                   | 90.00 | 1.000          | 5                   | 21.51                                               | 20.57                                              |
| Sum Weight:                                                  |                  | 7543.00   |                        |                        |       |                |                     |                                                     |                                                    |

### Fatigue and Oscillations Wind Loads

| $\zeta_{sl}$ | $\zeta_a$ | q <sub>wg</sub><br>psf | S      | f <sub>n</sub><br>Hz | D <sub>h</sub><br>in | V <sub>cr</sub><br>mph | $\lambda$ | q <sub>h</sub><br>psf | F <sub>vs</sub><br>plf |
|--------------|-----------|------------------------|--------|----------------------|----------------------|------------------------|-----------|-----------------------|------------------------|
| 0.003000     | 0.000672  | 5                      | 0.1667 | 0.2661               | 18.6562              | 2                      | 65.6080   | 0                     | 0.00                   |

### Force Totals

| Load Case                | Vertical Forces<br>lb | Sum of Forces<br>X<br>lb | Sum of Forces<br>Z<br>lb | Sum of Overturning<br>Moments, M <sub>x</sub><br>lb-ft | Sum of Overturning<br>Moments, M <sub>z</sub><br>lb-ft | Sum of Torques<br>lb-ft |
|--------------------------|-----------------------|--------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------|
| Leg Weight               | 5896.31               |                          |                          |                                                        |                                                        |                         |
| Bracing Weight           | 0.00                  |                          |                          |                                                        |                                                        |                         |
| Total Member Self-Weight | 5896.31               |                          |                          | 0.00                                                   | 0.00                                                   |                         |
| Total Weight             | 16687.95              |                          |                          | 0.00                                                   | 0.00                                                   |                         |
| Wind 0 deg - No Ice      |                       | 0.00                     | -9637.40                 | -734205.33                                             | 0.00                                                   | 0.00                    |
| Wind 30 deg - No Ice     |                       | 4818.70                  | -8346.24                 | -635840.47                                             | -367102.66                                             | 1265.39                 |

| Load Case                      | Vertical Forces<br>lb | Sum of Forces<br>X<br>lb | Sum of Forces<br>Z<br>lb | Sum of Overturning<br>Moments, $M_x$<br>lb-ft | Sum of Overturning<br>Moments, $M_z$<br>lb-ft | Sum of Torques<br>lb-ft |
|--------------------------------|-----------------------|--------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------|
| Wind 45 deg - No Ice           |                       | 6814.67                  | -6814.67                 | -519161.57                                    | -519161.57                                    | 894.76                  |
| Wind 60 deg - No Ice           |                       | 8346.24                  | -4818.70                 | -367102.66                                    | -635840.47                                    | 0.00                    |
| Wind 90 deg - No Ice           |                       | 9637.40                  | 0.00                     | 0.00                                          | -734205.33                                    | -1265.39                |
| Wind 120 deg - No Ice          |                       | 8346.24                  | 4818.70                  | 367102.66                                     | -635840.47                                    | 0.00                    |
| Wind 135 deg - No Ice          |                       | 6814.67                  | 6814.67                  | 519161.57                                     | -519161.57                                    | 894.76                  |
| Wind 150 deg - No Ice          |                       | 4818.70                  | 8346.24                  | 635840.47                                     | -367102.66                                    | 1265.39                 |
| Wind 180 deg - No Ice          |                       | 0.00                     | 9637.40                  | 734205.33                                     | 0.00                                          | 0.00                    |
| Wind 210 deg - No Ice          |                       | -4818.70                 | 8346.24                  | 635840.47                                     | 367102.66                                     | -1265.39                |
| Wind 225 deg - No Ice          |                       | -6814.67                 | 6814.67                  | 519161.57                                     | 519161.57                                     | -894.76                 |
| Wind 240 deg - No Ice          |                       | -8346.24                 | 4818.70                  | 367102.66                                     | 635840.47                                     | 0.00                    |
| Wind 270 deg - No Ice          |                       | -9637.40                 | 0.00                     | 0.00                                          | 734205.33                                     | 1265.39                 |
| Wind 300 deg - No Ice          |                       | -8346.24                 | -4818.70                 | -367102.66                                    | 635840.47                                     | 0.00                    |
| Wind 315 deg - No Ice          |                       | -6814.67                 | -6814.67                 | -519161.57                                    | 519161.57                                     | -894.76                 |
| Wind 330 deg - No Ice          |                       | -4818.70                 | -8346.24                 | -635840.47                                    | 367102.66                                     | -1265.39                |
| Total Weight                   | 16687.95              |                          |                          | 0.00                                          | 0.00                                          |                         |
| Wind 0 deg - Service           |                       | 0.00                     | -3175.82                 | -242095.07                                    | 0.00                                          | 0.00                    |
| Wind 30 deg - Service          |                       | 1587.91                  | -2750.34                 | -209660.48                                    | -121047.53                                    | 415.86                  |
| Wind 45 deg - Service          |                       | 2245.65                  | -2245.65                 | -171187.06                                    | -171187.06                                    | 294.06                  |
| Wind 60 deg - Service          |                       | 2750.34                  | -1587.91                 | -121047.53                                    | -209660.48                                    | 0.00                    |
| Wind 90 deg - Service          |                       | 3175.82                  | 0.00                     | 0.00                                          | -242095.07                                    | -415.86                 |
| Wind 120 deg - Service         |                       | 2750.34                  | 1587.91                  | 121047.53                                     | -209660.48                                    | 0.00                    |
| Wind 135 deg - Service         |                       | 2245.65                  | 2245.65                  | 171187.06                                     | -171187.06                                    | 294.06                  |
| Wind 150 deg - Service         |                       | 1587.91                  | 2750.34                  | 209660.48                                     | -121047.53                                    | 415.86                  |
| Wind 180 deg - Service         |                       | 0.00                     | 3175.82                  | 242095.07                                     | 0.00                                          | 0.00                    |
| Wind 210 deg - Service         |                       | -1587.91                 | 2750.34                  | 209660.48                                     | 121047.53                                     | -415.86                 |
| Wind 225 deg - Service         |                       | -2245.65                 | 2245.65                  | 171187.06                                     | 171187.06                                     | -294.06                 |
| Wind 240 deg - Service         |                       | -2750.34                 | 1587.91                  | 121047.53                                     | 209660.48                                     | 0.00                    |
| Wind 270 deg - Service         |                       | -3175.82                 | 0.00                     | 0.00                                          | 242095.07                                     | 415.86                  |
| Wind 300 deg - Service         |                       | -2750.34                 | -1587.91                 | -121047.53                                    | 209660.48                                     | 0.00                    |
| Wind 315 deg - Service         |                       | -2245.65                 | -2245.65                 | -171187.06                                    | 171187.06                                     | -294.06                 |
| Wind 330 deg - Service         |                       | -1587.91                 | -2750.34                 | -209660.48                                    | 121047.53                                     | -415.86                 |
| Wind 0 deg - Along-Wind Gust   |                       | 0.00                     | -1896.70                 | -137326.50                                    | 0.00                                          | 0.00                    |
| Wind 30 deg - Along-Wind Gust  |                       | 948.35                   | -1642.59                 | -118928.23                                    | -68663.25                                     | 218.43                  |
| Wind 45 deg - Along-Wind Gust  |                       | 1341.17                  | -1341.17                 | -97104.50                                     | -97104.50                                     | 154.46                  |
| Wind 60 deg - Along-Wind Gust  |                       | 1642.59                  | -948.35                  | -68663.25                                     | -118928.23                                    | 0.00                    |
| Wind 90 deg - Along-Wind Gust  |                       | 1896.70                  | 0.00                     | 0.00                                          | -137326.50                                    | -218.43                 |
| Wind 120 deg - Along-Wind Gust |                       | 1642.59                  | 948.35                   | 68663.25                                      | -118928.23                                    | 0.00                    |
| Wind 135 deg - Along-Wind Gust |                       | 1341.17                  | 1341.17                  | 97104.50                                      | -97104.50                                     | 154.46                  |
| Wind 150 deg - Along-Wind Gust |                       | 948.35                   | 1642.59                  | 118928.23                                     | -68663.25                                     | 218.43                  |
| Wind 180 deg - Along-Wind Gust |                       | 0.00                     | 1896.70                  | 137326.50                                     | 0.00                                          | 0.00                    |
| Wind 210 deg - Along-Wind Gust |                       | -948.35                  | 1642.59                  | 118928.23                                     | 68663.25                                      | -218.43                 |
| Wind 225 deg - Along-Wind Gust |                       | -1341.17                 | 1341.17                  | 97104.50                                      | 97104.50                                      | -154.46                 |
| Wind 240 deg - Along-Wind Gust |                       | -1642.59                 | 948.35                   | 68663.25                                      | 118928.23                                     | 0.00                    |
| Wind 270 deg - Along-Wind Gust |                       | -1896.70                 | 0.00                     | 0.00                                          | 137326.50                                     | 218.43                  |
| Wind 300 deg - Along-Wind Gust |                       | -1642.59                 | -948.35                  | -68663.25                                     | 118928.23                                     | 0.00                    |
| Wind 315 deg - Along-Wind Gust |                       | -1341.17                 | -1341.17                 | -97104.50                                     | 97104.50                                      | -154.46                 |

| Load Case                      | Vertical Forces<br>lb | Sum of Forces<br>X<br>lb | Sum of Forces<br>Z<br>lb | Sum of Overturning<br>Moments, $M_x$<br>lb-ft | Sum of Overturning<br>Moments, $M_z$<br>lb-ft | Sum of Torques<br>lb-ft |
|--------------------------------|-----------------------|--------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------|
| Wind 330 deg - Along-Wind Gust |                       | -948.35                  | -1642.59                 | -118928.23                                    | 68663.25                                      | -218.43                 |
| Seismic Vertical               | 4343.80               |                          |                          |                                               |                                               |                         |
| Seismic Horizontal 0 deg       |                       | 0.00                     | -5990.90                 | -549823.87                                    | 0.00                                          | 0.00                    |
| Seismic Horizontal 30 deg      |                       | 2995.45                  | -5188.27                 | -476161.44                                    | -274911.93                                    | 0.00                    |
| Seismic Horizontal 45 deg      |                       | 4236.21                  | -4236.21                 | -388784.19                                    | -388784.19                                    | 0.00                    |
| Seismic Horizontal 60 deg      |                       | 5188.27                  | -2995.45                 | -274911.93                                    | -476161.44                                    | 0.00                    |
| Seismic Horizontal 90 deg      |                       | 5990.90                  | 0.00                     | 0.00                                          | -549823.87                                    | 0.00                    |
| Seismic Horizontal 120 deg     |                       | 5188.27                  | 2995.45                  | 274911.93                                     | -476161.44                                    | 0.00                    |
| Seismic Horizontal 135 deg     |                       | 4236.21                  | 4236.21                  | 388784.19                                     | -388784.19                                    | 0.00                    |
| Seismic Horizontal 150 deg     |                       | 2995.45                  | 5188.27                  | 476161.44                                     | -274911.93                                    | 0.00                    |
| Seismic Horizontal 180 deg     |                       | 0.00                     | 5990.90                  | 549823.87                                     | 0.00                                          | 0.00                    |
| Seismic Horizontal 210 deg     |                       | -2995.45                 | 5188.27                  | 476161.44                                     | 274911.93                                     | 0.00                    |
| Seismic Horizontal 225 deg     |                       | -4236.21                 | 4236.21                  | 388784.19                                     | 388784.19                                     | 0.00                    |
| Seismic Horizontal 240 deg     |                       | -5188.27                 | 2995.45                  | 274911.93                                     | 476161.44                                     | 0.00                    |
| Seismic Horizontal 270 deg     |                       | -5990.90                 | 0.00                     | 0.00                                          | 549823.87                                     | 0.00                    |
| Seismic Horizontal 300 deg     |                       | -5188.27                 | -2995.45                 | -274911.93                                    | 476161.44                                     | 0.00                    |
| Seismic Horizontal 315 deg     |                       | -4236.21                 | -4236.21                 | -388784.19                                    | 388784.19                                     | 0.00                    |
| Seismic Horizontal 330 deg     |                       | -2995.45                 | -5188.27                 | -476161.44                                    | 274911.93                                     | 0.00                    |

## Load Combinations

| Comb. No. | Description                        |
|-----------|------------------------------------|
| 1         | Dead Only                          |
| 2         | 1.2 Dead+1.0 Wind 0 deg - No Ice   |
| 3         | 0.9 Dead+1.0 Wind 0 deg - No Ice   |
| 4         | 1.2 Dead+1.0 Wind 30 deg - No Ice  |
| 5         | 0.9 Dead+1.0 Wind 30 deg - No Ice  |
| 6         | 1.2 Dead+1.0 Wind 45 deg - No Ice  |
| 7         | 0.9 Dead+1.0 Wind 45 deg - No Ice  |
| 8         | 1.2 Dead+1.0 Wind 60 deg - No Ice  |
| 9         | 0.9 Dead+1.0 Wind 60 deg - No Ice  |
| 10        | 1.2 Dead+1.0 Wind 90 deg - No Ice  |
| 11        | 0.9 Dead+1.0 Wind 90 deg - No Ice  |
| 12        | 1.2 Dead+1.0 Wind 120 deg - No Ice |
| 13        | 0.9 Dead+1.0 Wind 120 deg - No Ice |
| 14        | 1.2 Dead+1.0 Wind 135 deg - No Ice |
| 15        | 0.9 Dead+1.0 Wind 135 deg - No Ice |
| 16        | 1.2 Dead+1.0 Wind 150 deg - No Ice |
| 17        | 0.9 Dead+1.0 Wind 150 deg - No Ice |
| 18        | 1.2 Dead+1.0 Wind 180 deg - No Ice |
| 19        | 0.9 Dead+1.0 Wind 180 deg - No Ice |
| 20        | 1.2 Dead+1.0 Wind 210 deg - No Ice |
| 21        | 0.9 Dead+1.0 Wind 210 deg - No Ice |
| 22        | 1.2 Dead+1.0 Wind 225 deg - No Ice |
| 23        | 0.9 Dead+1.0 Wind 225 deg - No Ice |
| 24        | 1.2 Dead+1.0 Wind 240 deg - No Ice |
| 25        | 0.9 Dead+1.0 Wind 240 deg - No Ice |
| 26        | 1.2 Dead+1.0 Wind 270 deg - No Ice |
| 27        | 0.9 Dead+1.0 Wind 270 deg - No Ice |
| 28        | 1.2 Dead+1.0 Wind 300 deg - No Ice |
| 29        | 0.9 Dead+1.0 Wind 300 deg - No Ice |
| 30        | 1.2 Dead+1.0 Wind 315 deg - No Ice |
| 31        | 0.9 Dead+1.0 Wind 315 deg - No Ice |
| 32        | 1.2 Dead+1.0 Wind 330 deg - No Ice |

|                |                   |                                  |
|----------------|-------------------|----------------------------------|
| <b>Job</b>     | SF Police Academy | <b>Page</b> 30 of 94             |
| <b>Project</b> | U1133.0725.261    | <b>Date</b><br>17:53:37 01/27/26 |
| <b>Client</b>  | Steelhead         | <b>Designed by</b><br>mrire      |

| <i>Comb.<br/>No.</i> | <i>Description</i>                    |
|----------------------|---------------------------------------|
| 33                   | 0.9 Dead+1.0 Wind 330 deg - No Ice    |
| 34                   | Dead+Wind 0 deg - Service             |
| 35                   | Dead+Wind 30 deg - Service            |
| 36                   | Dead+Wind 45 deg - Service            |
| 37                   | Dead+Wind 60 deg - Service            |
| 38                   | Dead+Wind 90 deg - Service            |
| 39                   | Dead+Wind 120 deg - Service           |
| 40                   | Dead+Wind 135 deg - Service           |
| 41                   | Dead+Wind 150 deg - Service           |
| 42                   | Dead+Wind 180 deg - Service           |
| 43                   | Dead+Wind 210 deg - Service           |
| 44                   | Dead+Wind 225 deg - Service           |
| 45                   | Dead+Wind 240 deg - Service           |
| 46                   | Dead+Wind 270 deg - Service           |
| 47                   | Dead+Wind 300 deg - Service           |
| 48                   | Dead+Wind 315 deg - Service           |
| 49                   | Dead+Wind 330 deg - Service           |
| 50                   | 1.2 Dead+1.0 Ev+1.0 Eh 0 deg          |
| 51                   | 0.9 Dead-1.0 Ev+1.0 Eh 0 deg          |
| 52                   | 1.2 Dead+1.0 Ev+1.0 Eh 30 deg         |
| 53                   | 0.9 Dead-1.0 Ev+1.0 Eh 30 deg         |
| 54                   | 1.2 Dead+1.0 Ev+1.0 Eh 45 deg         |
| 55                   | 0.9 Dead-1.0 Ev+1.0 Eh 45 deg         |
| 56                   | 1.2 Dead+1.0 Ev+1.0 Eh 60 deg         |
| 57                   | 0.9 Dead-1.0 Ev+1.0 Eh 60 deg         |
| 58                   | 1.2 Dead+1.0 Ev+1.0 Eh 90 deg         |
| 59                   | 0.9 Dead-1.0 Ev+1.0 Eh 90 deg         |
| 60                   | 1.2 Dead+1.0 Ev+1.0 Eh 120 deg        |
| 61                   | 0.9 Dead-1.0 Ev+1.0 Eh 120 deg        |
| 62                   | 1.2 Dead+1.0 Ev+1.0 Eh 135 deg        |
| 63                   | 0.9 Dead-1.0 Ev+1.0 Eh 135 deg        |
| 64                   | 1.2 Dead+1.0 Ev+1.0 Eh 150 deg        |
| 65                   | 0.9 Dead-1.0 Ev+1.0 Eh 150 deg        |
| 66                   | 1.2 Dead+1.0 Ev+1.0 Eh 180 deg        |
| 67                   | 0.9 Dead-1.0 Ev+1.0 Eh 180 deg        |
| 68                   | 1.2 Dead+1.0 Ev+1.0 Eh 210 deg        |
| 69                   | 0.9 Dead-1.0 Ev+1.0 Eh 210 deg        |
| 70                   | 1.2 Dead+1.0 Ev+1.0 Eh 225 deg        |
| 71                   | 0.9 Dead-1.0 Ev+1.0 Eh 225 deg        |
| 72                   | 1.2 Dead+1.0 Ev+1.0 Eh 240 deg        |
| 73                   | 0.9 Dead-1.0 Ev+1.0 Eh 240 deg        |
| 74                   | 1.2 Dead+1.0 Ev+1.0 Eh 270 deg        |
| 75                   | 0.9 Dead-1.0 Ev+1.0 Eh 270 deg        |
| 76                   | 1.2 Dead+1.0 Ev+1.0 Eh 300 deg        |
| 77                   | 0.9 Dead-1.0 Ev+1.0 Eh 300 deg        |
| 78                   | 1.2 Dead+1.0 Ev+1.0 Eh 315 deg        |
| 79                   | 0.9 Dead-1.0 Ev+1.0 Eh 315 deg        |
| 80                   | 1.2 Dead+1.0 Ev+1.0 Eh 330 deg        |
| 81                   | 0.9 Dead-1.0 Ev+1.0 Eh 330 deg        |
| 82                   | 1.0 Fatigue - Along-Wind Gust 0 deg   |
| 83                   | 1.0 Fatigue - Along-Wind Gust 30 deg  |
| 84                   | 1.0 Fatigue - Along-Wind Gust 45 deg  |
| 85                   | 1.0 Fatigue - Along-Wind Gust 60 deg  |
| 86                   | 1.0 Fatigue - Along-Wind Gust 90 deg  |
| 87                   | 1.0 Fatigue - Along-Wind Gust 120 deg |
| 88                   | 1.0 Fatigue - Along-Wind Gust 135 deg |
| 89                   | 1.0 Fatigue - Along-Wind Gust 150 deg |
| 90                   | 1.0 Fatigue - Along-Wind Gust 180 deg |
| 91                   | 1.0 Fatigue - Along-Wind Gust 210 deg |
| 92                   | 1.0 Fatigue - Along-Wind Gust 225 deg |
| 93                   | 1.0 Fatigue - Along-Wind Gust 240 deg |
| 94                   | 1.0 Fatigue - Along-Wind Gust 270 deg |

| Comb.<br>No. | Description                           |  |
|--------------|---------------------------------------|--|
| 95           | 1.0 Fatigue - Along-Wind Gust 300 deg |  |
| 96           | 1.0 Fatigue - Along-Wind Gust 315 deg |  |
| 97           | 1.0 Fatigue - Along-Wind Gust 330 deg |  |

### Maximum Member Forces

| Section<br>No. | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load<br>Comb. | Axial<br>lb | Major Axis<br>Moment<br>lb-ft | Minor Axis<br>Moment<br>lb-ft |
|----------------|-----------------|-------------------|------------------|-----------------------|-------------|-------------------------------|-------------------------------|
| L1             | 103 - 63        | Pole              | Max Tension      | 92                    | 17.07       | 10523.32                      | -10521.47                     |
|                |                 |                   | Max. Compression | 58                    | -14368.89   | -194959.07                    | 0.00                          |
|                |                 |                   | Max. Mx          | 10                    | -11547.24   | -213754.53                    | -51.94                        |
|                |                 |                   | Max. My          | 18                    | -11547.33   | 0.00                          | -213737.96                    |
|                |                 |                   | Max. Vy          | 10                    | 7965.85     | -213754.53                    | -51.94                        |
|                |                 |                   | Max. Vx          | 18                    | 7965.25     | 0.00                          | -213737.96                    |
|                |                 |                   | Max. Torque      | 11                    |             | 1260.13                       |                               |
|                |                 |                   | Max Tension      | 84                    | 16.17       | -28806.06                     | 28806.08                      |
|                |                 |                   | Max. Compression | 58                    | -19519.42   | -427672.53                    | 0.00                          |
| L2             | 63 - 26.5       | Pole              | Max. Mx          | 26                    | -15801.10   | 518314.65                     | -23.00                        |
|                |                 |                   | Max. My          | 18                    | -15801.13   | 0.00                          | -518268.56                    |
|                |                 |                   | Max. Vy          | 26                    | -9059.82    | 518314.65                     | -23.00                        |
|                |                 |                   | Max. Vx          | 18                    | 9059.11     | 0.00                          | -518268.56                    |
|                |                 |                   | Max. Torque      | 11                    |             | 1257.56                       |                               |
|                |                 |                   | Max Tension      | 96                    | 8.80        | 66848.99                      | 66846.78                      |
|                |                 |                   | Max. Compression | 54                    | -24365.48   | -435143.77                    | 435143.77                     |
|                |                 |                   | Max. Mx          | 26                    | -20017.47   | 798166.65                     | -25.48                        |
|                |                 |                   | Max. My          | 18                    | -20017.43   | 0.00                          | -798095.42                    |
| L3             | 26.5 - 1        | Pole              | Max. Vy          | 26                    | -9653.41    | 798166.65                     | -25.48                        |
|                |                 |                   | Max. Vx          | 2                     | -9652.64    | 0.00                          | 798095.42                     |
|                |                 |                   | Max. Torque      | 11                    |             | 1252.57                       |                               |

### Maximum Reactions

| Location | Condition           | Gov.<br>Load<br>Comb. | Vertical<br>lb | Horizontal, X<br>lb | Horizontal, Z<br>lb |
|----------|---------------------|-----------------------|----------------|---------------------|---------------------|
| Pole     | Max. Vert           | 54                    | 24369.33       | -4236.07            | 4236.07             |
|          | Max. H <sub>x</sub> | 26                    | 20025.50       | 9636.74             | 0.00                |
|          | Max. H <sub>z</sub> | 2                     | 20025.46       | 0.00                | 9635.96             |
|          | Max. M <sub>x</sub> | 2                     | 798095.42      | 0.00                | 9635.96             |
|          | Max. M <sub>z</sub> | 10                    | 798166.65      | -9636.74            | 0.00                |
|          | Max. Torsion        | 11                    | 1251.16        | -9636.54            | 0.00                |
|          | Min. Vert           | 82                    | 0.00           | 0.00                | 1896.74             |
|          | Min. H <sub>x</sub> | 10                    | 20025.50       | -9636.74            | 0.00                |
|          | Min. H <sub>z</sub> | 18                    | 20025.46       | 0.00                | -9635.96            |
|          | Min. M <sub>x</sub> | 18                    | -798095.42     | 0.00                | -9635.96            |
|          | Min. M <sub>z</sub> | 26                    | -798166.65     | 9636.74             | 0.00                |
|          | Min. Torsion        | 27                    | -1251.16       | 9636.54             | 0.00                |

### Tower Mast Reaction Summary

|                                                                                                                                                           |         |                   |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------------------|
| <b>tnxTower</b><br><br><b>Vector Structural Engineering</b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | Job     | SF Police Academy | Page 32 of 94          |
|                                                                                                                                                           | Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
|                                                                                                                                                           | Client  | Steelhead         | Designed by mrire      |

| Load Combination                   | Vertical<br>lb | Shear <sub>x</sub><br>lb | Shear <sub>z</sub><br>lb | Overturning<br>Moment, M <sub>x</sub><br>lb-ft | Overturning<br>Moment, M <sub>z</sub><br>lb-ft | Torque<br>lb-ft |
|------------------------------------|----------------|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|-----------------|
| Dead Only                          | 16687.95       | 0.00                     | 0.00                     | 0.00                                           | 0.00                                           | 0.00            |
| 1.2 Dead+1.0 Wind 0 deg - No Ice   | 20025.46       | 0.00                     | -9635.96                 | -798095.42                                     | 0.00                                           | 0.00            |
| 0.9 Dead+1.0 Wind 0 deg - No Ice   | 15019.05       | 0.00                     | -9635.50                 | -780451.94                                     | 0.00                                           | 0.00            |
| 1.2 Dead+1.0 Wind 30 deg - No Ice  | 20025.53       | 4818.64                  | -8346.12                 | -691288.05                                     | -399085.51                                     | 1250.24         |
| 0.9 Dead+1.0 Wind 30 deg - No Ice  | 15019.15       | 4818.67                  | -8346.17                 | -676039.41                                     | -390290.47                                     | 1251.15         |
| 1.2 Dead+1.0 Wind 45 deg - No Ice  | 20025.53       | 6814.58                  | -6814.58                 | -564436.86                                     | -564410.85                                     | 884.05          |
| 0.9 Dead+1.0 Wind 45 deg - No Ice  | 15019.15       | 6814.62                  | -6814.62                 | -551985.63                                     | -551967.29                                     | 884.69          |
| 1.2 Dead+1.0 Wind 60 deg - No Ice  | 20025.53       | 8346.12                  | -4818.64                 | -399108.04                                     | -691275.06                                     | -0.01           |
| 0.9 Dead+1.0 Wind 60 deg - No Ice  | 15019.15       | 8346.17                  | -4818.67                 | -390306.35                                     | -676030.25                                     | -0.01           |
| 1.2 Dead+1.0 Wind 90 deg - No Ice  | 20025.50       | 9636.74                  | -0.00                    | 25.80                                          | -798166.65                                     | -1250.25        |
| 0.9 Dead+1.0 Wind 90 deg - No Ice  | 15019.11       | 9636.54                  | -0.00                    | 18.00                                          | -780542.97                                     | -1251.16        |
| 1.2 Dead+1.0 Wind 120 deg - No Ice | 20025.53       | 8346.12                  | 4818.64                  | 399108.04                                      | -691275.06                                     | 0.01            |
| 0.9 Dead+1.0 Wind 120 deg - No Ice | 15019.15       | 8346.17                  | 4818.67                  | 390306.35                                      | -676030.25                                     | 0.01            |
| 1.2 Dead+1.0 Wind 135 deg - No Ice | 20025.53       | 6814.58                  | 6814.58                  | 564410.85                                      | -564436.86                                     | 884.05          |
| 0.9 Dead+1.0 Wind 135 deg - No Ice | 15019.15       | 6814.62                  | 6814.62                  | 551967.29                                      | -551985.63                                     | 884.69          |
| 1.2 Dead+1.0 Wind 150 deg - No Ice | 20025.53       | 4818.64                  | 8346.12                  | 691262.04                                      | -399130.56                                     | 1250.22         |
| 0.9 Dead+1.0 Wind 150 deg - No Ice | 15019.15       | 4818.67                  | 8346.17                  | 676021.07                                      | -390322.23                                     | 1251.13         |
| 1.2 Dead+1.0 Wind 180 deg - No Ice | 20025.46       | 0.00                     | 9635.96                  | 798095.42                                      | 0.00                                           | 0.00            |
| 0.9 Dead+1.0 Wind 180 deg - No Ice | 15019.05       | 0.00                     | 9635.50                  | 780451.94                                      | 0.00                                           | 0.00            |
| 1.2 Dead+1.0 Wind 210 deg - No Ice | 20025.53       | -4818.64                 | 8346.12                  | 691262.04                                      | 399130.56                                      | -1250.22        |
| 0.9 Dead+1.0 Wind 210 deg - No Ice | 15019.15       | -4818.67                 | 8346.17                  | 676021.07                                      | 390322.23                                      | -1251.13        |
| 1.2 Dead+1.0 Wind 225 deg - No Ice | 20025.53       | -6814.58                 | 6814.58                  | 564410.85                                      | 564436.86                                      | -884.05         |
| 0.9 Dead+1.0 Wind 225 deg - No Ice | 15019.15       | -6814.62                 | 6814.62                  | 551967.29                                      | 551985.63                                      | -884.69         |
| 1.2 Dead+1.0 Wind 240 deg - No Ice | 20025.53       | -8346.12                 | 4818.64                  | 399108.04                                      | 691275.06                                      | -0.01           |
| 0.9 Dead+1.0 Wind 240 deg - No Ice | 15019.15       | -8346.17                 | 4818.67                  | 390306.35                                      | 676030.25                                      | -0.01           |
| 1.2 Dead+1.0 Wind 270 deg - No Ice | 20025.50       | -9636.74                 | -0.00                    | 25.80                                          | 798166.65                                      | 1250.25         |
| 0.9 Dead+1.0 Wind 270 deg - No Ice | 15019.11       | -9636.54                 | -0.00                    | 18.00                                          | 780542.97                                      | 1251.16         |
| 1.2 Dead+1.0 Wind 300 deg - No Ice | 20025.53       | -8346.12                 | -4818.64                 | -399108.04                                     | 691275.06                                      | 0.01            |
| 0.9 Dead+1.0 Wind 300 deg - No Ice | 15019.15       | -8346.17                 | -4818.67                 | -390306.35                                     | 676030.25                                      | 0.01            |
| 1.2 Dead+1.0 Wind 315 deg - No Ice | 20025.53       | -6814.58                 | -6814.58                 | -564436.86                                     | 564410.85                                      | -884.05         |
| 0.9 Dead+1.0 Wind 315 deg - No Ice | 15019.15       | -6814.62                 | -6814.62                 | -551985.63                                     | 551967.29                                      | -884.69         |

| Load Combination                   | Vertical<br>lb | Shear <sub>x</sub><br>lb | Shear <sub>z</sub><br>lb | Overturning<br>Moment, M <sub>x</sub><br>lb-ft | Overturning<br>Moment, M <sub>z</sub><br>lb-ft | Torque<br>lb-ft |
|------------------------------------|----------------|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|-----------------|
| 1.2 Dead+1.0 Wind 330 deg - No Ice | 20025.53       | -4818.64                 | -8346.12                 | -691288.05                                     | 399085.51                                      | -1250.24        |
| 0.9 Dead+1.0 Wind 330 deg - No Ice | 15019.15       | -4818.67                 | -8346.17                 | -676039.41                                     | 390290.47                                      | -1251.15        |
| Dead+Wind 0 deg - Service          | 16687.94       | 0.00                     | -3175.05                 | -259632.05                                     | 0.00                                           | 0.00            |
| Dead+Wind 30 deg - Service         | 16687.94       | 1587.53                  | -2749.67                 | -224849.11                                     | -129814.25                                     | 415.34          |
| Dead+Wind 45 deg - Service         | 16687.94       | 2245.10                  | -2245.10                 | -183588.79                                     | -183586.60                                     | 293.69          |
| Dead+Wind 60 deg - Service         | 16687.94       | 2749.67                  | -1587.52                 | -129816.14                                     | -224848.02                                     | -0.00           |
| Dead+Wind 90 deg - Service         | 16687.94       | 3175.05                  | -0.00                    | 2.18                                           | -259632.05                                     | -415.34         |
| Dead+Wind 120 deg - Service        | 16687.94       | 2749.67                  | 1587.52                  | 129816.14                                      | -224848.02                                     | 0.00            |
| Dead+Wind 135 deg - Service        | 16687.94       | 2245.10                  | 2245.10                  | 183586.60                                      | -183588.79                                     | 293.69          |
| Dead+Wind 150 deg - Service        | 16687.94       | 1587.52                  | 2749.67                  | 224846.93                                      | -129818.03                                     | 415.34          |
| Dead+Wind 180 deg - Service        | 16687.94       | 0.00                     | 3175.05                  | 259632.05                                      | 0.00                                           | 0.00            |
| Dead+Wind 210 deg - Service        | 16687.94       | -1587.52                 | 2749.67                  | 224846.93                                      | 129818.03                                      | -415.34         |
| Dead+Wind 225 deg - Service        | 16687.94       | -2245.10                 | 2245.10                  | 183586.60                                      | 183588.79                                      | -293.69         |
| Dead+Wind 240 deg - Service        | 16687.94       | -2749.67                 | 1587.52                  | 129816.14                                      | 224848.02                                      | -0.00           |
| Dead+Wind 270 deg - Service        | 16687.94       | -3175.05                 | -0.00                    | 2.18                                           | 259632.05                                      | 415.34          |
| Dead+Wind 300 deg - Service        | 16687.94       | -2749.67                 | -1587.52                 | -129816.14                                     | 224848.02                                      | 0.00            |
| Dead+Wind 315 deg - Service        | 16687.94       | -2245.10                 | -2245.10                 | -183588.79                                     | 183586.60                                      | -293.69         |
| Dead+Wind 330 deg - Service        | 16687.94       | -1587.53                 | -2749.67                 | -224849.11                                     | 129814.25                                      | -415.34         |
| 1.2 Dead+1.0 Ev+1.0 Eh 0 deg       | 24369.26       | 0.00                     | -5989.11                 | -615230.89                                     | 0.00                                           | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 0 deg       | 10675.32       | 0.00                     | -5990.00                 | -574880.64                                     | 0.00                                           | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 30 deg      | 24369.33       | 2995.36                  | -5188.11                 | -532939.95                                     | -307693.20                                     | 0.01            |
| 0.9 Dead-1.0 Ev+1.0 Eh 30 deg      | 10675.35       | 2995.41                  | -5188.21                 | -497920.83                                     | -287474.80                                     | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 45 deg      | 24369.33       | 4236.07                  | -4236.07                 | -435143.77                                     | -435143.77                                     | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 45 deg      | 10675.35       | 4236.15                  | -4236.15                 | -406550.71                                     | -406550.71                                     | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 60 deg      | 24369.33       | 5188.11                  | -2995.36                 | -307693.20                                     | -532939.95                                     | -0.01           |
| 0.9 Dead-1.0 Ev+1.0 Eh 60 deg      | 10675.35       | 5188.21                  | -2995.41                 | -287474.80                                     | -497920.83                                     | -0.00           |
| 1.2 Dead+1.0 Ev+1.0 Eh 90 deg      | 24369.26       | 5989.11                  | 0.00                     | 0.00                                           | -615230.89                                     | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 90 deg      | 10675.32       | 5990.00                  | 0.00                     | 0.00                                           | -574880.64                                     | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 120 deg     | 24369.33       | 5188.11                  | 2995.36                  | 307693.20                                      | -532939.95                                     | 0.01            |
| 0.9 Dead-1.0 Ev+1.0 Eh 120 deg     | 10675.35       | 5188.21                  | 2995.41                  | 287474.80                                      | -497920.83                                     | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 135 deg     | 24369.33       | 4236.07                  | 4236.07                  | 435143.77                                      | -435143.77                                     | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 135 deg     | 10675.35       | 4236.15                  | 4236.15                  | 406550.71                                      | -406550.71                                     | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 150 deg     | 24369.33       | 2995.36                  | 5188.11                  | 532939.95                                      | -307693.20                                     | -0.01           |
| 0.9 Dead-1.0 Ev+1.0 Eh 150 deg     | 10675.35       | 2995.41                  | 5188.21                  | 497920.83                                      | -287474.80                                     | -0.00           |
| 1.2 Dead+1.0 Ev+1.0 Eh 180 deg     | 24369.26       | 0.00                     | 5989.11                  | 615230.89                                      | 0.00                                           | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 180 deg     | 10675.32       | 0.00                     | 5990.00                  | 574880.64                                      | 0.00                                           | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 210 deg     | 24369.33       | -2995.36                 | 5188.11                  | 532939.95                                      | 307693.20                                      | 0.01            |
| 0.9 Dead-1.0 Ev+1.0 Eh 210 deg     | 10675.35       | -2995.41                 | 5188.21                  | 497920.83                                      | 287474.80                                      | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 225 deg     | 24369.33       | -4236.07                 | 4236.07                  | 435143.77                                      | 435143.77                                      | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 225 deg     | 10675.35       | -4236.15                 | 4236.15                  | 406550.71                                      | 406550.71                                      | 0.00            |
| 1.2 Dead+1.0 Ev+1.0 Eh 240 deg     | 24369.33       | -5188.11                 | 2995.36                  | 307693.20                                      | 532939.95                                      | -0.01           |
| 0.9 Dead-1.0 Ev+1.0 Eh 240 deg     | 10675.35       | -5188.21                 | 2995.41                  | 287474.80                                      | 497920.83                                      | -0.00           |
| 1.2 Dead+1.0 Ev+1.0 Eh 270 deg     | 24369.26       | -5989.11                 | 0.00                     | 0.00                                           | 615230.89                                      | 0.00            |
| 0.9 Dead-1.0 Ev+1.0 Eh 270         | 10675.32       | -5990.00                 | 0.00                     | 0.00                                           | 574880.64                                      | 0.00            |

| Load Combination              | Vertical<br>lb | Shear <sub>x</sub><br>lb | Shear <sub>z</sub><br>lb | Overturning<br>Moment, M <sub>x</sub><br>lb-ft | Overturning<br>Moment, M <sub>z</sub><br>lb-ft | Torque<br>lb-ft |
|-------------------------------|----------------|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|-----------------|
| deg                           |                |                          |                          |                                                |                                                |                 |
| 1.2 Dead+1.0 Ev+1.0 Eh 300    | 24369.33       | -5188.11                 | -2995.36                 | -307693.20                                     | 532939.95                                      | 0.01            |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 0.9 Dead-1.0 Ev+1.0 Eh 300    | 10675.35       | -5188.21                 | -2995.41                 | -287474.80                                     | 497920.83                                      | 0.00            |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 1.2 Dead+1.0 Ev+1.0 Eh 315    | 24369.33       | -4236.07                 | -4236.07                 | -435143.77                                     | 435143.77                                      | 0.00            |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 0.9 Dead-1.0 Ev+1.0 Eh 315    | 10675.35       | -4236.15                 | -4236.15                 | -406550.71                                     | 406550.71                                      | 0.00            |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 1.2 Dead+1.0 Ev+1.0 Eh 330    | 24369.33       | -2995.36                 | -5188.11                 | -532939.95                                     | 307693.20                                      | -0.01           |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 0.9 Dead-1.0 Ev+1.0 Eh 330    | 10675.35       | -2995.41                 | -5188.21                 | -497920.83                                     | 287474.80                                      | -0.00           |
| deg                           |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 0.00                     | -1896.74                 | -137323.17                                     | 0.00                                           | 0.00            |
| 0 deg                         |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 948.42                   | -1642.61                 | -118924.58                                     | -68665.57                                      | 218.37          |
| 30 deg                        |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 1341.23                  | -1341.19                 | -97101.85                                      | -97104.93                                      | 154.41          |
| 45 deg                        |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 1642.63                  | -948.39                  | -68662.90                                      | -118926.12                                     | -0.00           |
| 60 deg                        |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 1896.74                  | -0.04                    | -3.08                                          | -137323.17                                     | -218.37         |
| 90 deg                        |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 1642.63                  | 948.39                   | 68662.90                                       | -118926.12                                     | 0.00            |
| 120 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 1341.19                  | 1341.23                  | 97104.93                                       | -97101.85                                      | 154.41          |
| 135 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 948.35                   | 1642.65                  | 118927.66                                      | -68660.23                                      | 218.37          |
| 150 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | 0.00                     | 1896.74                  | 137323.17                                      | 0.00                                           | 0.00            |
| 180 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -948.35                  | 1642.65                  | 118927.66                                      | 68660.23                                       | -218.37         |
| 210 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -1341.19                 | 1341.23                  | 97104.93                                       | 97101.85                                       | -154.41         |
| 225 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -1642.63                 | 948.39                   | 68662.90                                       | 118926.12                                      | -0.00           |
| 240 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -1896.74                 | -0.04                    | -3.08                                          | 137323.17                                      | 218.37          |
| 270 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -1642.63                 | -948.39                  | -68662.90                                      | 118926.12                                      | 0.00            |
| 300 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -1341.23                 | -1341.19                 | -97101.85                                      | 97104.93                                       | -154.41         |
| 315 deg                       |                |                          |                          |                                                |                                                |                 |
| 1.0 Fatigue - Along-Wind Gust | 0.00           | -948.42                  | -1642.61                 | -118924.58                                     | 68665.57                                       | -218.37         |
| 330 deg                       |                |                          |                          |                                                |                                                |                 |

## Solution Summary

| Load Comb. | Sum of Applied Forces |           |          | Sum of Reactions |          |          | % Error |
|------------|-----------------------|-----------|----------|------------------|----------|----------|---------|
|            | PX<br>lb              | PY<br>lb  | PZ<br>lb | PX<br>lb         | PY<br>lb | PZ<br>lb |         |
| 1          | 0.00                  | -16687.95 | 0.00     | 0.00             | 16687.95 | 0.00     | 0.000%  |
| 2          | 0.00                  | -20025.54 | -9637.40 | 0.00             | 20025.46 | 9635.96  | 0.006%  |
| 3          | 0.00                  | -15019.16 | -9637.40 | 0.00             | 15019.05 | 9635.50  | 0.011%  |
| 4          | 4818.70               | -20025.54 | -8346.24 | -4818.64         | 20025.53 | 8346.12  | 0.001%  |
| 5          | 4818.70               | -15019.16 | -8346.24 | -4818.67         | 15019.15 | 8346.17  | 0.000%  |
| 6          | 6814.67               | -20025.54 | -6814.67 | -6814.58         | 20025.53 | 6814.58  | 0.001%  |
| 7          | 6814.67               | -15019.16 | -6814.67 | -6814.62         | 15019.15 | 6814.62  | 0.000%  |

| Load Comb. | Sum of Applied Forces |           |          | Sum of Reactions |          |          | % Error |
|------------|-----------------------|-----------|----------|------------------|----------|----------|---------|
|            | PX<br>lb              | PY<br>lb  | PZ<br>lb | PX<br>lb         | PY<br>lb | PZ<br>lb |         |
| 8          | 8346.24               | -20025.54 | -4818.70 | -8346.12         | 20025.53 | 4818.64  | 0.001%  |
| 9          | 8346.24               | -15019.16 | -4818.70 | -8346.17         | 15019.15 | 4818.67  | 0.000%  |
| 10         | 9637.40               | -20025.54 | 0.00     | -9636.74         | 20025.50 | 0.00     | 0.003%  |
| 11         | 9637.40               | -15019.16 | 0.00     | -9636.54         | 15019.11 | 0.00     | 0.005%  |
| 12         | 8346.24               | -20025.54 | 4818.70  | -8346.12         | 20025.53 | -4818.64 | 0.001%  |
| 13         | 8346.24               | -15019.16 | 4818.70  | -8346.17         | 15019.15 | -4818.67 | 0.000%  |
| 14         | 6814.67               | -20025.54 | 6814.67  | -6814.58         | 20025.53 | -6814.58 | 0.001%  |
| 15         | 6814.67               | -15019.16 | 6814.67  | -6814.62         | 15019.15 | -6814.62 | 0.000%  |
| 16         | 4818.70               | -20025.54 | 8346.24  | -4818.64         | 20025.53 | -8346.12 | 0.001%  |
| 17         | 4818.70               | -15019.16 | 8346.24  | -4818.67         | 15019.15 | -8346.17 | 0.000%  |
| 18         | 0.00                  | -20025.54 | 9637.40  | 0.00             | 20025.46 | -9635.96 | 0.006%  |
| 19         | 0.00                  | -15019.16 | 9637.40  | 0.00             | 15019.05 | -9635.50 | 0.011%  |
| 20         | -4818.70              | -20025.54 | 8346.24  | 4818.64          | 20025.53 | -8346.12 | 0.001%  |
| 21         | -4818.70              | -15019.16 | 8346.24  | 4818.67          | 15019.15 | -8346.17 | 0.000%  |
| 22         | -6814.67              | -20025.54 | 6814.67  | 6814.58          | 20025.53 | -6814.58 | 0.001%  |
| 23         | -6814.67              | -15019.16 | 6814.67  | 6814.62          | 15019.15 | -6814.62 | 0.000%  |
| 24         | -8346.24              | -20025.54 | 4818.70  | 8346.12          | 20025.53 | -4818.64 | 0.001%  |
| 25         | -8346.24              | -15019.16 | 4818.70  | 8346.17          | 15019.15 | -4818.67 | 0.000%  |
| 26         | -9637.40              | -20025.54 | 0.00     | 9636.74          | 20025.50 | 0.00     | 0.003%  |
| 27         | -9637.40              | -15019.16 | 0.00     | 9636.54          | 15019.11 | 0.00     | 0.005%  |
| 28         | -8346.24              | -20025.54 | -4818.70 | 8346.12          | 20025.53 | 4818.64  | 0.001%  |
| 29         | -8346.24              | -15019.16 | -4818.70 | 8346.17          | 15019.15 | 4818.67  | 0.000%  |
| 30         | -6814.67              | -20025.54 | -6814.67 | 6814.58          | 20025.53 | 6814.58  | 0.001%  |
| 31         | -6814.67              | -15019.16 | -6814.67 | 6814.62          | 15019.15 | 6814.62  | 0.000%  |
| 32         | -4818.70              | -20025.54 | -8346.24 | 4818.64          | 20025.53 | 8346.12  | 0.001%  |
| 33         | -4818.70              | -15019.16 | -8346.24 | 4818.67          | 15019.15 | 8346.17  | 0.000%  |
| 34         | 0.00                  | -16687.95 | -3175.82 | 0.00             | 16687.94 | 3175.05  | 0.005%  |
| 35         | 1587.91               | -16687.95 | -2750.34 | -1587.53         | 16687.94 | 2749.67  | 0.005%  |
| 36         | 2245.65               | -16687.95 | -2245.65 | -2245.10         | 16687.94 | 2245.10  | 0.005%  |
| 37         | 2750.34               | -16687.95 | -1587.91 | -2749.67         | 16687.94 | 1587.52  | 0.005%  |
| 38         | 3175.82               | -16687.95 | 0.00     | -3175.05         | 16687.94 | 0.00     | 0.005%  |
| 39         | 2750.34               | -16687.95 | 1587.91  | -2749.67         | 16687.94 | -1587.52 | 0.005%  |
| 40         | 2245.65               | -16687.95 | 2245.65  | -2245.10         | 16687.94 | -2245.10 | 0.005%  |
| 41         | 1587.91               | -16687.95 | 2750.34  | -1587.52         | 16687.94 | -2749.67 | 0.005%  |
| 42         | 0.00                  | -16687.95 | 3175.82  | 0.00             | 16687.94 | -3175.05 | 0.005%  |
| 43         | -1587.91              | -16687.95 | 2750.34  | 1587.52          | 16687.94 | -2749.67 | 0.005%  |
| 44         | -2245.65              | -16687.95 | 2245.65  | 2245.10          | 16687.94 | -2245.10 | 0.005%  |
| 45         | -2750.34              | -16687.95 | 1587.91  | 2749.67          | 16687.94 | -1587.52 | 0.005%  |
| 46         | -3175.82              | -16687.95 | 0.00     | 3175.05          | 16687.94 | 0.00     | 0.005%  |
| 47         | -2750.34              | -16687.95 | -1587.91 | 2749.67          | 16687.94 | 1587.52  | 0.005%  |
| 48         | -2245.65              | -16687.95 | -2245.65 | 2245.10          | 16687.94 | 2245.10  | 0.005%  |
| 49         | -1587.91              | -16687.95 | -2750.34 | 1587.53          | 16687.94 | 2749.67  | 0.005%  |
| 50         | 0.00                  | -24369.34 | -5990.90 | 0.00             | 24369.26 | 5989.11  | 0.007%  |
| 51         | 0.00                  | -10675.36 | -5990.90 | 0.00             | 10675.32 | 5990.00  | 0.007%  |
| 52         | 2995.45               | -24369.34 | -5188.27 | -2995.36         | 24369.33 | 5188.11  | 0.001%  |
| 53         | 2995.45               | -10675.36 | -5188.27 | -2995.41         | 10675.35 | 5188.21  | 0.001%  |
| 54         | 4236.21               | -24369.34 | -4236.21 | -4236.07         | 24369.33 | 4236.07  | 0.001%  |
| 55         | 4236.21               | -10675.36 | -4236.21 | -4236.15         | 10675.35 | 4236.15  | 0.001%  |
| 56         | 5188.27               | -24369.34 | -2995.45 | -5188.11         | 24369.33 | 2995.36  | 0.001%  |
| 57         | 5188.27               | -10675.36 | -2995.45 | -5188.21         | 10675.35 | 2995.41  | 0.001%  |
| 58         | 5990.90               | -24369.34 | 0.00     | -5989.11         | 24369.26 | 0.00     | 0.007%  |
| 59         | 5990.90               | -10675.36 | 0.00     | -5990.00         | 10675.32 | 0.00     | 0.007%  |
| 60         | 5188.27               | -24369.34 | 2995.45  | -5188.11         | 24369.33 | -2995.36 | 0.001%  |
| 61         | 5188.27               | -10675.36 | 2995.45  | -5188.21         | 10675.35 | -2995.41 | 0.001%  |
| 62         | 4236.21               | -24369.34 | 4236.21  | -4236.07         | 24369.33 | -4236.07 | 0.001%  |
| 63         | 4236.21               | -10675.36 | 4236.21  | -4236.15         | 10675.35 | -4236.15 | 0.001%  |
| 64         | 2995.45               | -24369.34 | 5188.27  | -2995.36         | 24369.33 | -5188.11 | 0.001%  |
| 65         | 2995.45               | -10675.36 | 5188.27  | -2995.41         | 10675.35 | -5188.21 | 0.001%  |
| 66         | 0.00                  | -24369.34 | 5990.90  | 0.00             | 24369.26 | -5989.11 | 0.007%  |
| 67         | 0.00                  | -10675.36 | 5990.90  | 0.00             | 10675.32 | -5990.00 | 0.007%  |
| 68         | -2995.45              | -24369.34 | 5188.27  | 2995.36          | 24369.33 | -5188.11 | 0.001%  |

| Load Comb. | Sum of Applied Forces |           |          | Sum of Reactions |          |          | % Error |
|------------|-----------------------|-----------|----------|------------------|----------|----------|---------|
|            | PX<br>lb              | PY<br>lb  | PZ<br>lb | PX<br>lb         | PY<br>lb | PZ<br>lb |         |
| 69         | -2995.45              | -10675.36 | 5188.27  | 2995.41          | 10675.35 | -5188.21 | 0.001%  |
| 70         | -4236.21              | -24369.34 | 4236.21  | 4236.07          | 24369.33 | -4236.07 | 0.001%  |
| 71         | -4236.21              | -10675.36 | 4236.21  | 4236.15          | 10675.35 | -4236.15 | 0.001%  |
| 72         | -5188.27              | -24369.34 | 2995.45  | 5188.11          | 24369.33 | -2995.36 | 0.001%  |
| 73         | -5188.27              | -10675.36 | 2995.45  | 5188.21          | 10675.35 | -2995.41 | 0.001%  |
| 74         | -5990.90              | -24369.34 | 0.00     | 5989.11          | 24369.26 | 0.00     | 0.007%  |
| 75         | -5990.90              | -10675.36 | 0.00     | 5990.00          | 10675.32 | 0.00     | 0.007%  |
| 76         | -5188.27              | -24369.34 | -2995.45 | 5188.11          | 24369.33 | 2995.36  | 0.001%  |
| 77         | -5188.27              | -10675.36 | -2995.45 | 5188.21          | 10675.35 | 2995.41  | 0.001%  |
| 78         | -4236.21              | -24369.34 | -4236.21 | 4236.07          | 24369.33 | 4236.07  | 0.001%  |
| 79         | -4236.21              | -10675.36 | -4236.21 | 4236.15          | 10675.35 | 4236.15  | 0.001%  |
| 80         | -2995.45              | -24369.34 | -5188.27 | 2995.36          | 24369.33 | 5188.11  | 0.001%  |
| 81         | -2995.45              | -10675.36 | -5188.27 | 2995.41          | 10675.35 | 5188.21  | 0.001%  |
| 82         | 0.00                  | 0.00      | -1896.70 | 0.00             | 0.00     | 1896.74  | 0.002%  |
| 83         | 948.35                | 0.00      | -1642.59 | -948.42          | 0.00     | 1642.61  | 0.004%  |
| 84         | 1341.17               | 0.00      | -1341.17 | -1341.23         | 0.00     | 1341.19  | 0.004%  |
| 85         | 1642.59               | 0.00      | -948.35  | -1642.63         | 0.00     | 948.39   | 0.003%  |
| 86         | 1896.70               | 0.00      | 0.00     | -1896.74         | 0.00     | 0.04     | 0.003%  |
| 87         | 1642.59               | 0.00      | 948.35   | -1642.63         | 0.00     | -948.39  | 0.003%  |
| 88         | 1341.17               | 0.00      | 1341.17  | -1341.19         | 0.00     | -1341.23 | 0.004%  |
| 89         | 948.35                | 0.00      | 1642.59  | -948.35          | 0.00     | -1642.65 | 0.003%  |
| 90         | 0.00                  | 0.00      | 1896.70  | 0.00             | 0.00     | -1896.74 | 0.002%  |
| 91         | -948.35               | 0.00      | 1642.59  | 948.35           | 0.00     | -1642.65 | 0.003%  |
| 92         | -1341.17              | 0.00      | 1341.17  | 1341.19          | 0.00     | -1341.23 | 0.004%  |
| 93         | -1642.59              | 0.00      | 948.35   | 1642.63          | 0.00     | -948.39  | 0.003%  |
| 94         | -1896.70              | 0.00      | 0.00     | 1896.74          | 0.00     | 0.04     | 0.003%  |
| 95         | -1642.59              | 0.00      | -948.35  | 1642.63          | 0.00     | 948.39   | 0.003%  |
| 96         | -1341.17              | 0.00      | -1341.17 | 1341.23          | 0.00     | 1341.19  | 0.004%  |
| 97         | -948.35               | 0.00      | -1642.59 | 948.42           | 0.00     | 1642.61  | 0.004%  |

## Non-Linear Convergence Results

| Load Combination | Converged? | Number of Cycles | Displacement Tolerance | Force Tolerance |
|------------------|------------|------------------|------------------------|-----------------|
| 1                | Yes        | 6                | 0.00000001             | 0.00000001      |
| 2                | Yes        | 16               | 0.00008784             | 0.00007651      |
| 3                | Yes        | 15               | 0.00011380             | 0.00013056      |
| 4                | Yes        | 19               | 0.00000001             | 0.00012852      |
| 5                | Yes        | 19               | 0.00000001             | 0.00008615      |
| 6                | Yes        | 19               | 0.00000001             | 0.00013737      |
| 7                | Yes        | 19               | 0.00000001             | 0.00009157      |
| 8                | Yes        | 19               | 0.00000001             | 0.00011949      |
| 9                | Yes        | 19               | 0.00000001             | 0.00007967      |
| 10               | Yes        | 17               | 0.00000001             | 0.00007739      |
| 11               | Yes        | 16               | 0.00005243             | 0.00012442      |
| 12               | Yes        | 19               | 0.00000001             | 0.00011949      |
| 13               | Yes        | 19               | 0.00000001             | 0.00007967      |
| 14               | Yes        | 19               | 0.00000001             | 0.00013737      |
| 15               | Yes        | 19               | 0.00000001             | 0.00009157      |
| 16               | Yes        | 19               | 0.00000001             | 0.00011216      |
| 17               | Yes        | 19               | 0.00000001             | 0.00007449      |
| 18               | Yes        | 16               | 0.00008784             | 0.00007651      |
| 19               | Yes        | 15               | 0.00011380             | 0.00013056      |
| 20               | Yes        | 19               | 0.00000001             | 0.00011216      |
| 21               | Yes        | 19               | 0.00000001             | 0.00007449      |
| 22               | Yes        | 19               | 0.00000001             | 0.00013737      |

|  |                |                   |  |                                  |
|--|----------------|-------------------|--|----------------------------------|
|  | <b>Job</b>     | SF Police Academy |  | <b>Page</b> 37 of 94             |
|  | <b>Project</b> | U1133.0725.261    |  | <b>Date</b><br>17:53:37 01/27/26 |
|  | <b>Client</b>  | Steelhead         |  | <b>Designed by</b><br>mririe     |

|    |     |    |            |            |
|----|-----|----|------------|------------|
| 23 | Yes | 19 | 0.00000001 | 0.00009157 |
| 24 | Yes | 19 | 0.00000001 | 0.00011949 |
| 25 | Yes | 19 | 0.00000001 | 0.00007967 |
| 26 | Yes | 17 | 0.00000001 | 0.00007739 |
| 27 | Yes | 16 | 0.00005243 | 0.00012442 |
| 28 | Yes | 19 | 0.00000001 | 0.00011949 |
| 29 | Yes | 19 | 0.00000001 | 0.00007967 |
| 30 | Yes | 19 | 0.00000001 | 0.00013737 |
| 31 | Yes | 19 | 0.00000001 | 0.00009157 |
| 32 | Yes | 19 | 0.00000001 | 0.00012852 |
| 33 | Yes | 19 | 0.00000001 | 0.00008615 |
| 34 | Yes | 15 | 0.00014132 | 0.00005548 |
| 35 | Yes | 15 | 0.00014105 | 0.00008801 |
| 36 | Yes | 15 | 0.00014097 | 0.00007203 |
| 37 | Yes | 15 | 0.00014105 | 0.00006555 |
| 38 | Yes | 15 | 0.00014132 | 0.00006364 |
| 39 | Yes | 15 | 0.00014105 | 0.00006555 |
| 40 | Yes | 15 | 0.00014097 | 0.00007203 |
| 41 | Yes | 15 | 0.00014105 | 0.00005305 |
| 42 | Yes | 15 | 0.00014132 | 0.00005548 |
| 43 | Yes | 15 | 0.00014105 | 0.00005305 |
| 44 | Yes | 15 | 0.00014097 | 0.00007203 |
| 45 | Yes | 15 | 0.00014105 | 0.00006555 |
| 46 | Yes | 15 | 0.00014132 | 0.00006364 |
| 47 | Yes | 15 | 0.00014105 | 0.00006555 |
| 48 | Yes | 15 | 0.00014097 | 0.00007203 |
| 49 | Yes | 15 | 0.00014105 | 0.00008801 |
| 50 | Yes | 16 | 0.00013723 | 0.00007889 |
| 51 | Yes | 15 | 0.00006618 | 0.00009106 |
| 52 | Yes | 19 | 0.00000001 | 0.00009636 |
| 53 | Yes | 18 | 0.00000001 | 0.00006831 |
| 54 | Yes | 19 | 0.00000001 | 0.00011060 |
| 55 | Yes | 18 | 0.00000001 | 0.00007828 |
| 56 | Yes | 19 | 0.00000001 | 0.00009636 |
| 57 | Yes | 18 | 0.00000001 | 0.00006831 |
| 58 | Yes | 16 | 0.00013723 | 0.00007889 |
| 59 | Yes | 15 | 0.00006618 | 0.00009106 |
| 60 | Yes | 19 | 0.00000001 | 0.00009636 |
| 61 | Yes | 18 | 0.00000001 | 0.00006831 |
| 62 | Yes | 19 | 0.00000001 | 0.00011060 |
| 63 | Yes | 18 | 0.00000001 | 0.00007828 |
| 64 | Yes | 19 | 0.00000001 | 0.00009636 |
| 65 | Yes | 18 | 0.00000001 | 0.00006831 |
| 66 | Yes | 16 | 0.00013723 | 0.00007889 |
| 67 | Yes | 15 | 0.00006618 | 0.00009106 |
| 68 | Yes | 19 | 0.00000001 | 0.00009636 |
| 69 | Yes | 18 | 0.00000001 | 0.00006831 |
| 70 | Yes | 19 | 0.00000001 | 0.00011060 |
| 71 | Yes | 18 | 0.00000001 | 0.00007828 |
| 72 | Yes | 19 | 0.00000001 | 0.00009636 |
| 73 | Yes | 18 | 0.00000001 | 0.00006831 |
| 74 | Yes | 16 | 0.00013723 | 0.00007889 |
| 75 | Yes | 15 | 0.00006618 | 0.00009106 |
| 76 | Yes | 19 | 0.00000001 | 0.00009636 |
| 77 | Yes | 18 | 0.00000001 | 0.00006831 |
| 78 | Yes | 19 | 0.00000001 | 0.00011060 |
| 79 | Yes | 18 | 0.00000001 | 0.00007828 |
| 80 | Yes | 19 | 0.00000001 | 0.00009636 |
| 81 | Yes | 18 | 0.00000001 | 0.00006831 |
| 82 | Yes | 6  | 0.00000001 | 0.00000001 |
| 83 | Yes | 6  | 0.00000001 | 0.00000001 |
| 84 | Yes | 6  | 0.00000001 | 0.00000001 |
| 85 | Yes | 6  | 0.00000001 | 0.00000001 |
| 86 | Yes | 6  | 0.00000001 | 0.00000001 |

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 38 of 94          |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

|    |     |   |            |            |
|----|-----|---|------------|------------|
| 87 | Yes | 6 | 0.00000001 | 0.00000001 |
| 88 | Yes | 6 | 0.00000001 | 0.00000001 |
| 89 | Yes | 6 | 0.00000001 | 0.00000001 |
| 90 | Yes | 6 | 0.00000001 | 0.00000001 |
| 91 | Yes | 6 | 0.00000001 | 0.00000001 |
| 92 | Yes | 6 | 0.00000001 | 0.00000001 |
| 93 | Yes | 6 | 0.00000001 | 0.00000001 |
| 94 | Yes | 6 | 0.00000001 | 0.00000001 |
| 95 | Yes | 6 | 0.00000001 | 0.00000001 |
| 96 | Yes | 6 | 0.00000001 | 0.00000001 |
| 97 | Yes | 6 | 0.00000001 | 0.00000001 |

### Maximum Tower Deflections - Service Wind

| Section No. | Elevation ft | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|--------------|---------------------|-----------------|--------|---------|
| L1          | 103 - 63     | 22.692              | 42              | 1.7531 | 0.0111  |
| L2          | 66.5 - 26.5  | 10.104              | 42              | 1.4125 | 0.0052  |
| L3          | 30.83 - 1    | 2.173               | 42              | 0.6560 | 0.0017  |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance                                     | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|--------------------------------------------------|-----------------|---------------|--------|---------|------------------------|
| 100.00       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP | 42              | 21.591        | 1.7346 | 0.0106  | 24046                  |
| 96.30        | Tapered 1 seismic                                | 42              | 20.238        | 1.7111 | 0.0099  | 17944                  |
| 92.90        | Coax seismic                                     | 42              | 19.002        | 1.6884 | 0.0094  | 11903                  |
| 90.00        | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP | 42              | 17.957        | 1.6677 | 0.0089  | 9248                   |
| 83.00        | Tapered 1 seismic                                | 42              | 15.484        | 1.6107 | 0.0077  | 6011                   |
| 78.60        | Coax seismic                                     | 42              | 13.977        | 1.5681 | 0.0070  | 4926                   |
| 69.70        | Tapered 1 seismic                                | 42              | 11.083        | 1.4600 | 0.0056  | 3611                   |
| 64.30        | Coax seismic                                     | 42              | 9.451         | 1.3768 | 0.0049  | 3179                   |
| 59.80        | Tapered 2 seismic                                | 42              | 8.175         | 1.2968 | 0.0044  | 2956                   |
| 50.00        | Coax seismic                                     | 42              | 5.688         | 1.0965 | 0.0033  | 2572                   |
| 46.50        | Tapered 2 seismic                                | 42              | 4.905         | 1.0188 | 0.0029  | 2458                   |
| 35.70        | Coax seismic                                     | 42              | 2.879         | 0.7691 | 0.0020  | 2162                   |
| 33.20        | Tapered 2 seismic                                | 42              | 2.500         | 0.7108 | 0.0018  | 2115                   |
| 25.90        | Tapered 3 seismic                                | 42              | 1.594         | 0.5436 | 0.0013  | 2456                   |
| 21.40        | Coax seismic                                     | 42              | 1.170         | 0.4429 | 0.0011  | 2998                   |
| 15.90        | Tapered 3 seismic                                | 40              | 0.760         | 0.3218 | 0.0007  | 4105                   |
| 7.10         | Coax seismic                                     | 40              | 0.274         | 0.1311 | 0.0003  | 10026                  |
| 6.00         | Tapered 3 seismic                                | 40              | 0.223         | 0.1074 | 0.0002  | 12231                  |

### Maximum Tower Deflections - Design Wind

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 39 of 94          |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

| Section No. | Elevation ft | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|--------------|---------------------|-----------------|--------|---------|
| L1          | 103 - 63     | 69.930              | 26              | 5.4116 | 0.0336  |
| L2          | 66.5 - 26.5  | 31.125              | 26              | 4.3578 | 0.0157  |
| L3          | 30.83 - 1    | 6.688               | 26              | 2.0203 | 0.0050  |

### Critical Deflections and Radius of Curvature - Design Wind

| Elevation ft | Appurtenance                                     | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|--------------------------------------------------|-----------------|---------------|--------|---------|------------------------|
| 100.00       | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP | 26              | 66.537        | 5.3541 | 0.0320  | 7886                   |
| 96.30        | Tapered 1 seismic                                | 26              | 62.364        | 5.2814 | 0.0301  | 5884                   |
| 92.90        | Coax seismic                                     | 26              | 58.554        | 5.2112 | 0.0283  | 3903                   |
| 90.00        | Quintel QD668-2 (72"x18.1"x9.6", 33.6 lbs) w/ MP | 26              | 55.332        | 5.1472 | 0.0268  | 3031                   |
| 83.00        | Tapered 1 seismic                                | 26              | 47.709        | 4.9710 | 0.0232  | 1969                   |
| 78.60        | Coax seismic                                     | 26              | 43.065        | 4.8390 | 0.0211  | 1613                   |
| 69.70        | Tapered 1 seismic                                | 26              | 34.145        | 4.5047 | 0.0170  | 1180                   |
| 64.30        | Coax seismic                                     | 26              | 29.115        | 4.2474 | 0.0148  | 1038                   |
| 59.80        | Tapered 2 seismic                                | 26              | 25.182        | 4.0000 | 0.0131  | 965                    |
| 50.00        | Coax seismic                                     | 26              | 17.518        | 3.3808 | 0.0099  | 838                    |
| 46.50        | Tapered 2 seismic                                | 26              | 15.106        | 3.1405 | 0.0088  | 800                    |
| 35.70        | Coax seismic                                     | 26              | 8.864         | 2.3694 | 0.0061  | 703                    |
| 33.20        | Tapered 2 seismic                                | 26              | 7.695         | 2.1896 | 0.0055  | 687                    |
| 25.90        | Tapered 3 seismic                                | 26              | 4.905         | 1.6738 | 0.0040  | 798                    |
| 21.40        | Coax seismic                                     | 4               | 3.600         | 1.3635 | 0.0032  | 973                    |
| 15.90        | Tapered 3 seismic                                | 14              | 2.338         | 0.9904 | 0.0023  | 1332                   |
| 7.10         | Coax seismic                                     | 14              | 0.843         | 0.4034 | 0.0009  | 3253                   |
| 6.00         | Tapered 3 seismic                                | 14              | 0.685         | 0.3305 | 0.0007  | 3968                   |

### Base Plate Design Data

| Plate Thickness in | Number of Anchor Bolts | Anchor Bolt Size in | Actual Allowable Ratio    | Actual Allowable Ratio   | Actual Allowable Ratio     | Actual Allowable Ratio         | Controlling Condition | Ratio |
|--------------------|------------------------|---------------------|---------------------------|--------------------------|----------------------------|--------------------------------|-----------------------|-------|
|                    |                        |                     | Allowable Bolt Tension lb | Allowable Compression lb | Allowable Plate Stress ksi | Allowable Stiffener Stress ksi |                       |       |
| 2.0000             | 8                      | 2.0000              | 114309.89                 | 119314.27                | 25.536                     |                                | Bolt T                | 0.81  |
|                    |                        |                     | 140524.88                 | 233271.30                | 45.000                     |                                |                       |       |
|                    |                        |                     | 0.81                      | 0.51                     | 0.57                       |                                |                       |       |

### Fatigue Design Data

| Detail Component Item No. | KI ft | KF | $\Delta f$ Along-Wind ksi | $\Delta f$ Vortex Shedding ksi | $\phi_{f0} \Delta F_{TH}$ ksi | Ratio |
|---------------------------|-------|----|---------------------------|--------------------------------|-------------------------------|-------|
|                           |       |    |                           |                                |                               |       |

|                                                                                                                                                                                                |                |                   |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------------------------|
| <p><b><i>tnxTower</i></b></p> <p><b><i>Vector Structural Engineering</i></b></p> <p>651 W Galena Park Blvd</p> <p>Draper, UT 84020</p> <p>Phone: (801) 990-1775</p> <p>FAX: (801) 990-1776</p> | <b>Job</b>     | SF Police Academy | <b>Page</b> 40 of 94             |
|                                                                                                                                                                                                | <b>Project</b> | U1133.0725.261    | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                                                                | <b>Client</b>  | Steelhead         | <b>Designed by</b><br>mirie      |

| Detail Component Item No. | KI   | KF     | $\Delta f$<br>Along-Wind | $\Delta f$<br>Vortex<br>Shedding | $\phi_{fa}\Delta F_{TH}$ | Ratio  |
|---------------------------|------|--------|--------------------------|----------------------------------|--------------------------|--------|
|                           | ft   |        | ksi                      | ksi                              | ksi                      |        |
| 5-8                       | 0.31 | 1.9786 | 9.160                    | 0.000                            | 9.383                    | 0.9762 |

## **Compression Checks**

## Pole Design Data

| Section No. | Elevation     | Size                     | L     | L <sub>u</sub> | Kl/r | A       | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio          |
|-------------|---------------|--------------------------|-------|----------------|------|---------|----------------|-----------------|----------------|
|             |               |                          |       |                |      |         |                |                 | P <sub>u</sub> |
| L1          | 103 - 101.079 | TP25x18x0.1875           | 40.00 | 0.00           | 0.0  | 10.8007 | -141.45        | 631843.00       | 0.000          |
|             | 101.079 -     |                          |       |                |      | 11.0008 | -6401.02       | 643547.00       | 0.010          |
|             | 99.1579 -     |                          |       |                |      | 11.2009 | -6551.77       | 655251.00       | 0.010          |
|             | 97.2368 -     |                          |       |                |      | 11.4010 | -6828.13       | 666956.00       | 0.010          |
|             | 97.2368 -     |                          |       |                |      | 11.6010 | -6983.80       | 678660.00       | 0.010          |
|             | 95.3158 -     |                          |       |                |      | 11.8011 | -7211.98       | 690364.00       | 0.010          |
|             | 95.3158 -     |                          |       |                |      | 12.0012 | -11883.70      | 702068.00       | 0.017          |
|             | 93.3947 -     |                          |       |                |      | 12.2012 | -12046.80      | 713772.00       | 0.017          |
|             | 91.4737 -     |                          |       |                |      | 12.4013 | -12212.20      | 725477.00       | 0.017          |
|             | 91.4737 -     |                          |       |                |      | 12.6014 | -12379.70      | 737181.00       | 0.017          |
|             | 89.5526 -     |                          |       |                |      | 12.8015 | -12680.60      | 748885.00       | 0.017          |
|             | 89.5526 -     |                          |       |                |      | 13.0015 | -12852.80      | 760589.00       | 0.017          |
|             | 87.6316 -     |                          |       |                |      | 13.2016 | -10476.90      | 772293.00       | 0.014          |
|             | 87.6316 -     |                          |       |                |      | 13.4017 | -10649.30      | 783998.00       | 0.014          |
|             | 85.7105 -     |                          |       |                |      | 13.6017 | -10824.10      | 795702.00       | 0.014          |
|             | 83.7895 -     |                          |       |                |      | 13.8018 | -11001.30      | 807406.00       | 0.014          |
|             | 83.7895 -     |                          |       |                |      | 14.0019 | -11181.00      | 819110.00       | 0.014          |
|             | 81.8684 -     |                          |       |                |      | 14.2020 | -11362.90      | 830814.00       | 0.014          |
|             | 81.8684 -     |                          |       |                |      | 14.4020 | -11547.20      | 842518.00       | 0.014          |
|             | 79.9474 -     |                          |       |                |      | 14.7665 | -6112.65       | 863843.00       | 0.007          |
|             | 79.9474 -     |                          |       |                |      | 14.5434 | -5967.23       | 850787.00       | 0.007          |
|             | 78.0263 -     |                          |       |                |      | 14.7295 | -12270.80      | 861676.00       | 0.014          |
|             | 78.0263 -     |                          |       |                |      | 14.9156 | -12464.00      | 872565.00       | 0.014          |
| L2          | 66.5 - 63     | TP31.0125x24.0125x0.1875 | 40.00 | 0.00           | 0.0  | 14.7295 | -12270.80      | 861676.00       | 0.014          |
|             | 63 - 61.2128  |                          |       |                |      | 14.9156 | -12464.00      | 872565.00       | 0.014          |
|             | 61.2128 -     |                          |       |                |      |         |                |                 |                |
|             | 59.4256       |                          |       |                |      |         |                |                 |                |

|                                                                                                                                           |                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| <b><i>tnxTower</i></b>                                                                                                                    | <b>Job</b><br>SF Police Academy  | <b>Page</b> 41 of 94             |
| <b><i>Vector Structural Engineering</i></b><br>651 W Galena Park Blvd<br>Draper, UT 84020<br>Phone: (801) 990-1775<br>FAX: (801) 990-1776 | <b>Project</b><br>U1133.0725.261 | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                           | <b>Client</b><br>Steelhead       | <b>Designed by</b><br>mirrie     |

| Section No. | Elevation ft      | Size                 | L ft  | L <sub>u</sub> ft | Kl/r | A in <sup>2</sup> | P <sub>u</sub> lb | φP <sub>n</sub> lb | Ratio                            |
|-------------|-------------------|----------------------|-------|-------------------|------|-------------------|-------------------|--------------------|----------------------------------|
|             |                   |                      |       |                   |      |                   |                   |                    | P <sub>u</sub> / φP <sub>n</sub> |
| L3          | 59.4256 - 57.6383 | TP35.1x29.8798x0.188 | 29.83 | 0.00              | 0.0  | 15.1018           | -12659.20         | 883453.00          | 0.014                            |
|             | 57.6383 - 55.8511 |                      |       |                   |      | 15.2879           | -12856.20         | 894342.00          | 0.014                            |
|             | 55.8511 - 54.0639 |                      |       |                   |      | 15.4740           | -13055.10         | 905231.00          | 0.014                            |
|             | 54.0639 - 52.2767 |                      |       |                   |      | 15.6602           | -13255.80         | 916120.00          | 0.014                            |
|             | 52.2767 - 50.4894 |                      |       |                   |      | 15.8463           | -13458.30         | 927009.00          | 0.015                            |
|             | 50.4894 - 48.7022 |                      |       |                   |      | 16.0324           | -13662.60         | 937898.00          | 0.015                            |
|             | 48.7022 - 46.915  |                      |       |                   |      | 16.2186           | -13868.70         | 948786.00          | 0.015                            |
|             | 46.915 - 45.1278  |                      |       |                   |      | 16.4047           | -14076.60         | 959675.00          | 0.015                            |
|             | 45.1278 - 43.3406 |                      |       |                   |      | 16.5908           | -14286.20         | 970564.00          | 0.015                            |
|             | 43.3406 - 41.5533 |                      |       |                   |      | 16.7770           | -14497.50         | 981453.00          | 0.015                            |
|             | 41.5533 - 39.7661 |                      |       |                   |      | 16.9631           | -14710.60         | 992342.00          | 0.015                            |
|             | 39.7661 - 37.9789 |                      |       |                   |      | 17.1492           | -14925.30         | 1003230.00         | 0.015                            |
|             | 37.9789 - 36.1917 |                      |       |                   |      | 17.3354           | -15141.80         | 1014120.00         | 0.015                            |
|             | 36.1917 - 34.4044 |                      |       |                   |      | 17.5215           | -15359.90         | 1025010.00         | 0.015                            |
|             | 34.4044 - 32.6172 |                      |       |                   |      | 17.7076           | -15579.70         | 1035900.00         | 0.015                            |
|             | 32.6172 - 30.83   |                      |       |                   |      | 17.8938           | -15801.10         | 1046790.00         | 0.015                            |
|             | 30.83 - 26.5      |                      |       |                   |      | 18.3447           | -8400.75          | 1073170.00         | 0.008                            |
|             | 30.83 - 26.5      |                      |       |                   |      | 18.1696           | -8233.47          | 1062920.00         | 0.008                            |
|             | 26.5 - 25.1579    |                      |       |                   |      | 18.3097           | -16809.20         | 1071120.00         | 0.016                            |
|             | 25.1579 - 23.8158 |                      |       |                   |      | 18.4499           | -16980.20         | 1079320.00         | 0.016                            |
|             | 23.8158 - 22.4737 |                      |       |                   |      | 18.5900           | -17152.00         | 1087520.00         | 0.016                            |
|             | 22.4737 - 21.1316 |                      |       |                   |      | 18.7302           | -17324.70         | 1095720.00         | 0.016                            |
|             | 21.1316 - 19.7895 |                      |       |                   |      | 18.8703           | -17498.30         | 1103910.00         | 0.016                            |
|             | 19.7895 - 18.4474 |                      |       |                   |      | 19.0105           | -17672.70         | 1112110.00         | 0.016                            |
|             | 18.4474 - 17.1053 |                      |       |                   |      | 19.1506           | -17848.00         | 1120310.00         | 0.016                            |
|             | 17.1053 - 15.7632 |                      |       |                   |      | 19.2908           | -18024.10         | 1128510.00         | 0.016                            |
|             | 15.7632 - 14.4211 |                      |       |                   |      | 19.4309           | -18201.10         | 1136710.00         | 0.016                            |
|             | 14.4211 - 13.0789 |                      |       |                   |      | 19.5711           | -18379.00         | 1144910.00         | 0.016                            |
|             | 13.0789 - 11.7368 |                      |       |                   |      | 19.7112           | -18557.70         | 1153110.00         | 0.016                            |
|             | 11.7368 - 10.3947 |                      |       |                   |      | 19.8514           | -18737.20         | 1161300.00         | 0.016                            |
|             | 10.3947 - 9.05263 |                      |       |                   |      | 19.9915           | -18917.60         | 1169500.00         | 0.016                            |
|             | 9.05263 -         |                      |       |                   |      | 20.1317           | -19098.80         | 1177700.00         | 0.016                            |

| Section No. | Elevation   | Size | L  | L <sub>u</sub> | Kl/r | A               | P <sub>u</sub> | ϕP <sub>n</sub> | Ratio                  |
|-------------|-------------|------|----|----------------|------|-----------------|----------------|-----------------|------------------------|
|             | ft          |      | ft | ft             |      | in <sup>2</sup> | lb             | lb              | $\frac{P_u}{\phi P_n}$ |
|             | 7.71053     |      |    |                |      |                 |                |                 |                        |
|             | 7.71053 -   |      |    |                |      |                 | 20.2718        | -19280.90       | 1182650.00             |
|             | 6.36842     |      |    |                |      |                 |                |                 | 0.016                  |
|             | 6.36842 -   |      |    |                |      |                 | 20.4120        | -19463.80       | 1186070.00             |
|             | 5.02632     |      |    |                |      |                 |                |                 | 0.016                  |
|             | 5.02632 -   |      |    |                |      |                 | 20.5521        | -19647.50       | 1189430.00             |
|             | 3.68421     |      |    |                |      |                 |                |                 | 0.017                  |
|             | 3.68421 -   |      |    |                |      |                 | 20.6923        | -19832.10       | 1192730.00             |
|             | 2.34211     |      |    |                |      |                 |                |                 | 0.017                  |
|             | 2.34211 - 1 |      |    |                |      |                 | 20.8324        | -20017.50       | 1195960.00             |
|             |             |      |    |                |      |                 |                |                 | 0.017                  |

### Pole Bending Design Data

| Section No. | Elevation      | Size                     | M <sub>ux</sub> | ϕM <sub>nx</sub> | Ratio                        | M <sub>uy</sub> | ϕM <sub>ny</sub> | Ratio                        |
|-------------|----------------|--------------------------|-----------------|------------------|------------------------------|-----------------|------------------|------------------------------|
|             | ft             |                          | lb-ft           | lb-ft            | $\frac{\phi M_{nx}}{M_{ux}}$ | lb-ft           | lb-ft            | $\frac{\phi M_{ny}}{M_{uy}}$ |
| L1          | 103 - 101.079  | TP25x18x0.1875           | 72.45           | 297438.33        | 0.000                        | 0.00            | 297438.33        | 0.000                        |
|             | 101.079 -      |                          | 4176.57         | 307224.17        | 0.014                        | 0.00            | 307224.17        | 0.000                        |
|             | 99.1579        |                          |                 |                  |                              |                 |                  |                              |
|             | 99.1579 -      |                          | 13648.42        | 317112.50        | 0.043                        | 0.00            | 317112.50        | 0.000                        |
|             | 97.2368        |                          |                 |                  |                              |                 |                  |                              |
|             | 97.2368 -      |                          | 23456.08        | 327101.67        | 0.072                        | 0.00            | 327101.67        | 0.000                        |
|             | 95.3158        |                          |                 |                  |                              |                 |                  |                              |
|             | 95.3158 -      |                          | 33582.17        | 337189.17        | 0.100                        | 0.00            | 337189.17        | 0.000                        |
|             | 93.3947        |                          |                 |                  |                              |                 |                  |                              |
|             | 93.3947 -      |                          | 43962.75        | 347371.67        | 0.127                        | 0.00            | 347371.67        | 0.000                        |
|             | 91.4737        |                          |                 |                  |                              |                 |                  |                              |
|             | 91.4737 -      |                          | 54602.50        | 357645.83        | 0.153                        | 0.00            | 357645.83        | 0.000                        |
|             | 89.5526        |                          |                 |                  |                              |                 |                  |                              |
|             | 89.5526 -      |                          | 65781.33        | 368009.17        | 0.179                        | 0.00            | 368009.17        | 0.000                        |
|             | 87.6316        |                          |                 |                  |                              |                 |                  |                              |
|             | 87.6316 -      |                          | 76961.92        | 378460.00        | 0.203                        | 0.00            | 378460.00        | 0.000                        |
|             | 85.7105        |                          |                 |                  |                              |                 |                  |                              |
|             | 85.7105 -      |                          | 88140.83        | 388994.17        | 0.227                        | 0.00            | 388994.17        | 0.000                        |
|             | 83.7895        |                          |                 |                  |                              |                 |                  |                              |
|             | 83.7895 -      |                          | 99588.33        | 399610.00        | 0.249                        | 0.00            | 399610.00        | 0.000                        |
|             | 81.8684        |                          |                 |                  |                              |                 |                  |                              |
|             | 81.8684 -      |                          | 111217.50       | 410303.33        | 0.271                        | 0.00            | 410303.33        | 0.000                        |
|             | 79.9474        |                          |                 |                  |                              |                 |                  |                              |
|             | 79.9474 -      |                          | 124390.83       | 421072.50        | 0.295                        | 0.00            | 421072.50        | 0.000                        |
|             | 78.0263        |                          |                 |                  |                              |                 |                  |                              |
|             | 78.0263 -      |                          | 138960.83       | 431914.17        | 0.322                        | 0.00            | 431914.17        | 0.000                        |
|             | 76.1053        |                          |                 |                  |                              |                 |                  |                              |
|             | 76.1053 -      |                          | 153663.33       | 442825.83        | 0.347                        | 0.00            | 442825.83        | 0.000                        |
|             | 74.1842        |                          |                 |                  |                              |                 |                  |                              |
|             | 74.1842 -      |                          | 168495.83       | 453805.00        | 0.371                        | 0.00            | 453805.00        | 0.000                        |
|             | 72.2632        |                          |                 |                  |                              |                 |                  |                              |
|             | 72.2632 -      |                          | 183458.33       | 464847.50        | 0.395                        | 0.00            | 464847.50        | 0.000                        |
|             | 70.3421        |                          |                 |                  |                              |                 |                  |                              |
|             | 70.3421 -      |                          | 198549.17       | 475952.50        | 0.417                        | 0.00            | 475952.50        | 0.000                        |
|             | 68.4211        |                          |                 |                  |                              |                 |                  |                              |
|             | 68.4211 - 66.5 |                          | 213768.33       | 487115.83        | 0.439                        | 0.00            | 487115.83        | 0.000                        |
|             | 66.5 - 63      |                          | 123758.33       | 507595.83        | 0.244                        | 0.00            | 507595.83        | 0.000                        |
|             | 66.5 - 63      | TP31.0125x24.0125x0.1875 | 118126.67       | 495035.83        | 0.239                        | 0.00            | 495035.83        | 0.000                        |
|             | 63 - 61.2128   |                          | 256432.50       | 505506.67        | 0.507                        | 0.00            | 505506.67        | 0.000                        |
|             | 61.2128 -      |                          | 271081.67       | 516022.50        | 0.525                        | 0.00            | 516022.50        | 0.000                        |

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 43 of 94          |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

| Section No. | Elevation ft   | Size                 | $M_{ux}$  | $\phi M_{nx}$ | $\frac{Ratio}{M_{ux}} \phi M_{nx}$ | $M_{uy}$ | $\phi M_{ny}$ | $\frac{Ratio}{M_{uy}} \phi M_{ny}$ |
|-------------|----------------|----------------------|-----------|---------------|------------------------------------|----------|---------------|------------------------------------|
|             |                |                      | lb-ft     | lb-ft         | lb-ft                              | lb-ft    | lb-ft         | lb-ft                              |
|             | 59.4256        |                      | 285832.50 | 526580.00     | 0.543                              | 0.00     | 526580.00     | 0.000                              |
|             | 59.4256 -      |                      |           |               |                                    |          |               |                                    |
|             | 57.6383        |                      | 300681.67 | 537177.50     | 0.560                              | 0.00     | 537177.50     | 0.000                              |
|             | 57.6383 -      |                      |           |               |                                    |          |               |                                    |
|             | 55.8511        |                      | 315629.17 | 547813.33     | 0.576                              | 0.00     | 547813.33     | 0.000                              |
|             | 55.8511 -      |                      |           |               |                                    |          |               |                                    |
|             | 54.0639        |                      | 330674.17 | 558484.17     | 0.592                              | 0.00     | 558484.17     | 0.000                              |
|             | 54.0639 -      |                      |           |               |                                    |          |               |                                    |
|             | 52.2767        |                      | 345814.17 | 569187.50     | 0.608                              | 0.00     | 569187.50     | 0.000                              |
|             | 52.2767 -      |                      |           |               |                                    |          |               |                                    |
|             | 50.4894        |                      | 361048.33 | 579922.50     | 0.623                              | 0.00     | 579922.50     | 0.000                              |
|             | 50.4894 -      |                      |           |               |                                    |          |               |                                    |
|             | 48.7022        |                      | 376376.67 | 590686.67     | 0.637                              | 0.00     | 590686.67     | 0.000                              |
|             | 48.7022 -      |                      |           |               |                                    |          |               |                                    |
|             | 46.915         |                      | 391796.67 | 601476.67     | 0.651                              | 0.00     | 601476.67     | 0.000                              |
|             | 46.915 -       |                      |           |               |                                    |          |               |                                    |
|             | 45.1278        |                      | 407307.50 | 612290.83     | 0.665                              | 0.00     | 612290.83     | 0.000                              |
|             | 45.1278 -      |                      |           |               |                                    |          |               |                                    |
|             | 43.3406        |                      | 422908.33 | 623126.67     | 0.679                              | 0.00     | 623126.67     | 0.000                              |
|             | 43.3406 -      |                      |           |               |                                    |          |               |                                    |
|             | 41.5533        |                      | 438598.33 | 633982.50     | 0.692                              | 0.00     | 633982.50     | 0.000                              |
|             | 41.5533 -      |                      |           |               |                                    |          |               |                                    |
|             | 39.7661        |                      | 454376.67 | 644855.83     | 0.705                              | 0.00     | 644855.83     | 0.000                              |
|             | 39.7661 -      |                      |           |               |                                    |          |               |                                    |
|             | 37.9789        |                      | 470241.67 | 655744.17     | 0.717                              | 0.00     | 655744.17     | 0.000                              |
|             | 37.9789 -      |                      |           |               |                                    |          |               |                                    |
|             | 36.1917        |                      | 486192.50 | 666645.83     | 0.729                              | 0.00     | 666645.83     | 0.000                              |
|             | 36.1917 -      |                      |           |               |                                    |          |               |                                    |
|             | 34.4044        |                      | 502227.50 | 677558.33     | 0.741                              | 0.00     | 677558.33     | 0.000                              |
|             | 34.4044 -      |                      |           |               |                                    |          |               |                                    |
|             | 32.6172        |                      | 518346.67 | 688478.33     | 0.753                              | 0.00     | 688478.33     | 0.000                              |
|             | 32.6172 -      |                      |           |               |                                    |          |               |                                    |
|             | 30.83          |                      |           |               |                                    |          |               |                                    |
| L3          | 30.83 - 26.5   | TP35.1x29.8798x0.188 | 283780.83 | 714957.50     | 0.397                              | 0.00     | 714957.50     | 0.000                              |
|             | 30.83 - 26.5   |                      | 274079.17 | 704610.00     | 0.389                              | 0.00     | 704610.00     | 0.000                              |
|             | 26.5 - 25.1579 |                      | 570233.33 | 712862.50     | 0.800                              | 0.00     | 712862.50     | 0.000                              |
|             | 25.1579 -      |                      | 582637.50 | 721115.00     | 0.808                              | 0.00     | 721115.00     | 0.000                              |
|             | 23.8158        |                      | 595074.17 | 729369.17     | 0.816                              | 0.00     | 729369.17     | 0.000                              |
|             | 23.8158 -      |                      |           |               |                                    |          |               |                                    |
|             | 22.4737        |                      | 607541.67 | 737621.67     | 0.824                              | 0.00     | 737621.67     | 0.000                              |
|             | 22.4737 -      |                      |           |               |                                    |          |               |                                    |
|             | 21.1316        |                      | 620040.83 | 745873.33     | 0.831                              | 0.00     | 745873.33     | 0.000                              |
|             | 21.1316 -      |                      |           |               |                                    |          |               |                                    |
|             | 19.7895        |                      | 632570.83 | 754122.50     | 0.839                              | 0.00     | 754122.50     | 0.000                              |
|             | 19.7895 -      |                      |           |               |                                    |          |               |                                    |
|             | 18.4474        |                      | 645131.67 | 762367.50     | 0.846                              | 0.00     | 762367.50     | 0.000                              |
|             | 18.4474 -      |                      |           |               |                                    |          |               |                                    |
|             | 17.1053        |                      | 657723.33 | 770609.17     | 0.854                              | 0.00     | 770609.17     | 0.000                              |
|             | 17.1053 -      |                      |           |               |                                    |          |               |                                    |
|             | 15.7632        |                      | 670345.83 | 778845.00     | 0.861                              | 0.00     | 778845.00     | 0.000                              |
|             | 15.7632 -      |                      |           |               |                                    |          |               |                                    |
|             | 14.4211        |                      | 682998.33 | 787074.17     | 0.868                              | 0.00     | 787074.17     | 0.000                              |
|             | 14.4211 -      |                      |           |               |                                    |          |               |                                    |
|             | 13.0789        |                      | 695680.83 | 795296.67     | 0.875                              | 0.00     | 795296.67     | 0.000                              |
|             | 13.0789 -      |                      |           |               |                                    |          |               |                                    |
|             | 11.7368        |                      | 708394.17 | 803510.00     | 0.882                              | 0.00     | 803510.00     | 0.000                              |
|             | 11.7368 -      |                      |           |               |                                    |          |               |                                    |
|             | 10.3947        |                      | 721136.67 | 811715.00     | 0.888                              | 0.00     | 811715.00     | 0.000                              |
|             | 10.3947 -      |                      |           |               |                                    |          |               |                                    |
|             | 9.05263        |                      |           |               |                                    |          |               |                                    |

|         |                   |                        |
|---------|-------------------|------------------------|
| Job     | SF Police Academy | Page 44 of 94          |
| Project | U1133.0725.261    | Date 17:53:37 01/27/26 |
| Client  | Steelhead         | Designed by mrire      |

| Section No. | Elevation<br>ft | Size | $M_{ux}$  | $\phi M_{nx}$ | $\frac{Ratio}{M_{ux}} \frac{M_{ux}}{\phi M_{nx}}$ | $M_{uy}$ | $\phi M_{ny}$ | $\frac{Ratio}{M_{uy}} \frac{M_{uy}}{\phi M_{ny}}$ |
|-------------|-----------------|------|-----------|---------------|---------------------------------------------------|----------|---------------|---------------------------------------------------|
|             |                 |      | lb-ft     | lb-ft         | lb-ft                                             | lb-ft    | lb-ft         | lb-ft                                             |
| 9.05263 -   |                 |      | 733910.00 | 819910.00     | 0.895                                             | 0.00     | 819910.00     | 0.000                                             |
| 7.71053     |                 |      | 746711.67 | 828093.33     | 0.902                                             | 0.00     | 828093.33     | 0.000                                             |
| 7.71053 -   |                 |      | 759544.17 | 836266.67     | 0.908                                             | 0.00     | 836266.67     | 0.000                                             |
| 6.36842     |                 |      | 772405.00 | 844425.00     | 0.915                                             | 0.00     | 844425.00     | 0.000                                             |
| 5.02632 -   |                 |      | 785295.83 | 852566.67     | 0.921                                             | 0.00     | 852566.67     | 0.000                                             |
| 3.68421     |                 |      | 798215.83 | 860700.00     | 0.927                                             | 0.00     | 860700.00     | 0.000                                             |
| 2.34211     |                 |      |           |               |                                                   |          |               |                                                   |
| 2.34211 - 1 |                 |      |           |               |                                                   |          |               |                                                   |

### Pole Shear Design Data

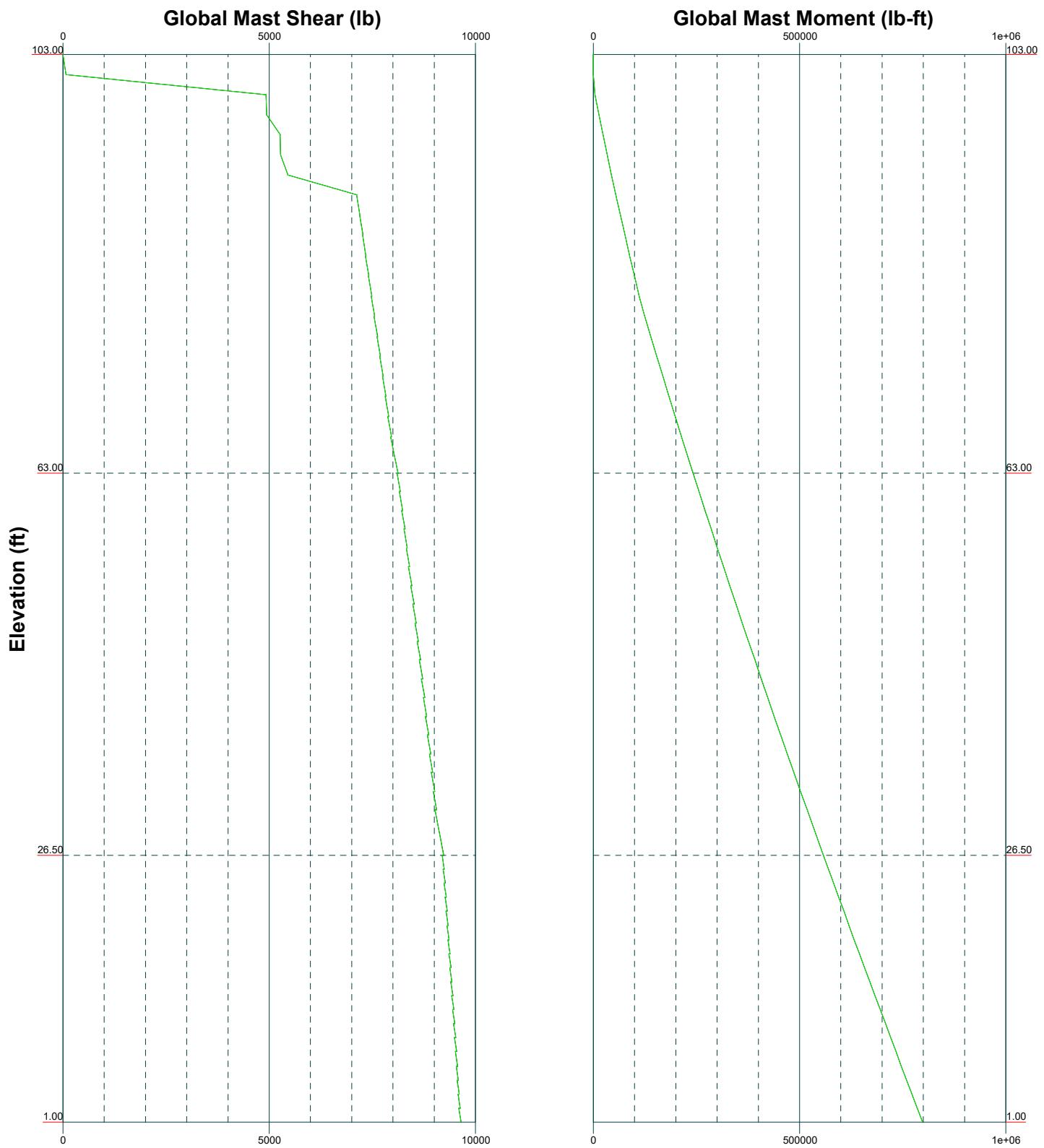
| Section No. | Elevation<br>ft | Size                     | $Actual V_u$ | $\phi V_n$ | $\frac{Ratio}{V_u} \frac{V_u}{\phi V_n}$ | $Actual T_u$ | $\phi T_n$ | $\frac{Ratio}{T_u} \frac{T_u}{\phi T_n}$ |
|-------------|-----------------|--------------------------|--------------|------------|------------------------------------------|--------------|------------|------------------------------------------|
|             |                 |                          | lb           | lb         | lb                                       | lb-ft        | lb-ft      | lb                                       |
| L1          | 103 - 101.079   | TP25x18x0.1875           | 75.60        | 189553.00  | 0.000                                    | 0.00         | 301270.00  | 0.000                                    |
|             | 101.079 -       |                          | 4927.31      | 193064.00  | 0.026                                    | 0.00         | 312534.17  | 0.000                                    |
|             | 99.1579         |                          | 4939.24      | 196575.00  | 0.025                                    | 0.00         | 324005.83  | 0.000                                    |
|             | 97.2368         |                          | 5270.37      | 200087.00  | 0.026                                    | 0.00         | 335684.17  | 0.000                                    |
|             | 97.2368 -       |                          | 5280.12      | 203598.00  | 0.026                                    | 0.00         | 347569.17  | 0.000                                    |
|             | 95.3158         |                          | 5455.78      | 207109.00  | 0.026                                    | 0.00         | 359660.83  | 0.000                                    |
|             | 93.3947         |                          | 5825.82      | 210620.00  | 0.028                                    | 0.00         | 371960.00  | 0.000                                    |
|             | 91.4737         |                          | 5828.42      | 214132.00  | 0.027                                    | 0.00         | 384465.00  | 0.000                                    |
|             | 89.5526         |                          | 5829.36      | 217643.00  | 0.027                                    | 0.00         | 397176.67  | 0.000                                    |
|             | 87.6316         |                          | 6066.65      | 224665.00  | 0.027                                    | 0.00         | 423220.83  | 0.000                                    |
|             | 85.7105         |                          | 6062.89      | 228177.00  | 0.027                                    | 0.00         | 436553.33  | 0.000                                    |
|             | 85.7105 -       |                          | 7559.92      | 231688.00  | 0.033                                    | 1259.08      | 450092.50  | 0.003                                    |
|             | 83.7895         |                          | 7629.38      | 235199.00  | 0.032                                    | 1258.87      | 463838.33  | 0.003                                    |
|             | 81.8684         |                          | 7698.24      | 238711.00  | 0.032                                    | 1258.65      | 477790.83  | 0.003                                    |
|             | 81.8684 -       |                          | 7766.53      | 242222.00  | 0.032                                    | 1258.41      | 491950.00  | 0.003                                    |
|             | 79.9474         |                          | 7834.30      | 245733.00  | 0.032                                    | 1258.16      | 506315.83  | 0.002                                    |
|             | 79.9474 -       |                          | 7901.58      | 249244.00  | 0.032                                    | 1257.89      | 520889.17  | 0.002                                    |
|             | 78.0263         |                          | 7968.39      | 252756.00  | 0.032                                    | 1257.61      | 535668.33  | 0.002                                    |
|             | 78.0263 -       |                          | 4191.47      | 259153.00  | 0.016                                    | 643.20       | 563126.67  | 0.001                                    |
|             | 76.1053         |                          | 3932.11      | 255236.00  | 0.015                                    | 614.13       | 546234.17  | 0.001                                    |
|             | 76.1053 -       |                          | 8183.01      | 258503.00  | 0.032                                    | 1257.05      | 560305.83  | 0.002                                    |
| L2          | 66.5 - 63       | TP31.0125x24.0125x0.1875 |              |            |                                          |              |            |                                          |
|             | 66.5 - 63       |                          |              |            |                                          |              |            |                                          |
|             | 63 - 61.2128    |                          |              |            |                                          |              |            |                                          |

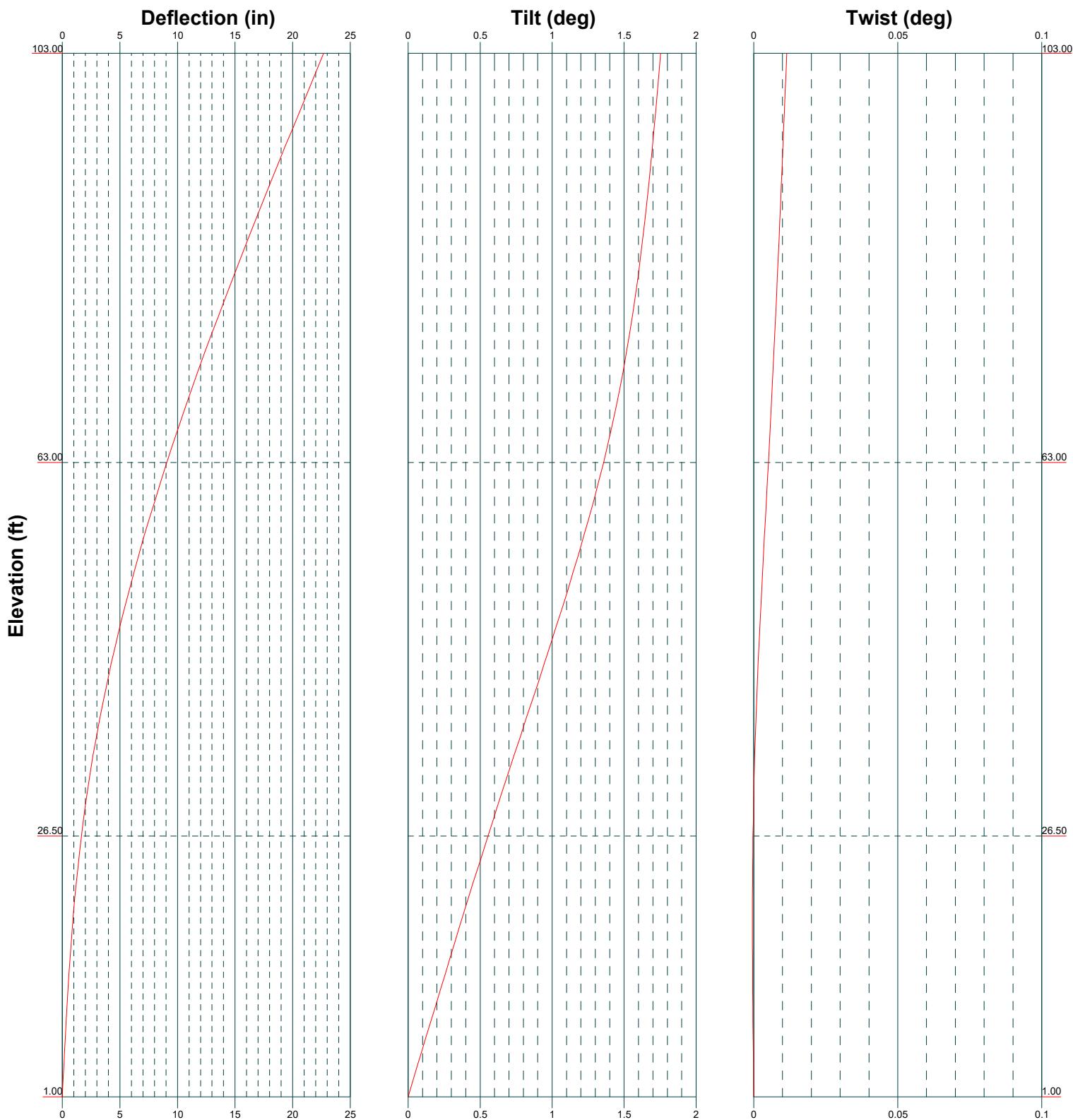
| Section No. | Elevation ft      | Size                 | Actual $V_u$ lb | $\phi V_n$ lb | Ratio $V_u$ / $\phi V_n$ | Actual $T_u$ lb-ft | $\phi T_n$ lb-ft | Ratio $T_u$ / $\phi T_n$ |
|-------------|-------------------|----------------------|-----------------|---------------|--------------------------|--------------------|------------------|--------------------------|
| L3          | 61.2128 - 59.4256 | TP35.1x29.8798x0.188 | 8239.99         | 261769.00     | 0.031                    | 1256.73            | 574555.83        | 0.002                    |
|             | 59.4256 - 57.6383 |                      | 8296.21         | 265036.00     | 0.031                    | 1256.42            | 588985.00        | 0.002                    |
|             | 57.6383 - 55.8511 |                      | 8351.72         | 268303.00     | 0.031                    | 1256.12            | 603593.33        | 0.002                    |
|             | 55.8511 - 54.0639 |                      | 8406.52         | 271569.00     | 0.031                    | 1255.80            | 618380.83        | 0.002                    |
|             | 54.0639 - 52.2767 |                      | 8460.62         | 274836.00     | 0.031                    | 1255.49            | 633347.50        | 0.002                    |
|             | 52.2767 - 50.4894 |                      | 8514.05         | 278103.00     | 0.031                    | 1255.18            | 648492.50        | 0.002                    |
|             | 50.4894 - 48.7022 |                      | 8566.82         | 281369.00     | 0.030                    | 1254.88            | 663816.67        | 0.002                    |
|             | 48.7022 - 46.915  |                      | 8618.94         | 284636.00     | 0.030                    | 1254.56            | 679319.17        | 0.002                    |
|             | 46.915 - 45.1278  |                      | 8670.43         | 287903.00     | 0.030                    | 1254.27            | 695001.67        | 0.002                    |
|             | 45.1278 - 43.3406 |                      | 8721.29         | 291169.00     | 0.030                    | 1253.98            | 710862.50        | 0.002                    |
|             | 43.3406 - 41.5533 |                      | 8771.54         | 294436.00     | 0.030                    | 1253.70            | 726902.50        | 0.002                    |
|             | 41.5533 - 39.7661 |                      | 8821.19         | 297702.00     | 0.030                    | 1253.42            | 743120.83        | 0.002                    |
|             | 39.7661 - 37.9789 |                      | 8870.25         | 300969.00     | 0.029                    | 1253.16            | 759519.17        | 0.002                    |
|             | 37.9789 - 36.1917 |                      | 8918.74         | 304236.00     | 0.029                    | 1252.90            | 776095.83        | 0.002                    |
|             | 36.1917 - 34.4044 |                      | 8966.65         | 307502.00     | 0.029                    | 1252.65            | 792851.67        | 0.002                    |
|             | 34.4044 - 32.6172 |                      | 9014.01         | 310769.00     | 0.029                    | 1252.41            | 809785.83        | 0.002                    |
|             | 32.6172 - 30.83   |                      | 9060.81         | 314036.00     | 0.029                    | 1252.18            | 826899.17        | 0.002                    |
|             | 30.83 - 26.5      |                      | 4741.36         | 321950.00     | 0.015                    | 636.79             | 869100.00        | 0.001                    |
|             | 30.83 - 26.5      |                      | 4489.34         | 318876.00     | 0.014                    | 615.16             | 850316.67        | 0.001                    |
|             | 26.5 - 25.1579    |                      | 9246.37         | 321336.00     | 0.029                    | 1251.73            | 863491.67        | 0.001                    |
|             | 25.1579 - 23.8158 |                      | 9270.00         | 323795.00     | 0.029                    | 1251.58            | 876758.33        | 0.001                    |
|             | 23.8158 - 22.4737 |                      | 9293.50         | 326255.00     | 0.028                    | 1251.43            | 890125.00        | 0.001                    |
|             | 22.4737 - 21.1316 |                      | 9316.88         | 328715.00     | 0.028                    | 1251.29            | 903600.00        | 0.001                    |
|             | 21.1316 - 19.7895 |                      | 9340.12         | 331174.00     | 0.028                    | 1251.17            | 917175.00        | 0.001                    |
|             | 19.7895 - 18.4474 |                      | 9363.25         | 333634.00     | 0.028                    | 1251.04            | 930850.00        | 0.001                    |
|             | 18.4474 - 17.1053 |                      | 9386.25         | 336093.00     | 0.028                    | 1250.93            | 944625.00        | 0.001                    |
|             | 17.1053 - 15.7632 |                      | 9409.14         | 338553.00     | 0.028                    | 1250.83            | 958500.00        | 0.001                    |
|             | 15.7632 - 14.4211 |                      | 9431.92         | 341013.00     | 0.028                    | 1250.73            | 972475.00        | 0.001                    |
|             | 14.4211 - 13.0789 |                      | 9454.58         | 343472.00     | 0.028                    | 1250.64            | 986558.33        | 0.001                    |
|             | 13.0789 - 11.7368 |                      | 9477.14         | 345932.00     | 0.027                    | 1250.57            | 1000733.33       | 0.001                    |
|             | 11.7368 - 10.3947 |                      | 9499.59         | 348392.00     | 0.027                    | 1250.49            | 1015016.67       | 0.001                    |
|             | 10.3947 -         |                      | 9521.94         | 350851.00     | 0.027                    | 1250.43            | 1029400.00       | 0.001                    |

|                                                                                                                                                                                                |                |                   |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------------------------|
| <p><b><i>tnxTower</i></b></p> <p><b><i>Vector Structural Engineering</i></b></p> <p>651 W Galena Park Blvd</p> <p>Draper, UT 84020</p> <p>Phone: (801) 990-1775</p> <p>FAX: (801) 990-1776</p> | <b>Job</b>     | SF Police Academy | <b>Page</b> 46 of 94             |
|                                                                                                                                                                                                | <b>Project</b> | U1133.0725.261    | <b>Date</b><br>17:53:37 01/27/26 |
|                                                                                                                                                                                                | <b>Client</b>  | Steelhead         | <b>Designed by</b><br>mirie      |

| Section No. | Elevation ft      | Size | Actual $V_u$ lb | $\phi V_n$ lb | Ratio $V_u$ / $\phi V_n$ | Actual $T_u$ lb-ft | $\phi T_n$ lb-ft | Ratio $T_u$ / $\phi T_n$ |
|-------------|-------------------|------|-----------------|---------------|--------------------------|--------------------|------------------|--------------------------|
|             | 9.05263           |      |                 |               |                          |                    |                  |                          |
|             | 9.05263 - 7.71053 |      | 9544.18         | 353311.00     | 0.027                    | 1250.38            | 1043883.33       | 0.001                    |
|             | 7.71053 - 6.36842 |      | 9566.33         | 355770.00     | 0.027                    | 1250.33            | 1058466.67       | 0.001                    |
|             | 6.36842 - 5.02632 |      | 9588.38         | 358230.00     | 0.027                    | 1250.30            | 1073150.00       | 0.001                    |
|             | 5.02632 - 3.68421 |      | 9610.33         | 360690.00     | 0.027                    | 1250.27            | 1087941.67       | 0.001                    |
|             | 3.68421 - 2.34211 |      | 9632.18         | 363149.00     | 0.027                    | 1250.26            | 1102833.33       | 0.001                    |
|             | 2.34211 - 1       |      | 9653.95         | 365609.00     | 0.026                    | 1250.24            | 1117816.67       | 0.001                    |

## Pole Interaction Design Data


| Section No. | Elevation         | Ratio | Ratio    | Ratio    | Ratio | Ratio | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|-------------------|-------|----------|----------|-------|-------|--------------------|---------------------|----------|
|             |                   | $P_u$ | $M_{ux}$ | $M_{uy}$ | $V_u$ | $T_u$ |                    |                     |          |
| L1          | 103 - 101.079     | 0.000 | 0.000    | 0.000    | 0.000 | 0.000 | 0.000              | 1.000               | ✓        |
|             | 101.079 - 99.1579 | 0.010 | 0.014    | 0.000    | 0.026 | 0.000 | 0.024              | 1.000               | ✓        |
|             | 99.1579 - 97.2368 | 0.010 | 0.043    | 0.000    | 0.025 | 0.000 | 0.054              | 1.000               | ✓        |
|             | 97.2368 - 95.3158 | 0.010 | 0.072    | 0.000    | 0.026 | 0.000 | 0.083              | 1.000               | ✓        |
|             | 95.3158 - 93.3947 | 0.010 | 0.100    | 0.000    | 0.026 | 0.000 | 0.111              | 1.000               | ✓        |
|             | 93.3947 - 91.4737 | 0.010 | 0.127    | 0.000    | 0.026 | 0.000 | 0.138              | 1.000               | ✓        |
|             | 91.4737 - 89.5526 | 0.017 | 0.153    | 0.000    | 0.028 | 0.000 | 0.170              | 1.000               | ✓        |
|             | 89.5526 - 87.6316 | 0.017 | 0.179    | 0.000    | 0.027 | 0.000 | 0.196              | 1.000               | ✓        |
|             | 87.6316 - 85.7105 | 0.017 | 0.203    | 0.000    | 0.027 | 0.000 | 0.221              | 1.000               | ✓        |
|             | 85.7105 - 83.7895 | 0.017 | 0.227    | 0.000    | 0.026 | 0.000 | 0.244              | 1.000               | ✓        |
|             | 83.7895 - 81.8684 | 0.017 | 0.249    | 0.000    | 0.027 | 0.000 | 0.267              | 1.000               | ✓        |
|             | 81.8684 - 79.9474 | 0.017 | 0.271    | 0.000    | 0.027 | 0.000 | 0.289              | 1.000               | ✓        |
|             | 79.9474 - 78.0263 | 0.014 | 0.295    | 0.000    | 0.033 | 0.003 | 0.310              | 1.000               | ✓        |
|             | 78.0263 - 76.1053 | 0.014 | 0.322    | 0.000    | 0.032 | 0.003 | 0.337              | 1.000               | ✓        |
|             | 76.1053 - 74.1842 | 0.014 | 0.347    | 0.000    | 0.032 | 0.003 | 0.362              | 1.000               | ✓        |
|             | 74.1842 - 72.2632 | 0.014 | 0.371    | 0.000    | 0.032 | 0.003 | 0.386              | 1.000               | ✓        |
|             | 72.2632 - 70.3421 | 0.014 | 0.395    | 0.000    | 0.032 | 0.002 | 0.409              | 1.000               | ✓        |


| Section No. | Elevation ft      | Ratio $\frac{P_u}{\phi P_n}$ | Ratio $\frac{M_{ux}}{\phi M_{nx}}$ | Ratio $\frac{M_{uy}}{\phi M_{ny}}$ | Ratio $\frac{V_u}{\phi V_n}$ | Ratio $\frac{T_u}{\phi T_n}$ | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------|-------------------|------------------------------|------------------------------------|------------------------------------|------------------------------|------------------------------|--------------------|---------------------|----------|
|             | 70.3421 - 68.4211 | 0.014                        | 0.417                              | 0.000                              | 0.032                        | 0.002                        | 0.432              | 1.000               | ✓        |
|             | 68.4211 - 66.5    | 0.014                        | 0.439                              | 0.000                              | 0.032                        | 0.002                        | 0.454              | 1.000               | ✓        |
|             | 66.5 - 63         | 0.007                        | 0.244                              | 0.000                              | 0.016                        | 0.001                        | 0.251              | 1.000               | ✓        |
| L2          | 66.5 - 63         | 0.007                        | 0.239                              | 0.000                              | 0.015                        | 0.001                        | 0.246              | 1.000               | ✓        |
|             | 63 - 61.2128      | 0.014                        | 0.507                              | 0.000                              | 0.032                        | 0.002                        | 0.523              | 1.000               | ✓        |
|             | 61.2128 - 59.4256 | 0.014                        | 0.525                              | 0.000                              | 0.031                        | 0.002                        | 0.541              | 1.000               | ✓        |
|             | 59.4256 - 57.6383 | 0.014                        | 0.543                              | 0.000                              | 0.031                        | 0.002                        | 0.558              | 1.000               | ✓        |
|             | 57.6383 - 55.8511 | 0.014                        | 0.560                              | 0.000                              | 0.031                        | 0.002                        | 0.575              | 1.000               | ✓        |
|             | 55.8511 - 54.0639 | 0.014                        | 0.576                              | 0.000                              | 0.031                        | 0.002                        | 0.592              | 1.000               | ✓        |
|             | 54.0639 - 52.2767 | 0.014                        | 0.592                              | 0.000                              | 0.031                        | 0.002                        | 0.608              | 1.000               | ✓        |
|             | 52.2767 - 50.4894 | 0.015                        | 0.608                              | 0.000                              | 0.031                        | 0.002                        | 0.623              | 1.000               | ✓        |
|             | 50.4894 - 48.7022 | 0.015                        | 0.623                              | 0.000                              | 0.030                        | 0.002                        | 0.638              | 1.000               | ✓        |
|             | 48.7022 - 46.915  | 0.015                        | 0.637                              | 0.000                              | 0.030                        | 0.002                        | 0.653              | 1.000               | ✓        |
|             | 46.915 - 45.1278  | 0.015                        | 0.651                              | 0.000                              | 0.030                        | 0.002                        | 0.667              | 1.000               | ✓        |
|             | 45.1278 - 43.3406 | 0.015                        | 0.665                              | 0.000                              | 0.030                        | 0.002                        | 0.681              | 1.000               | ✓        |
|             | 43.3406 - 41.5533 | 0.015                        | 0.679                              | 0.000                              | 0.030                        | 0.002                        | 0.694              | 1.000               | ✓        |
|             | 41.5533 - 39.7661 | 0.015                        | 0.692                              | 0.000                              | 0.030                        | 0.002                        | 0.708              | 1.000               | ✓        |
|             | 39.7661 - 37.9789 | 0.015                        | 0.705                              | 0.000                              | 0.029                        | 0.002                        | 0.720              | 1.000               | ✓        |
|             | 37.9789 - 36.1917 | 0.015                        | 0.717                              | 0.000                              | 0.029                        | 0.002                        | 0.733              | 1.000               | ✓        |
|             | 36.1917 - 34.4044 | 0.015                        | 0.729                              | 0.000                              | 0.029                        | 0.002                        | 0.745              | 1.000               | ✓        |
|             | 34.4044 - 32.6172 | 0.015                        | 0.741                              | 0.000                              | 0.029                        | 0.002                        | 0.757              | 1.000               | ✓        |
|             | 32.6172 - 30.83   | 0.015                        | 0.753                              | 0.000                              | 0.029                        | 0.002                        | 0.769              | 1.000               | ✓        |
|             | 30.83 - 26.5      | 0.008                        | 0.397                              | 0.000                              | 0.015                        | 0.001                        | 0.405              | 1.000               | ✓        |
| L3          | 30.83 - 26.5      | 0.008                        | 0.389                              | 0.000                              | 0.014                        | 0.001                        | 0.397              | 1.000               | ✓        |
|             | 26.5 - 25.1579    | 0.016                        | 0.800                              | 0.000                              | 0.029                        | 0.001                        | 0.817              | 1.000               | ✓        |
|             | 25.1579 - 23.8158 | 0.016                        | 0.808                              | 0.000                              | 0.029                        | 0.001                        | 0.825              | 1.000               | ✓        |

| Section No.       | Elevation ft | Ratio $\frac{P_u}{\phi P_n}$ | Ratio $\frac{M_{ux}}{\phi M_{nx}}$ | Ratio $\frac{M_{uy}}{\phi M_{ny}}$ | Ratio $\frac{V_u}{\phi V_n}$ | Ratio $\frac{T_u}{\phi T_n}$ | Comb. Stress Ratio | Allow. Stress Ratio | Criteria |
|-------------------|--------------|------------------------------|------------------------------------|------------------------------------|------------------------------|------------------------------|--------------------|---------------------|----------|
| 23.8158 - 22.4737 | 0.016        | 0.816                        | 0.000                              | 0.028                              | 0.001                        | 0.833                        | 1.000              | ✓                   |          |
| 22.4737 - 21.1316 | 0.016        | 0.824                        | 0.000                              | 0.028                              | 0.001                        | 0.840                        | 1.000              | ✓                   |          |
| 21.1316 - 19.7895 | 0.016        | 0.831                        | 0.000                              | 0.028                              | 0.001                        | 0.848                        | 1.000              | ✓                   |          |
| 19.7895 - 18.4474 | 0.016        | 0.839                        | 0.000                              | 0.028                              | 0.001                        | 0.856                        | 1.000              | ✓                   |          |
| 18.4474 - 17.1053 | 0.016        | 0.846                        | 0.000                              | 0.028                              | 0.001                        | 0.863                        | 1.000              | ✓                   |          |
| 17.1053 - 15.7632 | 0.016        | 0.854                        | 0.000                              | 0.028                              | 0.001                        | 0.870                        | 1.000              | ✓                   |          |
| 15.7632 - 14.4211 | 0.016        | 0.861                        | 0.000                              | 0.028                              | 0.001                        | 0.878                        | 1.000              | ✓                   |          |
| 14.4211 - 13.0789 | 0.016        | 0.868                        | 0.000                              | 0.028                              | 0.001                        | 0.885                        | 1.000              | ✓                   |          |
| 13.0789 - 11.7368 | 0.016        | 0.875                        | 0.000                              | 0.027                              | 0.001                        | 0.892                        | 1.000              | ✓                   |          |
| 11.7368 - 10.3947 | 0.016        | 0.882                        | 0.000                              | 0.027                              | 0.001                        | 0.899                        | 1.000              | ✓                   |          |
| 10.3947 - 9.05263 | 0.016        | 0.888                        | 0.000                              | 0.027                              | 0.001                        | 0.905                        | 1.000              | ✓                   |          |
| 9.05263 - 7.71053 | 0.016        | 0.895                        | 0.000                              | 0.027                              | 0.001                        | 0.912                        | 1.000              | ✓                   |          |
| 7.71053 - 6.36842 | 0.016        | 0.902                        | 0.000                              | 0.027                              | 0.001                        | 0.919                        | 1.000              | ✓                   |          |
| 6.36842 - 5.02632 | 0.016        | 0.908                        | 0.000                              | 0.027                              | 0.001                        | 0.925                        | 1.000              | ✓                   |          |
| 5.02632 - 3.68421 | 0.017        | 0.915                        | 0.000                              | 0.027                              | 0.001                        | 0.932                        | 1.000              | ✓                   |          |
| 3.68421 - 2.34211 | 0.017        | 0.921                        | 0.000                              | 0.027                              | 0.001                        | 0.938                        | 1.000              | ✓                   |          |
| 2.34211 - 1       | 0.017        | 0.927                        | 0.000                              | 0.026                              | 0.001                        | 0.945                        | 1.000              | ✓                   |          |

### Section Capacity Table

| Section No. | Elevation ft | Component Type | Size                     | Critical Element | P lb      | $\phi P_{allow}$ lb | % Capacity      | Pass Fail   |             |
|-------------|--------------|----------------|--------------------------|------------------|-----------|---------------------|-----------------|-------------|-------------|
| L1          | 103 - 63     | Pole           | TP25x18x0.1875           | 1                | -11547.20 | 842518.00           | 45.4            | Pass        |             |
| L2          | 63 - 26.5    | Pole           | TP31.0125x24.0125x0.1875 | 2                | -15801.10 | 1046790.00          | 76.9            | Pass        |             |
| L3          | 26.5 - 1     | Pole           | TP35.1x29.8798x0.188     | 3                | -20017.50 | 1195960.00          | 94.5            | Pass        |             |
|             |              |                |                          |                  |           |                     | Summary         |             |             |
|             |              |                |                          |                  |           |                     | Pole (L3)       | 94.5        | Pass        |
|             |              |                |                          |                  |           |                     | Base Plate      | 81.3        | Pass        |
|             |              |                |                          |                  |           |                     | Fatigue         | 97.6        | Pass        |
|             |              |                |                          |                  |           |                     | <b>RATING =</b> | <b>97.6</b> | <b>Pass</b> |







PROJECT: SF POLICE ACADEMY

**JOB NO.:** U1133.0725.261  
**SUBJECT:** Appurtenance Mounting Systems  
 (TIA-222-I Chapter 16)

**Three-Sided Friction Collars:**Structure Type: **Monopole****Monopole Inputs:**

Tubular Pole Yield Strength,  $F_y$ : 65 ksi  
 Tubular Pole Shaft Thickness,  $t$ : 0.1875 in  
 Tubular Pole Shaft Diameter,  $D$ : 20.28 in (worst case)

**Collar Mount & Threaded Rod Inputs:**Collar Mount Bearing Type: **Horizontal**Width Between Collar Outside Bearing Points on Tubular Pole Shaft,  $B_p$ : 4.00 in

Height of Collar,  $h_v$ : 9.6 in  
 Horizontal Width Between Attachments of Threaded Rods at Weldment,  $w_t$ : 16.2 in

Vertical Levels of Threaded Rods: 3  
 Threaded Rod Grade: A307  
 Threaded Rod Diameter: 0.625 in

**Loading:**Applied moment about horizontal axis of weldment,  $M_h$ : 23.27 k-in**Threaded Rod Checks:****Collars utilizing three vertical levels of threaded rods:**

Vertical Location of Top Threaded Rod,  $s_1$ : 7.3 in (TIA-222-I §16.5.1)  
 Vertical Location of Middle Threaded Rod,  $s_2$ : 5 in (TIA-222-I §16.5.1)  
 Vertical Location of Bottom Threaded Rod,  $s_3$ : 2.5 in (TIA-222-I §16.5.1)  
 Centroid of Threaded Rod Group,  $y$ : 6.5 in (TIA-222-I §16.5.1)  
 Weldment Bearing Ratio,  $\beta$ : 0.247104  
 Tension offset,  $\delta$ : 6.2 in (TIA-222-I §16.5.1)  
 Tensile Force in Top Threaded Rod,  $T_1$ : 13.4 k (TIA-222-I §16.5.1)  
 Tensile Force in Middle Threaded Rod,  $T_2$ : 7.8 k (TIA-222-I §16.5.1)  
 Tensile Force in Bottom Threaded Rod,  $T_3$ : 2.6 k (TIA-222-I §16.5.1)  
 Threaded Rod Capacity: 31.1 k (AISC 360 Eq. J3-1)  
 Check Threaded Rod: 43%

**(3) Ø0.625 in. A307 threaded rods are adequate to resist the proposed loading.**

Notes:

**Monopole Localized Plastification Checks:****Horizontally Oriented Compression Zone:**

Local Plastification of Tubular Pole shaft,  $R_n$ : 14.96 k (TIA-222-I §16.5.1)  
 Pole Shaft Capacity,  $\phi R_n$ : 13.46 k (TIA-222-I §16.5.1)  
 Demand on Pole Shaft: 2.43 k  
 Local Plastification Check: 18%

**Result: Pole shaft is adequate.**

Notes:



## PROJECT: SF POLICE ACADEMY

**JOB NO.:** U1133.0725.261  
**SUBJECT:** Appurtenance Mounting  
 Systems (TIA-222-I Chapter  
 16)

| Location: Monopole<br>On a: pole structure at 100 ft A.G.L.                            |                 |                               |                  |                  |              |                 |        | Wind per:<br>Seismic per: | TIA-222-I<br>TIA-222-I |  |                                   |
|----------------------------------------------------------------------------------------|-----------------|-------------------------------|------------------|------------------|--------------|-----------------|--------|---------------------------|------------------------|--|-----------------------------------|
| Appurtenances                                                                          | Quintel QD668-2 | Ericsson Air 6419 B77G + B77D | Quintel QD6612-2 | RRU 4490 B5/B12A | RRU 4478 B14 | RRU 4830 B2/B66 | Raycap |                           |                        |  | Worst Case Loading Per Mount Pipe |
| Antenna Mount Pipe Location:                                                           | 1               | 2                             | 3                | 70.0             | 60.0         | 69.5            | 26.2   |                           |                        |  |                                   |
| Unit Weight (lbs)                                                                      | 55.5            | 161.4                         | 120.9            |                  |              |                 |        |                           |                        |  | 161.4                             |
| Quantity                                                                               | 1               | 1                             | 1                | 1                | 1            | 1               | 1      |                           |                        |  |                                   |
| Height (Y) (in)                                                                        | 72              | 56.6                          | 72               | 20.6             | 18.1         | 20.6            | 31.3   |                           |                        |  |                                   |
| Width/Diameter (X) (in)                                                                | 18.1            | 16.1                          | 22               | 15.6             | 13.4         | 15.7            | 11     |                           |                        |  |                                   |
| Depth (Z) (in)                                                                         | 9.6             | 7.9                           | 9.6              | 7                | 8.26         | 7.2             |        |                           |                        |  |                                   |
| Shape:                                                                                 | Flat            | Flat                          | Flat             | Flat             | Flat         | Flat            | Round  |                           |                        |  |                                   |
| <b>Wind Force per Unit:</b>                                                            |                 |                               |                  |                  |              |                 |        |                           |                        |  |                                   |
| (EPA) <sub>N</sub> (ft <sup>2</sup> )                                                  | 11.45           | 7.88                          | 13.58            | 2.68             | 2.02         | 2.70            | 1.21   |                           |                        |  |                                   |
| (EPA) <sub>T</sub> (ft <sup>2</sup> )                                                  | 6.80            | 4.36                          | 6.80             | 1.22             | 1.25         | 1.25            | 1.21   |                           |                        |  |                                   |
| Factored (LRFD): (1.0W)                                                                |                 |                               |                  |                  |              |                 |        |                           |                        |  |                                   |
| Normal Force (K <sub>a</sub> *q <sub>z</sub> *G <sub>h</sub> *(EPA) <sub>N</sub> )     | 301.9           | 207.6                         | 357.8            | 70.6             | 53.3         | 71.0            | 32.0   |                           |                        |  | 357.8                             |
| Tangential Force (K <sub>a</sub> *q <sub>z</sub> *G <sub>h</sub> *(EPA) <sub>T</sub> ) | 179.2           | 115.0                         | 179.2            | 32.2             | 32.8         | 33.0            | 32.0   |                           |                        |  | 179.2                             |
| <b>Seismic Force per Unit:</b>                                                         |                 |                               |                  |                  |              |                 |        |                           |                        |  |                                   |
| Factored (LRFD): (1.0E)                                                                |                 |                               |                  |                  |              |                 |        |                           |                        |  |                                   |
| Lateral (lbs)                                                                          | 54.1            | 157.4                         | 117.9            | 68.3             | 58.5         | 67.8            | 25.5   |                           |                        |  | 157.4                             |
| Vertical (lbs)                                                                         | 14.4            | 42.0                          | 31.4             | 18.2             | 15.6         | 18.1            | 6.8    |                           |                        |  | 42.0                              |

Dead Load, D:

|                          |                 |                                          |
|--------------------------|-----------------|------------------------------------------|
| Weight of Structure:     | $W_S = 1229$ lb | (1.05 x Material Weight from RISA Model) |
| Weight of Appurtenances: | $W_A = 564$ lb  |                                          |
| Total Weight:            | $W_p = 1793$ lb |                                          |

Wind Load, W:

(TIA-222-I, Section 2.6: Wind and Ice Loads)

|                                                        |                    |                                                      |
|--------------------------------------------------------|--------------------|------------------------------------------------------|
| Basic Wind Speed:                                      | $V = 99$ mph       | (ASCE 7 Online Hazard Tool Lookup - ASCE 7-22)       |
| Exposure Category:                                     | C                  | (TIA-222-I §2.6.5.1.2)                               |
| Topographic Feature:                                   | Flat               | (TIA-222-I §2.6.6.2)                                 |
| Crest Height:                                          | $H = N/A$ ft       | (TIA-222-I §2.6.6)                                   |
| Gust Effect Factor:                                    | $G_h = 1$          | (TIA-222-I §16.6)                                    |
| Shielding Factor:                                      | $K_a = 0.9$        | (TIA-222-I §16.6)                                    |
| Velocity Pressure Coefficient:                         | $K_z = 1.25$       | (TIA-222-I §2.6.5.2)                                 |
| Topographic Factor:                                    | $K_{zt} = 1.00$    | (TIA-222-I §2.6.6.2.1)                               |
| Rooftop Wind Speed-Up Factor:                          | $K_s = 1.00$       | (TIA-222-I §2.6.7)                                   |
| Ground Elevation Factor:                               | $K_e = 0.98$       | (TIA-222-I §2.6.8)                                   |
| Directionality Factor:                                 | $K_d = 0.95$       | (TIA-222-I §16.6)                                    |
| Velocity Pressure:                                     | $q_z = 29.3$ psf   | (TIA-222-I §2.6.11.6)                                |
| Open Structure Wind Pressure:                          | $35.1$ psf         | ( $q_z \times CF \times G_h$ ) (TIA-222-I §2.6.11.1) |
| Total Factored X-Direction Wind (Appurt. & Structure): | $F_{wx} = 1094$ lb |                                                      |
| Total Factored Z-Direction Wind (Appurt. & Structure): | $F_{wz} = 603$ lb  |                                                      |



## PROJECT: SF POLICE ACADEMY

**JOB NO.:** U1133.0725.261  
**SUBJECT:** Appurtenance Mounting  
 Systems (TIA-222-I Chapter  
 16)

Seismic Load, E:

(ASCE 7, Section 13.3: Seismic Demands on Non-Structural Components)

|                                                                   |                     |                         |
|-------------------------------------------------------------------|---------------------|-------------------------|
| Risk Category / Structure Class:                                  | III                 |                         |
| Seismic Design Category:                                          | D                   |                         |
| Component Importance Factor:                                      | $I_p = 1.25$        | (TIA-222-I §2.7.8)      |
| Site Class:                                                       | 0                   |                         |
| Mapped Spectral Response Acc. Parameter (Short Periods):          | $S_s = 1.840$       | (ASCE 7 §11.4.1)        |
| Mapped Spectral Response Acc. Parameter (1 s Period):             | $S_1 = 0.700$       | (ASCE 7 §11.4.1)        |
| Design Spectral Response Acc. Parameter (Short Periods):          | $S_{DS} = 1.300$    | (ASCE 7 §11.4.4)        |
| Design Spectral Response Acc. Parameter (1 s Period):             | $S_{D1} = 1.380$    | (ASCE 7 §11.4.4)        |
| Component Response Modification Factor:                           | $R_p = 2.0$         | (TIA-222-I §16.7)       |
| Component Amplification Factor:                                   | $a_p = 1.2$         | (TIA-222-I §2.7.9)      |
| Overstrength Factor (req'd for anchorage to concrete):            | $\Omega_o = 1.5$    | (TIA-222-I §2.7.10)     |
| Lateral Seismic Design Force Weight Multiplier:                   | $F_p/W = 0.975$     | (TIA-222-I §2.7.8)      |
| Vertical Seismic Design Force Weight Multiplier:                  | $F_v/W = 0.260$     | (TIA-222-I §2.7.8)      |
| Unfactored X-Direction Seismic Design Force:                      | $F_{p,x} = 1748$ lb | (TIA-222-I §2.7.8)      |
| Unfactored Z-Direction Seismic Design Force:                      | $F_{p,z} = 1748$ lb | (TIA-222-I §2.7.8)      |
| Unfactored Vertical Seismic Design Force:                         | $F_v = 466$ lb      | (TIA-222-I §2.7.8)      |
| Total Factored (LRFD) X-Dir Seismic Design Force: $1.0*F_{p,x} =$ | 1748 lb             | <b>Seismic Controls</b> |
| Total Factored (LRFD) Z-Dir Seismic Design Force: $1.0*F_{p,z} =$ | 1748 lb             | <b>Seismic Controls</b> |
| Total Factored (LRFD) Vertical Seismic Design Force: $1.0*F_v =$  | 466 lb              |                         |

Ice Load, Di & Wi:

(TIA-222-H, Section 2.6.10: Design Ice Thickness)

|                                  |                             |                                                |
|----------------------------------|-----------------------------|------------------------------------------------|
| Does Ice Need to be Considered?: | <input type="checkbox"/> No |                                                |
| Design Ice Thickness:            | $t_i = 0$ in                | (ASCE 7 Online Hazard Tool Lookup - ASCE 7-22) |

Live Loads, L:

|                                                |                     |                                                                  |
|------------------------------------------------|---------------------|------------------------------------------------------------------|
| Maintenance Load at Mount Pipe:                | $L_M = 500$ lbs     | (TIA-222-I, Section 16.3) - Apply at worst-case mount pipe       |
| Maintenance Load at Center of Horizontal Beam: | $L_V = 250$ lbs     | (TIA-222-I, Section 16.3) - Apply for beam supported at each end |
| Area Load:                                     | N/A psf             |                                                                  |
| Affected Area:                                 | N/A ft <sup>2</sup> |                                                                  |

Snow Loads, S.:Design Roof Snow Load:  $S = \boxed{\text{N/A}}$  psf (ASCE 7, Chapter 7)Summary:

Vertical Loads Controlled By: **"1.2 Dead + 1.5 LM" Load Combo**  
 X-Direction Horizontal Loads Controlled By: **Seismic Load Combos**  
 Z-Direction Horizontal Loads Controlled By: **Seismic Load Combos**

Demand Classification: M375R(175)-3[6] (Classification per TIA-5053-A)  
 Mount Manufacturer Classification: M1300R(1300)-4[6] (Classification per TIA-5053-A) (See attached manufacturer report)  
**Result: Mount is adequate to support the proposed design loading**



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*

PROJECT: SF Police Academy

DESIGN APPROACH: LRFD

Port Fatigue Checks Description: Upper Ports

|                           |        |
|---------------------------|--------|
| Elevation AGL (ft):       | 90     |
| Max axial load (k):       | 0.0    |
| Max moment demand (k-ft): | 7.9    |
| Pole Dia (in):            | 20.275 |
| Pole Thickness (in):      | 0.1875 |
| Port Projection (in):     | 0.5    |

| Location            | $\phi_f \Delta F_{TH}$ (ksi) | $A_g$ (in <sup>2</sup> ) | $I$ (in <sup>4</sup> ) | y (in) | $\Delta f$ (ksi) | Check |
|---------------------|------------------------------|--------------------------|------------------------|--------|------------------|-------|
| Top, Pole           | 7                            | 10.8                     | 454.1                  | 10.1   | 0.2              | 3%    |
| Center, Pole & Port | 16                           | 13.4                     | 562.9                  | 10.6   | 0.1              | 1%    |
| Bottom, Pole        | 7                            | 10.8                     | 454.1                  | 10.1   | 0.2              | 3%    |

Result: Okay, adequate

Note: Using ultimate reactions \*(1.0 Gh \* 5 psf fatigue wind pressure)/(0.95 ultimate Gh \* 29 psf ultimate wind pressure)

Port Fatigue Checks Description: Lower Ports

|                           |        |
|---------------------------|--------|
| Elevation AGL (ft):       | 3      |
| Max axial load (k):       | 0.0    |
| Max moment demand (k-ft): | 137.3  |
| Pole Dia (in):            | 34.75  |
| Pole Thickness (in):      | 0.1875 |
| Port Projection (in):     | 0.5    |

| Location            | $\phi_f \Delta F_{TH}$ (ksi) | $A_g$ (in <sup>2</sup> ) | $I$ (in <sup>4</sup> ) | y (in) | $\Delta f$ (ksi) | Check |
|---------------------|------------------------------|--------------------------|------------------------|--------|------------------|-------|
| Top, Pole           | 7                            | 20.4                     | 3040                   | 17.4   | 0.0              | 1%    |
| Center, Pole & Port | 16                           | 24.7                     | 4132                   | 17.9   | 0.0              | 0%    |
| Bottom, Pole        | 7                            | 20.4                     | 3040                   | 17.4   | 0.0              | 1%    |

Result: Okay, adequate

Note: Conservatively using overturning moment from fatigue loads at base of monopole.



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*

PROJECT: SF Police Academy

## Anchor Fatigue Checks    Description: Foundation Anchors

|                                         |       |                                                                          |
|-----------------------------------------|-------|--------------------------------------------------------------------------|
| Uplift (k):                             | 0     |                                                                          |
| Overturning Moment (k-ft)               | 137.3 | tnxTower Along-Wind Gust Tower Force Section                             |
| Number of anchors, n:                   | 8     |                                                                          |
| Bolt Circle (in)                        | 41.0  |                                                                          |
| Anchor correction factor, nc:           | 1.05  | TIA-222-I Annex Q5.0                                                     |
| Max Anchor Tension (k):                 | 21.1  | $P_u = \left[ \frac{(n_c)(\pi)(M_u)}{n(D_{BC})} + \frac{R_u}{n} \right]$ |
| Anchor Dia. (in):                       | 2     |                                                                          |
| Net Tensile A (in <sup>2</sup> ):       | 2.50  | AISC Part 1, Table 7-17                                                  |
| Δf (ksi):                               | 8.4   |                                                                          |
| φ <sub>fa</sub> ΔF <sub>TH</sub> (ksi): | 10    |                                                                          |
| Check                                   | 84%   |                                                                          |

Result: Okay, adequate

Note:

## U-Bolt Fatigue Checks    Description: Site Pro 1 SP219 - Antenna mount pipe to cross arm

|                                                  |      |                         |
|--------------------------------------------------|------|-------------------------|
| q <sub>wg</sub> (psf):                           | 5.0  |                         |
| V (mph):                                         | 44.2 |                         |
| Gh:                                              | 1    |                         |
| Max EPA @ Antenna Mount Pipe (ft <sup>2</sup> ): | 16.6 |                         |
| U-bolt ends resisting:                           | 8    |                         |
| Tension per U-Bolt end, F <sub>a</sub> (lb):     | 10.4 |                         |
| U-Bolt Dia (in):                                 | 0.5  |                         |
| Net Tensile A (in <sup>2</sup> ):                | 0.14 | AISC Part 1, Table 7-17 |
| Δf (ksi):                                        | 0.1  |                         |
| φ <sub>fa</sub> ΔF <sub>TH</sub> (ksi):          | 7    |                         |
| Check                                            | 1%   |                         |

Result: Okay, adequate

Note:



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*

PROJECT: SF Police Academy

**U-Bolt Fatigue Checks**      Description: RMVD12 Dual T-arm Kit - Cross arm to standoff

|                                        |                         |
|----------------------------------------|-------------------------|
| $q_{wg}$ (psf):                        | 5.2                     |
| V (mph):                               | 44.9                    |
| Gh:                                    | 1                       |
| Max EPA per sector (ft <sup>2</sup> ): | 41.5                    |
| U-bolt ends resisting:                 | 8                       |
| Tension per U-Bolt end, Fa (lb):       | 26.8                    |
| U-Bolt Dia (in):                       | 0.625                   |
| Net Tensile A (in <sup>2</sup> ):      | 0.23                    |
|                                        | AISC Part 1, Table 7-17 |
| $\Delta f$ (ksi):                      | 0.1                     |
| $\phi_{fa}\Delta F_{TH}$ (ksi):        | 7                       |
| Check                                  | 2%                      |

**Result: Okay, adequate**

Note:

**Bolt Fatigue Checks**      Description: RMVD12 Dual T-arm Kit - Cross arm to standoff

|                                        |                         |
|----------------------------------------|-------------------------|
| $q_{wg}$ (psf):                        | 5.2                     |
| V (mph):                               | 44.9                    |
| Gh:                                    | 1                       |
| Max EPA per sector (ft <sup>2</sup> ): | 41.5                    |
| Bolts:                                 | 8                       |
| Tension per Bolt, Fa (lb):             | 26.8                    |
| Bolt Dia (in):                         | 0.5                     |
| Net Tensile A (in <sup>2</sup> ):      | 0.14                    |
|                                        | AISC Part 1, Table 7-17 |
| $\Delta f$ (ksi):                      | 0.2                     |
| $\phi_{fa}\Delta F_{TH}$ (ksi):        | 7                       |
| Check                                  | 3%                      |

**Result: Okay, adequate**

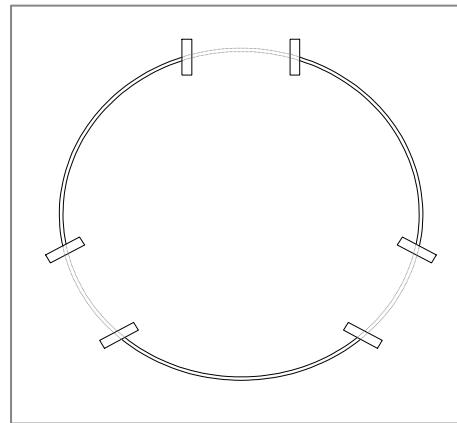
Note:



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*


PROJECT: SF POLICE ACADEMY

## Port Design:

Label: Ports at 100 ft A.G.L.

### Geometry Input

|                                |        |      |
|--------------------------------|--------|------|
| Elevation of Port, AGL         | 100.00 | ft   |
| Pole Diameter                  | 18.525 | in   |
| Pole Thickness                 | 0.1875 | in   |
| Pole Yield Strength            | 65     | ksi  |
| Pole Unit Tensile Strength     | 11.0   | k/in |
| Weld Filler Strength:          | 70     | ksi  |
| Required Fillet Weld:          | 3/8    | in   |
| Reinforcing Rim Yield Strength | 50     | ksi  |
| # of Ports                     | 3      |      |



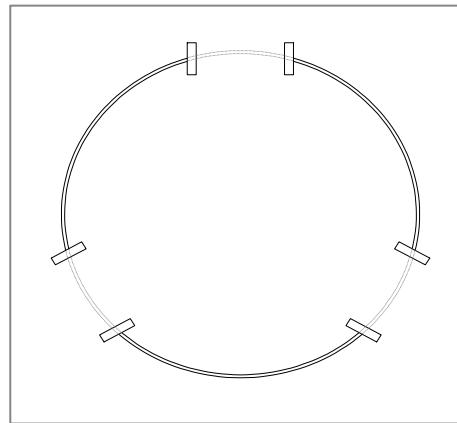
|                                      | Port 1       | Port 2       | Port 3       |
|--------------------------------------|--------------|--------------|--------------|
| Azimuth (°)                          | 0            | 120          | 240          |
| Height (in)                          | 12           | 12           | 12           |
| Width (in)                           | 6            | 6            | 6            |
| Depth (in)                           | 2            | 2            | 2            |
| Thickness (in)                       | 0.5          | 0.5          | 0.5          |
| Projection (in)                      | 0.5          | 0.5          | 0.5          |
| Reinforcing Area (in <sup>2</sup> )  | 2            | 2            | 2            |
| Pole Area Removed (in <sup>2</sup> ) | 1.15         | 1.15         | 1.15         |
| Dist. From Center to Reinf. (in)     | 8.7625       | 8.7625       | 8.7625       |
| Area Check                           | <b>74.5%</b> | <b>74.5%</b> | <b>74.5%</b> |
| MOI Check                            | <b>78.0%</b> | <b>78.0%</b> | <b>78.0%</b> |
| Individual Port Weights (lbs)        | 10           | 10           | 10           |
| Reduction in Pole Weight (lbs)       | 12           |              |              |
| Total Port Weight (lbs)              | 19           |              |              |



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*


PROJECT: SF POLICE ACADEMY

## Port Design:

Label: Ports at 90 ft A.G.L.

### Geometry Input

|                                |        |      |
|--------------------------------|--------|------|
| Elevation of Port, AGL         | 90.00  | ft   |
| Pole Diameter                  | 20.275 | in   |
| Pole Thickness                 | 0.1875 | in   |
| Pole Yield Strength            | 65     | ksi  |
| Pole Unit Tensile Strength     | 11.0   | k/in |
| Weld Filler Strength:          | 70     | ksi  |
| Required Fillet Weld:          | 3/8    | in   |
| Reinforcing Rim Yield Strength | 50     | ksi  |
| # of Ports                     | 3      |      |



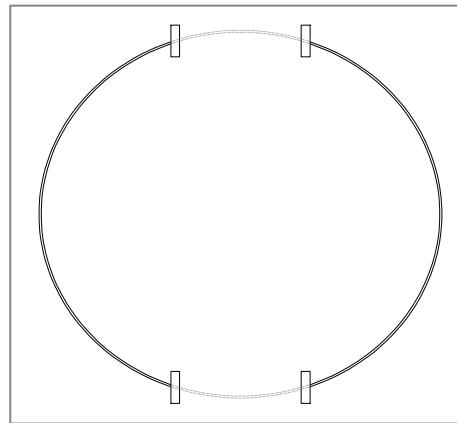
|                                      | Port 1       | Port 2       | Port 3       |
|--------------------------------------|--------------|--------------|--------------|
| Azimuth (°)                          | 0            | 120          | 240          |
| Height (in)                          | 12           | 12           | 12           |
| Width (in)                           | 6            | 6            | 6            |
| Depth (in)                           | 2            | 2            | 2            |
| Thickness (in)                       | 0.5          | 0.5          | 0.5          |
| Projection (in)                      | 0.5          | 0.5          | 0.5          |
| Reinforcing Area (in <sup>2</sup> )  | 2            | 2            | 2            |
| Pole Area Removed (in <sup>2</sup> ) | 1.14         | 1.14         | 1.14         |
| Dist. From Center to Reinf. (in)     | 9.6375       | 9.6375       | 9.6375       |
| Area Check                           | <b>74.3%</b> | <b>74.3%</b> | <b>74.3%</b> |
| MOI Check                            | <b>77.4%</b> | <b>77.4%</b> | <b>77.4%</b> |
| Individual Port Weights (lbs)        | 10           | 10           | 10           |
| Reduction in Pole Weight (lbs)       | 12           |              |              |
| Total Port Weight (lbs)              | 19           |              |              |



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

*This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.*


PROJECT: SF POLICE ACADEMY

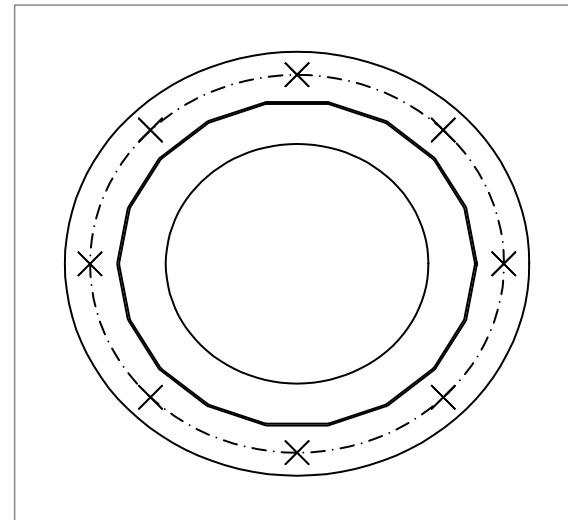
## Port Design:

Label: Ports at 3 ft A.G.L.

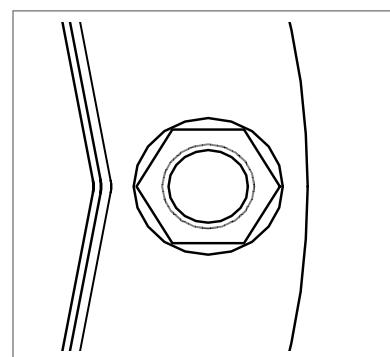
### Geometry Input

|                                |        |      |
|--------------------------------|--------|------|
| Elevation of Port, AGL         | 3.00   | ft   |
| Pole Diameter                  | 34.75  | in   |
| Pole Thickness                 | 0.1875 | in   |
| Pole Yield Strength            | 65     | ksi  |
| Pole Unit Tensile Strength     | 11.0   | k/in |
| Weld Filler Strength:          | 70     | ksi  |
| Required Fillet Weld:          | 3/8    | in   |
| Reinforcing Rim Yield Strength | 50     | ksi  |
| # of Ports                     | 2      |      |




|                                      | Port 1       | Port 2       |
|--------------------------------------|--------------|--------------|
| Azimuth (°)                          | 0            | 180          |
| Height (in)                          | 25           | 25           |
| Width (in)                           | 12           | 12           |
| Depth (in)                           | 3            | 3            |
| Thickness (in)                       | 0.75         | 0.75         |
| Projection (in)                      | 0.5          | 0.5          |
| Reinforcing Area (in <sup>2</sup> )  | 4.5          | 4.5          |
| Pole Area Removed (in <sup>2</sup> ) | 2.30         | 2.30         |
| Dist. From Center to Reinf. (in)     | 16.375       | 16.375       |
| Area Check                           | <b>66.4%</b> | <b>66.4%</b> |
| MOI Check                            | <b>70.1%</b> | <b>70.1%</b> |
| Individual Port Weights (lbs)        | 47           | 47           |
| Reduction in Pole Weight (lbs)       | 33           |              |
| Total Port Weight (lbs)              | 62           |              |




PROJECT: SF POLICE ACADEMY

### Monopole Baseplate & Anchorage Design per TIA-222-H Annex Q & TIA-222-H Section 4.9.9

| Quantity                    | Symbol          | Value    | Units |
|-----------------------------|-----------------|----------|-------|
| Number of sides             |                 | 18       |       |
| Flat O.D.                   | D <sub>T</sub>  | 35.10    | in    |
| Pole wall thickness         | t <sub>T</sub>  | 0.1875   | in    |
| Pole yield strength         | F <sub>yp</sub> | 65       | ksi   |
| Bend Radius                 |                 | 0.75     | in    |
| Base plate fillet weld size |                 | 0.25     | in    |
| Anchor diameter             | d               | 2        | in    |
| Number of anchors           | n               | 8        |       |
| Anchor grade                |                 | F1554-55 |       |
| Base plate thickness        | t <sub>TP</sub> | 2        | in    |
| Base plate yield strength   | F <sub>yf</sub> | 50       | ksi   |
| Anchor hole diameter        |                 | 2.3125   | in    |
| Slotted to outside edge?    |                 | Yes      |       |
| Flat washer diameter        |                 | 3.75     |       |
| Zinc drain hole diameter    |                 | 2.3125   |       |
| Zinc drain circle           |                 | 31       | in    |
| Bolt circle diameter        | D <sub>BC</sub> | 41       | in    |
| Plate O.D.                  | D <sub>OD</sub> | 46       | in    |
| Plate I.D.                  |                 | 26       | in    |

**Base Plate Illustration**

| LRFD Loads           |            | Wind                       | Seismic     |
|----------------------|------------|----------------------------|-------------|
|                      | Axial down | R <sub>u,c</sub> 20.03 k   | 21.33 k     |
|                      | Axial up   | R <sub>u,t</sub> 0 k       | 0.00 k      |
|                      | Shear      | V <sub>u</sub> 9.64 k      | 5.35 k      |
|                      | Moment     | M <sub>u</sub> 798.22 k-ft | 524.17 k-ft |
| Member mom. capacity |            | ΦM <sub>n</sub> 871 k-ft   |             |

**Fit Check**

|        |                                  |        |                   |
|--------|----------------------------------|--------|-------------------|
| Checks | Plate stress ratio               | 66.4%  | OK                |
|        | Anchor unity check               | 80.5%  | OK                |
|        | Min. number of sides             | 18     | OK 6 minimum      |
|        | Min. number of anchors           | 8      | OK 8 minimum      |
|        | Max. anchor rod to pole distance | 2.83"  | OK 12" maximum    |
|        | Min. anchor diameter             | 2"     | OK 0.75" minimum  |
|        | Max. anchor rod spacing          | 16.1"  | NG 12" maximum    |
|        | Min. anchor rod spacing          | 15.69" | OK 6" minimum     |
|        | Min. base plate thickness        | 2"     | OK 1.75" minimum  |
|        | Min. inside diameter             | 26"    | OK 10.53" minimum |
|        | Max. inside diameter             | 26"    | OK 30.75" maximum |

Note: when number of anchors is less than minimum and when maximum anchor rod spacing is exceeded, adjustments are made to the effective plate width calculations as if requirements of TIA-222-H Annex Q were met.

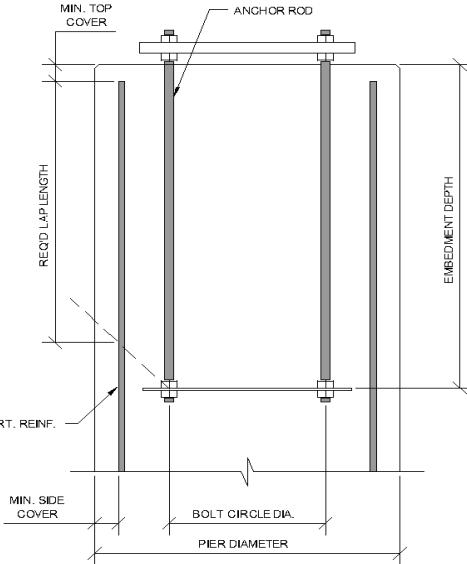
| Check:             | Dist.  | Result |
|--------------------|--------|--------|
| Washer vs weld     | 0.4125 | OK     |
| Washer vs OD       | 0.4688 | OK     |
| Washer covers hole | 0.5625 | OK     |



JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

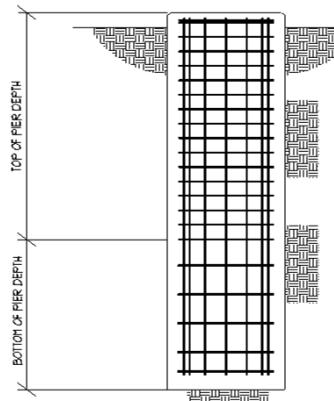

PROJECT: SF POLICE ACADEMY

## Anchorage Embedment Design

(per ACI 318-19)

|                                      |      |
|--------------------------------------|------|
| Vertical Bar Size:                   | #8   |
| # of Vertical Bars:                  | 24   |
| Concrete Compressive Strength [psi]: | 4000 |
| Pier Diameter [ft]:                  | 5.5  |
| Pier Depth [ft]:                     | 50   |
| Top of Pier Elevation [in]:          | 6    |
| Concrete Volume [yd <sup>3</sup> ]:  | 44.4 |
| Side Concrete Cover [in]:            | 4    |
| Top Concrete Cover [in]:             | 2    |
| Horizontal Tie Size:                 | #4   |
| Bolt Circle Diameter [in]:           | 41   |
| # of Anchor Rods:                    | 8    |
| Anchor Rod Diameter [in]:            | 2.00 |

|                                         |             |                       |
|-----------------------------------------|-------------|-----------------------|
| $\psi_t$ (bar location factor):         | 1.0         | Table 25.4.2.4        |
| $\psi_e$ (epoxy coating factor):        | 1.0         | Table 25.4.2.4        |
| $\psi_s$ (bar size factor):             | 1.0         | Table 25.4.2.4        |
| $\lambda$ (concrete type factor):       | 1.0         | Table 25.4.2.4        |
| Vertical Bar Diameter [in]:             | 1.0         |                       |
| Horizontal Tie Diameter [in]:           | 0.500       |                       |
| Buffer [in]:                            | 0.88        |                       |
| Req'd Lap Length [in]:                  | 37.0        | in (Section 25.4.2.2) |
| <b>Min. Req'd Embedment Depth [in]:</b> | <b>46.5</b> |                       |




## Transverse Reinforcement Design

See IBC Sections 1810.3.9.4.1 and 1810.3.9.4.2

|                          |     |
|--------------------------|-----|
| Seismic Design Category: | D   |
| Apply Seismic Detailing? | Yes |
| Site Class:              | D   |

|                                   |        |
|-----------------------------------|--------|
| Type of Transverse Reinforcement: | Spiral |
| Transverse $f_y$ [ksi]:           | 60     |
| Seismic Hooks Required?           | Yes    |
| Tie Size OK?                      | Yes    |
| Spacing at Top of Pier [in]:      | 3      |
| Spacing at Bottom of Pier [in]:   | 12     |
| Total Pier Length [ft]:           | 50.5   |
| Top Pier Length [ft]:             | 16.5   |
| Bottom Pier Length [ft]:          | 34     |





JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

Project: SF POLICE ACADEMY

**Drilled Pier Design:****Applied Loads:**

|                             |         |      |
|-----------------------------|---------|------|
| Max. shear, V:              | 12.8    | k    |
| Max. moment, M:             | 1,064.3 | k-ft |
| Max. down, $P_{down}$ :     | 26.7    | k    |
| Max. uplift, $P_{uplift}$ : | 0.0     | k    |

|                            |      |
|----------------------------|------|
| Design methodology:        | LRFD |
| Maximum foundation rating: | 100% |

**Pier Properties:**

|                                               |       |    |
|-----------------------------------------------|-------|----|
| Pier shape:                                   | Round |    |
| Pier diameter, b:                             | 5.5   | ft |
| Min. pier diameter, b <sub>min</sub> (opt'l): | 0.0   | ft |
| b:                                            | 5.5   |    |
| Top of pier elevation:                        | 0.5   | ft |
| Pier depth, d:                                | 50    | ft |
| Min. pier depth, d <sub>min</sub> (opt'l):    | 50.0  | ft |

|                     |       |                 |
|---------------------|-------|-----------------|
| Volume of concrete: | 1200  | ft <sup>3</sup> |
| Volume of concrete: | 44.4  | yd <sup>3</sup> |
| Weight of concrete: | 180.0 | k               |

**Soil Properties & Analysis:**

|                                      |         |     |
|--------------------------------------|---------|-----|
| Allow. bearing pressure:             | 0       | psf |
| Gross or net?                        | Net     |     |
| 1/3 increase for short term loads?   | No      |     |
| Skin friction (down):                | 500     | psf |
| Skin friction (uplift):              | 300     | psf |
| Top length to ignore:                | 2       | ft  |
| 1/3 increase for short term loads?   | Yes     |     |
| Combine skin friction & end bearing? | Yes     |     |
| Bearing capacity:                    | 1,105.8 | k   |
| Uplift capacity:                     | 825.5   | k   |

**Results:**

**Bearing capacity OK.**  
**Uplift capacity OK.**

**Lateral analysis in LPILE**

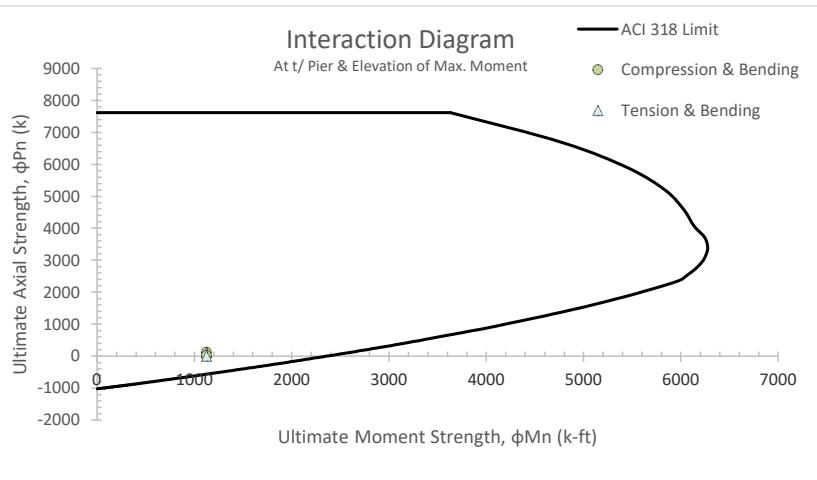


JOB NO.: U1133.0725.261

Copyright © 2026 Vector Structural Engineering, LLC

This Excel workbook contains proprietary information belonging to Vector Structural Engineering, LLC, and may be neither wholly nor partially copied or reproduced without the prior written permission of Vector Structural Engineering, LLC.

PROJECT: SF Police Academy


## Drilled Pier Reinforcement:

### Design Requirements:

|                        |        |                                   |                   |                                                            |        |
|------------------------|--------|-----------------------------------|-------------------|------------------------------------------------------------|--------|
| Max. Moment, M (k-ft): | 798.2  | Max. Down, P <sub>down</sub> (k): | 20.0              | Required Foundation UC Limit:                              | 100%   |
| Max. Shear, V (k):     | 9.6    | Max. Uplift, P <sub>up</sub> (k): | 0.0               | M <sub>u</sub> , M+V*H+P <sub>max</sub> *E (k-ft):         | 1124.3 |
| Height of V (ft):      | 33.833 | Eccentricity for P (in):          | 0                 | (Uplift is negative for comparison w/ Interaction Diagram) |        |
|                        |        | Concrete Self-weight (k):         | 116.6 (0.145 pcf) |                                                            |        |

### Pier Properties:

|                                                 |            |
|-------------------------------------------------|------------|
| Code Reference:                                 | ACI 318-19 |
| Pier Diameter (ft):                             | 5.5        |
| Top of Pier Elevation (in):                     | 6          |
| Pier Depth (ft):                                | 50         |
| Vertical Bar Size:                              | #8         |
| Bar Diameter (in):                              | 1          |
| Bar Area (in <sup>2</sup> ):                    | 0.79       |
| Seismic Design Category:                        | D          |
| # of Vertical Bars:                             | 24         |
| Vert. Yield Strength (psi):                     | 60000      |
| Horizontal Reinf. Type:                         | Spiral     |
| Horizontal Reinf. Size:                         | #4         |
| Horizontal Reinf. Diameter (in):                | 0.5        |
| Side Concrete Cover (in):                       | 4          |
| Vert. Edge Distance (in):                       | 4.5        |
| Conc. Comp. Strength, f <sub>c</sub> (psi):     | 4000       |
| Angle Between Bars, δ (radians):                | 0.262      |
| Area of Steel (in <sup>2</sup> ):               | 19.0       |
| Gross Column Area (in <sup>2</sup> ):           | 3421.2     |
| Min. Reinforcement Ratio:                       | 0.50%      |
| β <sub>1</sub> :                                | 0.85       |
| Concrete Yield Strain, ε <sub>cu</sub> (in/in): | 0.003      |
| P <sub>o</sub> (k):                             | 12705      |
| φ:                                              | 0.75       |
| P <sub>n</sub> Factor:                          | 0.80       |
| φP <sub>u</sub> (pure compression, k):          | 7623       |
| Es (ksi):                                       | 29000      |
| Steel Yield Strain, ε <sub>ty</sub> (in/in):    | 0.002069   |
| Number of verticals in top row:                 | 1          |



(IBC Sections 1810.3.9.4.1 and 1810.3.9.4.2)

Table 22.2.4.3

Section 22.2.2.1

Eqn. 22.4.2.2

Table 21.2.2

Table 22.4.2.1

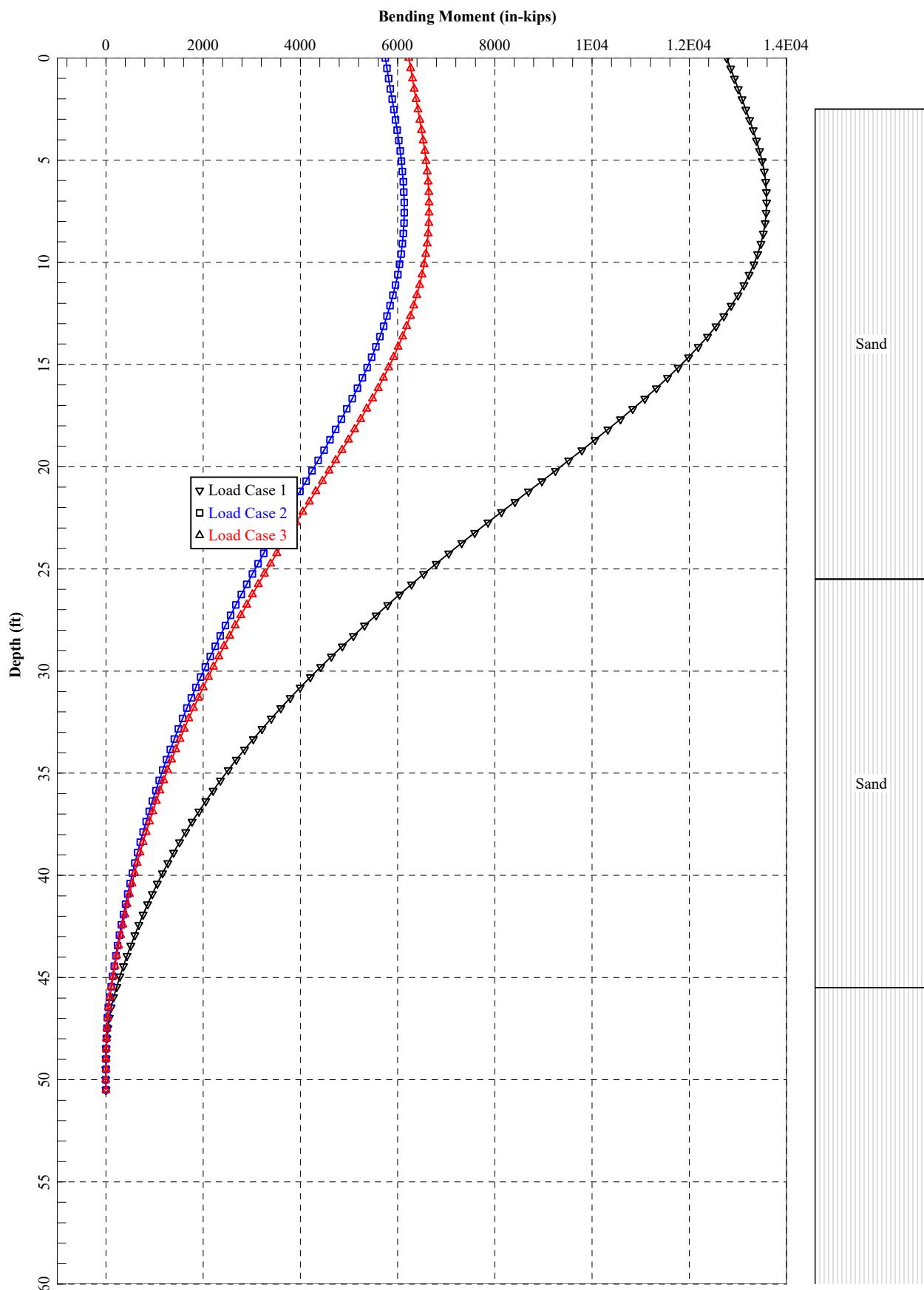
OK, Adequate

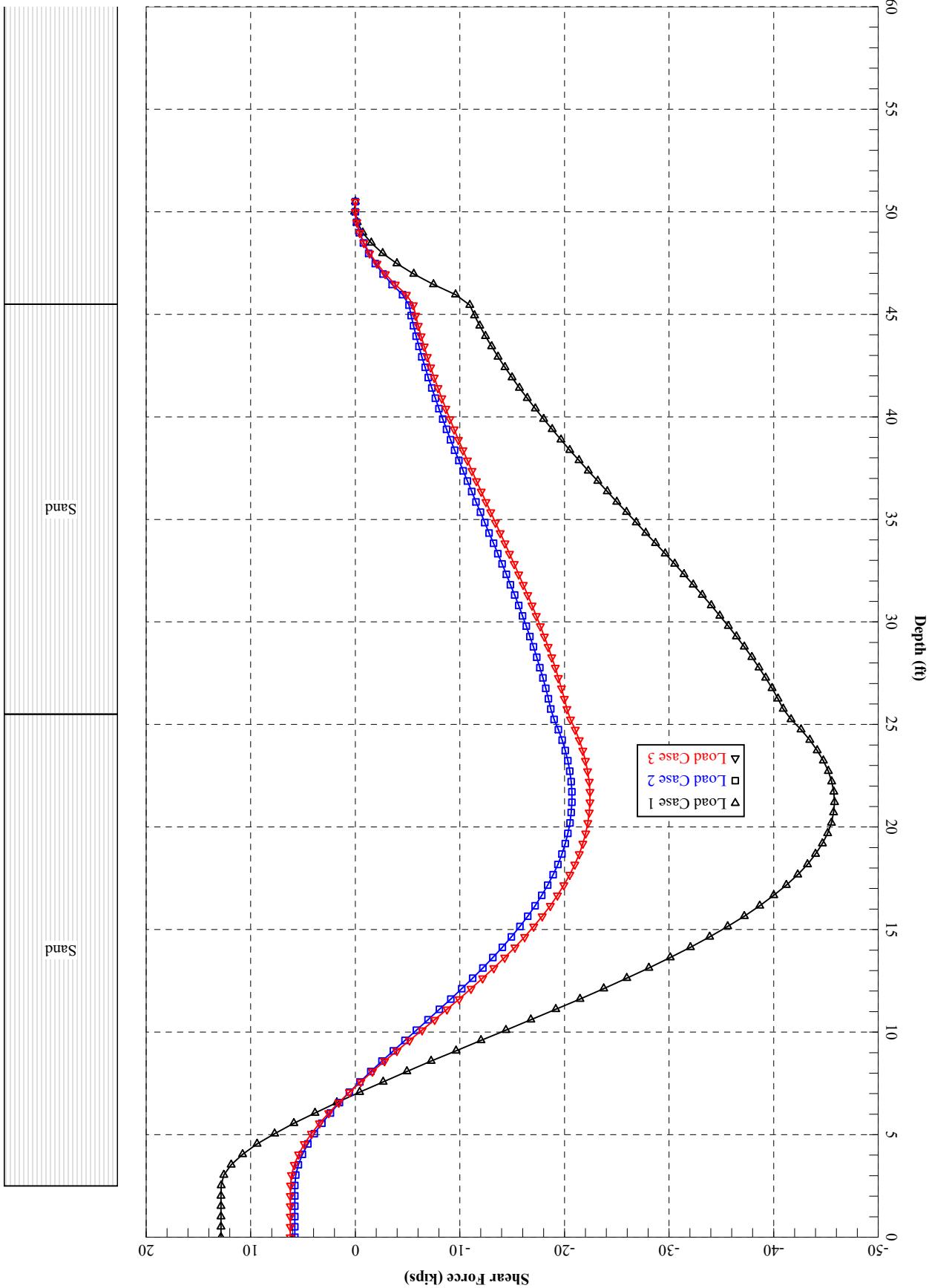
### Axial & Bending Checks:

Steel/Concrete Ratio: 0.55% &gt; Min. Reinf. Ratio

Compression &amp; Bending

|                         | @ t/ Pier | @ Max. M |
|-------------------------|-----------|----------|
| φP <sub>n</sub> (k):    | 15.0      | 119.9    |
| φM <sub>n</sub> (k-ft): | 2390.0    | 2604.1   |
| UC:                     | 47.0%     | 43.4%    |


OK, Adequate  $(P_u^2 + M_u^2)^{0.5} / (\phi P_n^2 + \phi M_n^2)^{0.5}$ 


Tension &amp; Bending

|                         | @ t/ Pier | @ Max. M |
|-------------------------|-----------|----------|
| φP <sub>n</sub> (k):    | 0.0       | 104.9    |
| φM <sub>n</sub> (k-ft): | 2359.0    | 2573.6   |
| UC:                     | 47.7%     | 43.8%    |

OK, Adequate  $(P_u^2 + M_u^2)^{0.5} / (\phi P_n^2 + \phi M_n^2)^{0.5}$







```
=====
LPile for Windows, Version 2019-11.001

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2019 by Ensoft, Inc.
All Rights Reserved

=====
This copy of LPile is being used by:
MAR
VSE
Serial Number of Security Device: 151268600

This copy of LPile is licensed for exclusive use by:
Vector Structural Engineering, D

Use of this program by any entity other than Vector Structural Engineering, D
is a violation of the software license agreement.

-----
Files Used for Analysis
-----
Path to file locations:
\\VSEFILES.vector.local\\Projects\\2026 Projects\\U1133 Steelhead Metal & Fab LLC\\U1133-0725-261
SF Police Academy (CA, monopole rev I)\\ENG\\

Name of input data file:
lpileInputFile.lp11

Name of output report file:
lpileInputFile.lp11

Name of plot output file:
lpileInputFile.lp11

Name of runtime message file:
lpileInputFile.lp11

-----
Date and Time of Analysis
-----
Date: January 28, 2026      Time: 14:33:52
-----
```

-----

**Problem Title**

Project Name: SF Police Academy

Job Number: U1133.0725.261

Client: Steelhead Metal & Fab LLC

Engineer: Draper

Description:

-----

**Program Options and Settings**

Computational Options:

- Use unfactored loads in computations (conventional analysis)

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

|                                                                                                                                                                                                                       |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| <ul style="list-style-type: none"> <li>- Maximum number of iterations allowed</li> <li>- Deflection tolerance for convergence</li> <li>- Maximum allowable deflection</li> <li>- Number of pile increments</li> </ul> | = 500<br>= 1.0000E-05 in<br>= 100.0000 in<br>= 100 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

-----  
Pile Structural Properties and Geometry  
-----

Number of pile sections defined = 1  
 Total length of pile = 50.500 ft  
 Depth of ground surface below top of pile = 2.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

| Point | Depth Below<br>Pile Head<br>No. | Depth Below<br>feet | Pile<br>Diameter<br>inches |
|-------|---------------------------------|---------------------|----------------------------|
| 1     | 0.000                           | 66.0000             |                            |
| 2     | 50.500                          | 66.0000             |                            |

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a round drilled shaft, bored pile, or CIDH pile  
 Length of section = 50.500000 ft  
 Shaft Diameter = 66.000000 in  
 Shear capacity of section = 0.0000 lbs

|                                              |                  |
|----------------------------------------------|------------------|
| Distance from top of pile to top of layer    | = 2.500000 ft    |
| Distance from top of pile to bottom of layer | = 25.500000 ft   |
| Effective unit weight at top of layer        | = 130.000000 pcf |
| Effective unit weight at bottom of layer     | = 130.000000 pcf |
| Friction angle at top of layer               | = 31.000000 deg. |
| Friction angle at bottom of layer            | = 31.000000 deg. |
| Subgrade k at top of layer                   | = 90.000000 pci  |
| Subgrade k at bottom of layer                | = 90.000000 pci  |

Layer 2 is sand, p-y criteria by Reese et al., 1974

|                                              |                  |
|----------------------------------------------|------------------|
| Distance from top of pile to top of layer    | = 25.500000 ft   |
| Distance from top of pile to bottom of layer | = 45.500000 ft   |
| Effective unit weight at top of layer        | = 130.000000 pcf |
| Effective unit weight at bottom of layer     | = 130.000000 pcf |
| Friction angle at top of layer               | = 40.000000 deg. |
| Friction angle at bottom of layer            | = 40.000000 deg. |
| Subgrade k at top of layer                   | = 40.000000 pci  |
| Subgrade k at bottom of layer                | = 40.000000 pci  |

Layer 3 is sand, p-y criteria by Reese et al., 1974

|                                              |                  |
|----------------------------------------------|------------------|
| Distance from top of pile to top of layer    | = 45.500000 ft   |
| Distance from top of pile to bottom of layer | = 85.500000 ft   |
| Effective unit weight at top of layer        | = 130.000000 pcf |
| Effective unit weight at bottom of layer     | = 130.000000 pcf |
| Friction angle at top of layer               | = 43.000000 deg. |
| Friction angle at bottom of layer            | = 43.000000 deg. |
| Subgrade k at top of layer                   | = 225.000000 pci |
| Subgrade k at bottom of layer                | = 225.000000 pci |

(Depth of the lowest soil layer extends 35.000 ft below the pile tip)

-----  
Ground Slope and Pile Batter Angles  
-----

|                    |                 |
|--------------------|-----------------|
| Ground Slope Angle | = 0.000 degrees |
|                    | = 0.000 radians |
| Pile Batter Angle  | = 0.000 degrees |
|                    | = 0.000 radians |

-----  
Soil and Rock Layering Information  
-----

The soil profile is modelled using 3 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

-----  
Summary of Input Soil Properties  
-----

| Layer<br>Layer<br>Num. | Soil Type<br>Name<br>(p-y Curve Type) | Layer<br>Depth<br>ft | Effective<br>Unit Wt.<br>pcf | Angle of<br>Friction<br>deg. | kpy<br>pci |
|------------------------|---------------------------------------|----------------------|------------------------------|------------------------------|------------|
| 1                      | Sand<br>(Reese, et al.)               | 2.5000               | 130.0000                     | 31.0000                      | 90.0000    |
| 2                      | Sand<br>(Reese, et al.)               | 25.5000              | 130.0000                     | 31.0000                      | 90.0000    |
| 3                      | Sand<br>(Reese, et al.)               | 45.5000              | 130.0000                     | 40.0000                      | 40.0000    |
|                        |                                       | 45.5000              | 130.0000                     | 40.0000                      | 40.0000    |
|                        |                                       | 85.5000              | 130.0000                     | 43.0000                      | 225.0000   |
|                        |                                       | 85.5000              | 130.0000                     | 43.0000                      | 225.0000   |

Static Loading Type

-----

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

-----

Number of loads specified = 3

| Load No. | Load Type | Condition 1 | Condition 2          | Axial Thrust Force, lbs | Compute vs. Pile |
|----------|-----------|-------------|----------------------|-------------------------|------------------|
| 1        | V =       | 12849. lbs  | M = 12771456. in-lbs | 26701.                  | No               |
| 2        | V =       | 5782. lbs   | M = 5747155. in-lbs  | 16688.                  | No               |
| 3        | V =       | 6210. lbs   | M = 6231168. in-lbs  | 28916.                  | No               |

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

-----

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

-----

Dimensions and Properties of Drilled Shaft (Bored Pile):

-----

|                                                   |   |                   |
|---------------------------------------------------|---|-------------------|
| Length of Section                                 | = | 50.500000 ft      |
| Shaft Diameter                                    | = | 66.000000 in      |
| Concrete Cover Thickness (to edge of long. rebar) | = | 4.500000 in       |
| Number of Reinforcing Bars                        | = | 24 bars           |
| Yield Stress of Reinforcing Bars                  | = | 60000. psi        |
| Modulus of Elasticity of Reinforcing Bars         | = | 29000000. psi     |
| Gross Area of Shaft                               | = | 3421. sq. in.     |
| Total Area of Reinforcing Steel                   | = | 18.960000 sq. in. |

Area Ratio of Steel Reinforcement = 0.55 percent  
 Edge-to-Edge Bar Spacing = 6.309467 in  
 Maximum Concrete Aggregate Size = 0.750000 in  
 Ratio of Bar Spacing to Aggregate Size = 8.41  
 Offset of Center of Rebar Cage from Center of Pile = 0.0000 in

Axial Structural Capacities:

-----

Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 12705.197 kips  
 Tensile Load for Cracking of Concrete = -1478.457 kips  
 Nominal Axial Tensile Capacity = -1137.600 kips

Reinforcing Bar Dimensions and Positions Used in Computations:

| Bar Number | Bar Diam. inches | Bar Area sq. in. | X inches   | Y inches   |
|------------|------------------|------------------|------------|------------|
| 1          | 1.000000         | 0.790000         | 28.000000  | 0.000000   |
| 2          | 1.000000         | 0.790000         | 27.045923  | 7.246933   |
| 3          | 1.000000         | 0.790000         | 24.248711  | 14.000000  |
| 4          | 1.000000         | 0.790000         | 19.798990  | 19.798990  |
| 5          | 1.000000         | 0.790000         | 14.000000  | 24.248711  |
| 6          | 1.000000         | 0.790000         | 7.246933   | 27.045923  |
| 7          | 1.000000         | 0.790000         | 0.000000   | 28.000000  |
| 8          | 1.000000         | 0.790000         | -7.246933  | 27.045923  |
| 9          | 1.000000         | 0.790000         | -14.000000 | 24.248711  |
| 10         | 1.000000         | 0.790000         | -19.798990 | 19.798990  |
| 11         | 1.000000         | 0.790000         | -24.248711 | 14.000000  |
| 12         | 1.000000         | 0.790000         | -27.045923 | 7.246933   |
| 13         | 1.000000         | 0.790000         | -28.000000 | 0.000000   |
| 14         | 1.000000         | 0.790000         | -27.045923 | -7.246933  |
| 15         | 1.000000         | 0.790000         | -24.248711 | -14.000000 |
| 16         | 1.000000         | 0.790000         | -19.798990 | -19.798990 |
| 17         | 1.000000         | 0.790000         | -14.000000 | -24.248711 |
| 18         | 1.000000         | 0.790000         | -7.246933  | -27.045923 |
| 19         | 1.000000         | 0.790000         | 0.000000   | -28.000000 |
| 20         | 1.000000         | 0.790000         | 7.246933   | -27.045923 |
| 21         | 1.000000         | 0.790000         | 14.000000  | -24.248711 |
| 22         | 1.000000         | 0.790000         | 19.798990  | -19.798990 |
| 23         | 1.000000         | 0.790000         | 24.248711  | -14.000000 |
| 24         | 1.000000         | 0.790000         | 27.045923  | -7.246933  |

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero = 6.309 inches between bars 15 and 16.

Ratio of bar spacing to maximum aggregate size = 8.41

Concrete Properties:

-----

|                                        |   |                 |
|----------------------------------------|---|-----------------|
| Compressive Strength of Concrete       | = | 4000. psi       |
| Modulus of Elasticity of Concrete      | = | 3604997. psi    |
| Modulus of Rupture of Concrete         | = | -474.341649 psi |
| Compression Strain at Peak Stress      | = | 0.001886        |
| Tensile Strain at Fracture of Concrete | = | -0.0001154      |
| Maximum Coarse Aggregate Size          | = | 0.750000 in     |

### Number of Axial Thrust Force Values Determined from Pile-head Loadings = 3

| Number | Axial Thrust Force<br>kips |
|--------|----------------------------|
| 1      | 16.688                     |
| 2      | 26.701                     |
| 3      | 28.916                     |

#### Definitions of Run Messages and Notes:

C = concrete in section has cracked in tension.

Y = stress in reinforcing steel has reached yield stress.

T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.

Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature.

Position of neutral axis is measured from edge of compression side of pile.

Compressive stresses and strains are positive in sign.

Tensile stresses and strains are negative in sign.

Axial Thrust Force = 16.688 kips

| Bending Conc     | Bending Max Steel | Bending Run         | Depth to   | Max Comp   | Max Tens    | Max |
|------------------|-------------------|---------------------|------------|------------|-------------|-----|
| Curvature Stress | Moment Stress     | Stiffness Msg       | N Axis     | Strain     | Strain      |     |
| rad/in.          | in-kip            | kip-in <sup>2</sup> | in         | in/in      | in/in       | ksi |
| 4.16667E-07      | 1719.             | 4125032485.         | 35.6818172 | 0.00001487 | -0.00001263 |     |
| 0.0622282        | 0.3793178         |                     |            |            |             |     |
| 8.33333E-07      | 3430.             | 4115416357.         | 34.3449369 | 0.00002862 | -0.00002638 |     |
| 0.1193160        | 0.7263276         |                     |            |            |             |     |
| 0.00000125       | 5132.             | 4105746779.         | 33.8993292 | 0.00004237 | -0.00004013 |     |
| 0.1759871        | 1.0733382         |                     |            |            |             |     |
| 0.00000167       | 6827.             | 4096063804.         | 33.6765381 | 0.00005613 | -0.00005387 |     |
| 0.2322415        | 1.4203493         |                     |            |            |             |     |
| 0.00000208       | 8513.             | 4086375466.         | 33.5428734 | 0.00006988 | -0.00006762 |     |
| 0.2880790        | 1.7673611         |                     |            |            |             |     |
| 0.00000250       | 10192.            | 4076684446.         | 33.4537721 | 0.00008363 | -0.00008137 |     |

|            |             |             |            |            |             |  |
|------------|-------------|-------------|------------|------------|-------------|--|
| 0.3434998  | 2.1143735   |             |            |            |             |  |
| 0.00000292 | 11862.      | 4066991894. | 33.3901355 | 0.00009739 | -0.00009511 |  |
| 0.3985039  | 2.4613865   |             |            |            |             |  |
| 0.00000333 | 13524.      | 4057298384. | 33.3424145 | 0.0001111  | -0.0001089  |  |
| 0.4530912  | 2.8084001   |             |            |            |             |  |
| 0.00000375 | 13524.      | 3606487452. | 14.8037683 | 0.00005551 | -0.0001920  |  |
| 0.2268846  | -5.1010527  | C           |            |            |             |  |
| 0.00000417 | 13524.      | 3245838707. | 14.6530710 | 0.00006105 | -0.0002139  |  |
| 0.2491068  | -5.6860456  | C           |            |            |             |  |
| 0.00000458 | 13524.      | 2950762461. | 14.5303800 | 0.00006660 | -0.0002359  |  |
| 0.2712747  | -6.2709578  | C           |            |            |             |  |
| 0.00000500 | 13524.      | 2704865589. | 14.4286950 | 0.00007214 | -0.0002579  |  |
| 0.2933884  | -6.8557892  | C           |            |            |             |  |
| 0.00000542 | 13524.      | 2496799005. | 14.3431698 | 0.00007769 | -0.0002798  |  |
| 0.3154476  | -7.4405396  | C           |            |            |             |  |
| 0.00000583 | 13524.      | 2318456219. | 14.2703428 | 0.00008324 | -0.0003018  |  |
| 0.3374523  | -8.0252087  | C           |            |            |             |  |
| 0.00000625 | 13524.      | 2163892471. | 14.2076757 | 0.00008880 | -0.0003237  |  |
| 0.3594025  | -8.6097963  | C           |            |            |             |  |
| 0.00000667 | 13524.      | 2028649192. | 14.1511954 | 0.00009434 | -0.0003457  |  |
| 0.3812425  | -9.1947022  | C           |            |            |             |  |
| 0.00000708 | 13524.      | 1909316886. | 14.1008978 | 0.00009988 | -0.0003676  |  |
| 0.4030036  | -9.7797031  | C           |            |            |             |  |
| 0.00000750 | 13524.      | 1803243726. | 14.0565822 | 0.0001054  | -0.0003896  |  |
| 0.4247109  | -10.3646183 | C           |            |            |             |  |
| 0.00000792 | 13524.      | 1708336162. | 14.0173052 | 0.0001110  | -0.0004115  |  |
| 0.4463643  | -10.9494478 | C           |            |            |             |  |
| 0.00000833 | 13524.      | 1622919353. | 13.9823119 | 0.0001165  | -0.0004335  |  |
| 0.4679638  | -11.5341913 | C           |            |            |             |  |
| 0.00000875 | 13524.      | 1545637480. | 13.9509913 | 0.0001221  | -0.0004554  |  |
| 0.4895092  | -12.1188484 | C           |            |            |             |  |
| 0.00000917 | 13524.      | 1475381230. | 13.9228435 | 0.0001276  | -0.0004774  |  |
| 0.5110006  | -12.7034191 | C           |            |            |             |  |
| 0.00000958 | 13524.      | 1411234220. | 13.8974555 | 0.0001332  | -0.0004993  |  |
| 0.5324378  | -13.2879030 | C           |            |            |             |  |
| 0.00001000 | 13524.      | 1352432795. | 13.8744832 | 0.0001387  | -0.0005213  |  |
| 0.5538207  | -13.8722998 | C           |            |            |             |  |
| 0.00001042 | 13524.      | 1298335483. | 13.8536376 | 0.0001443  | -0.0005432  |  |
| 0.5751493  | -14.4566098 | C           |            |            |             |  |
| 0.00001083 | 13524.      | 1248399503. | 13.8346739 | 0.0001499  | -0.0005651  |  |
| 0.5964235  | -15.0408319 | C           |            |            |             |  |
| 0.00001125 | 13524.      | 1202162484. | 13.8173838 | 0.0001554  | -0.0005871  |  |
| 0.6176432  | -15.6249662 | C           |            |            |             |  |
| 0.00001167 | 13524.      | 1159228110. | 13.8015888 | 0.0001610  | -0.0006090  |  |
| 0.6388084  | -16.2090126 | C           |            |            |             |  |
| 0.00001208 | 13524.      | 1119254727. | 13.7871350 | 0.0001666  | -0.0006309  |  |
| 0.6599189  | -16.7929708 | C           |            |            |             |  |
| 0.00001250 | 13524.      | 1081946236. | 13.7738888 | 0.0001722  | -0.0006528  |  |
| 0.6809747  | -17.3768495 | C           |            |            |             |  |
| 0.00001292 | 13524.      | 1047044744. | 13.7617340 | 0.0001778  | -0.0006747  |  |
| 0.7019757  | -17.9660214 | C           |            |            |             |  |
| 0.00001333 | 13524.      | 1014324596. | 13.7505691 | 0.0001833  | -0.0006967  |  |
| 0.7222919  | -18.5443134 | C           |            |            |             |  |
| 0.00001375 | 13524.      | 983587487.  | 13.7403047 | 0.0001889  | -0.0007186  |  |
| 0.7438131  | -19.1279161 | C           |            |            |             |  |
| 0.00001417 | 13524.      | 954658443.  | 13.7308619 | 0.0001945  | -0.0007405  |  |

|           |             |   |            |        |            |            |           |            |           |             |    |            |        |            |            |           |            |
|-----------|-------------|---|------------|--------|------------|------------|-----------|------------|-----------|-------------|----|------------|--------|------------|------------|-----------|------------|
| 0.7646492 | -19.7114293 | C | 0.00001458 | 13524. | 927382488. | 13.7221709 | 0.0002001 | -0.0007624 | 1.7523483 | -49.3454964 | C  | 0.00003625 | 18725. | 516545776. | 13.6697304 | 0.0004955 | -0.0018970 |
| 0.7854303 | -20.2948528 | C | 0.00001500 | 13524. | 901621863. | 13.7141697 | 0.0002057 | -0.0007843 | 1.7880008 | -50.5023334 | C  | 0.00003708 | 19141. | 516150939. | 13.6739692 | 0.0005071 | -0.0019404 |
| 0.8061561 | -20.8781862 | C | 0.00001542 | 13524. | 877253705. | 13.7068029 | 0.0002113 | -0.0008062 | 1.8234139 | -51.6587482 | C  | 0.00003792 | 19556. | 515764425. | 13.6784082 | 0.0005186 | -0.0019839 |
| 0.8268267 | -21.4614294 | C | 0.00001583 | 13524. | 854168081. | 13.7000209 | 0.0002169 | -0.0008281 | 1.8585866 | -52.8147379 | C  | 0.00003875 | 19971. | 515385646. | 13.6830369 | 0.0005302 | -0.0020273 |
| 0.8474420 | -22.0445821 | C | 0.00001625 | 13524. | 832266335. | 13.6937794 | 0.0002225 | -0.0008500 | 1.8935183 | -53.9702999 | C  | 0.00003958 | 20386. | 515014063. | 13.6878460 | 0.0005418 | -0.0020707 |
| 0.8680017 | -22.6276440 | C | 0.00001708 | 13524. | 791667977. | 13.6827618 | 0.0002337 | -0.0008938 | 1.9282080 | -55.1254311 | C  | 0.00004042 | 20800. | 514649184. | 13.6928266 | 0.0005534 | -0.0021141 |
| 0.9089547 | -23.7934944 | C | 0.00001792 | 13524. | 754846211. | 13.6734741 | 0.0002450 | -0.0009375 | 1.9626550 | -56.2801288 | C  | 0.00004125 | 21214. | 514290552. | 13.6979709 | 0.0005650 | -0.0021575 |
| 0.9496849 | -24.9589784 | C | 0.00001875 | 13524. | 721297490. | 13.6656897 | 0.0002562 | -0.0009813 | 1.9968584 | -57.4343900 | C  | 0.00004208 | 21628. | 513937748. | 13.7032715 | 0.0005767 | -0.0022008 |
| 0.9901918 | -26.1240938 | C | 0.00001958 | 13524. | 690603980. | 13.6592205 | 0.0002675 | -0.0010250 | 2.0308173 | -58.5882118 | C  | 0.00004292 | 22042. | 513590385. | 13.7087218 | 0.0005883 | -0.0022442 |
| 1.0304746 | -27.2888386 | C | 0.00002042 | 13524. | 662416063. | 13.6539091 | 0.0002788 | -0.0010687 | 2.0645309 | -59.7415911 | C  | 0.00004375 | 22451. | 513156128. | 13.7135273 | 0.0006000 | -0.0022875 |
| 1.0705327 | -28.4532105 | C | 0.00002125 | 13524. | 636438962. | 13.6496230 | 0.0002901 | -0.0011124 | 2.0978975 | -60.0000000 | CY | 0.00004458 | 22813. | 511687650. | 13.7094288 | 0.0006112 | -0.0023313 |
| 1.1103654 | -29.6172073 | C | 0.00002208 | 13524. | 612422398. | 13.6462495 | 0.0003014 | -0.0011561 | 2.1298462 | -60.0000000 | CY | 0.00004542 | 23118. | 509014651. | 13.6946995 | 0.0006220 | -0.0023755 |
| 1.1499720 | -30.7808269 | C | 0.00002292 | 13524. | 590152492. | 13.6436925 | 0.0003127 | -0.0011998 | 2.1601161 | -60.0000000 | CY | 0.00004625 | 23403. | 506019015. | 13.6770606 | 0.0006326 | -0.0024199 |
| 1.1893518 | -31.9440668 | C | 0.00002375 | 13524. | 569445387. | 13.6418694 | 0.0003240 | -0.0012435 | 2.1896851 | -60.0000000 | CY | 0.00004708 | 23685. | 503036428. | 13.6594660 | 0.0006431 | -0.0024644 |
| 1.2285042 | -33.1069249 | C | 0.00002458 | 13524. | 550142154. | 13.6407088 | 0.0003353 | -0.0012872 | 2.2189373 | -60.0000000 | CY | 0.00004792 | 23928. | 499370421. | 13.6353289 | 0.0006534 | -0.0025091 |
| 1.2674283 | -34.2693988 | C | 0.00002542 | 13524. | 532104706. | 13.6401487 | 0.0003467 | -0.0013308 | 2.2469888 | -60.0000000 | CY | 0.00004875 | 24136. | 495097559. | 13.6052867 | 0.0006633 | -0.0025542 |
| 1.3061236 | -35.4314862 | C | 0.00002625 | 13709. | 522247437. | 13.6401350 | 0.0003581 | -0.0013744 | 2.2739836 | -60.0000000 | CY | 0.00004958 | 24344. | 490963330. | 13.5764284 | 0.0006732 | -0.0025993 |
| 1.3445893 | -36.5931847 | C | 0.00002708 | 14129. | 521677795. | 13.6406204 | 0.0003694 | -0.0014181 | 2.3006341 | -60.0000000 | CY | 0.00005292 | 25143. | 475141884. | 13.4618801 | 0.0007124 | -0.0027801 |
| 1.3828247 | -37.7544918 | C | 0.00002792 | 14548. | 521130674. | 13.6415631 | 0.0003808 | -0.0014617 | 2.4043073 | -60.0000000 | CY | 0.00005625 | 25711. | 457076478. | 13.3145631 | 0.0007489 | -0.0029636 |
| 1.4208291 | -38.915053  | C | 0.00002875 | 14967. | 520604056. | 13.6429263 | 0.0003922 | -0.0015053 | 2.4979504 | -60.0000000 | CY | 0.00005958 | 26272. | 440923708. | 13.1849980 | 0.0007856 | -0.0031469 |
| 1.4586016 | -40.0759226 | C | 0.00002958 | 15386. | 520096151. | 13.6446773 | 0.0004037 | -0.0015488 | 2.5889510 | -60.0000000 | CY | 0.00006292 | 26722. | 424727753. | 13.0481550 | 0.0008209 | -0.0033316 |
| 1.4961417 | -41.2360413 | C | 0.00003042 | 15805. | 519605361. | 13.6467872 | 0.0004151 | -0.0015924 | 2.6738854 | -60.0000000 | CY | 0.00006625 | 27079. | 408732478. | 12.9078912 | 0.0008551 | -0.0035174 |
| 1.5334485 | -42.3957589 | C | 0.00003125 | 16223. | 519130263. | 13.6492300 | 0.0004265 | -0.0016360 | 2.7534873 | -60.0000000 | CY | 0.00006958 | 27431. | 394214767. | 12.7759290 | 0.0008890 | -0.0037035 |
| 1.5705213 | -43.5550728 | C | 0.00003208 | 16641. | 518669576. | 13.6519825 | 0.0004380 | -0.0016795 | 2.8298056 | -60.0000000 | CY | 0.00007292 | 27781. | 380992497. | 12.6549023 | 0.0009228 | -0.0038897 |
| 1.6073593 | -44.7139804 | C | 0.00003292 | 17058. | 518222152. | 13.6550239 | 0.0004495 | -0.0017230 | 2.9035306 | -60.0000000 | CY | 0.00007625 | 28067. | 368097666. | 12.5314440 | 0.0009555 | -0.0040770 |
| 1.6439618 | -45.8724792 | C | 0.00003375 | 17475. | 517786955. | 13.6583355 | 0.0004610 | -0.0017665 | 2.9727253 | -60.0000000 | CY | 0.00007958 | 28273. | 355266360. | 12.4014741 | 0.0009870 | -0.0042655 |
| 1.6803280 | -47.0305666 | C | 0.00003458 | 17892. | 517363046. | 13.6619004 | 0.0004725 | -0.0018100 | 3.0368757 | -60.0000000 | CY | 0.00008292 | 28478. | 343455164. | 12.2830774 | 0.0010185 | -0.0044540 |
| 1.7164571 | -48.1882399 | C | 0.00003542 | 18309. | 516949578. | 13.6657033 | 0.0004840 | -0.0018535 | 3.0991454 | -60.0000000 | CY | 0.00008625 | 28681. | 332530787. | 12.1718617 | 0.0010498 | -0.0046427 |

|           |                |            |        |            |            |           |            |             |                 |             |            |            |             |           |            |
|-----------|----------------|------------|--------|------------|------------|-----------|------------|-------------|-----------------|-------------|------------|------------|-------------|-----------|------------|
| 3.1590038 | -60.0000000 CY | 0.00008958 | 28880. | 322380622. | 12.0640931 | 0.0010807 | -0.0048318 | 3.9860218   | -60.0000000 CY  | 0.0001829   | 31197.     | 170552495. | 10.1689451  | 0.0018601 | -0.0102124 |
| 3.2159925 | -60.0000000 CY | 0.00009292 | 29078. | 312948989. | 11.9650689 | 0.0011118 | -0.0050207 | 3.9915759   | -60.0000000 CY  | 0.0002029   | 31421.     | 154844937. | 9.9462062   | 0.0020183 | -0.0113742 |
| 3.2711523 | -60.0000000 CY | 0.00009625 | 29276. | 304161106. | 11.8738930 | 0.0011429 | -0.0052096 | 3.9946619   | -60.0000000 CY  | 0.0002229   | 31611.     | 141808168. | 9.7722217   | 0.0021784 | -0.0125341 |
| 3.3244662 | -60.0000000 CY | 0.0000958  | 29423. | 295462322. | 11.7770971 | 0.0011728 | -0.0053997 | 3.9935590   | -60.0000000 CY  | 0.0002429   | 31709.     | 130536292. | 9.6072805   | 0.0023338 | -0.0136987 |
| 3.3737978 | -60.0000000 CY | 0.0001029  | 29531. | 286941121. | 11.6773632 | 0.0012018 | -0.0055907 | 3.9854818   | -60.0000000 CY  | 0.0002629   | 31773.     | 120846802. | 9.4513875   | 0.0024849 | -0.0148676 |
| 3.4197294 | -60.0000000 CY | 0.0001063  | 29638. | 278948397. | 11.5846711 | 0.0012309 | -0.0057816 | 3.9999153   | -60.0000000 CY  | 0.0002829   | 31826.     | 112491953. | 9.3210165   | 0.0026371 | -0.0160354 |
| 3.4640411 | -60.0000000 CY | 0.0001096  | 29742. | 271413549. | 11.4932589 | 0.0012595 | -0.0059730 | 3.9910022   | -60.0000000 CY  | 0.0003029   | 31875.     | 105225432. | 9.2139453   | 0.0027911 | -0.0172014 |
| 3.5058810 | -60.0000000 CY | 0.0001129  | 29844. | 264304204. | 11.4047456 | 0.0012878 | -0.0061647 | 3.9983934   | -60.0000000 CY  | 0.0003229   | 31917.     | 98840451.  | 9.1273708   | 0.0029474 | -0.0183651 |
| 3.5456179 | -60.0000000 CY | 0.0001163  | 29946. | 257597349. | 11.3220174 | 0.0013162 | -0.0063563 | 3.9861289   | -60.0000000 CY  | 0.0003429   | 31957.     | 93191453.  | 9.0551020   | 0.0031051 | -0.0195274 |
| 3.5838020 | -60.0000000 CY | 0.0001196  | 30046. | 251259278. | 11.2445983 | 0.0013447 | -0.0065478 | 3.9992451   | -60.0000000 CYT | 0.0003629   | 31992.     | 88152577.  | 8.9963473   | 0.0032649 | -0.0206876 |
| 3.6204194 | -60.0000000 CY | 0.0001229  | 30147. | 245259917. | 11.1720643 | 0.0013732 | -0.0067393 | 3.9807916   | -60.0000000 CYT | 0.0003829   | 32024.     | 83632759.  | 8.9474130   | 0.0034261 | -0.0218464 |
| 3.6554559 | -60.0000000 CY | 0.0001263  | 30246. | 239572366. | 11.1040365 | 0.0014019 | -0.0069306 | 3.9881033   | -60.0000000 CYT | 0.0004029   | 32054.     | 79555865.  | 8.9053816   | 0.0035881 | -0.0230044 |
| 3.6888972 | -60.0000000 CY | 0.0001296  | 30345. | 234172490. | 11.0401749 | 0.0014306 | -0.0071219 | 3.9992011   | -60.0000000 CYT | 0.0004229   | 32080.     | 75853530.  | 8.8635553   | 0.0037485 | -0.0241640 |
| 3.7207285 | -60.0000000 CY | 0.0001329  | 30443. | 229038577. | 10.9801742 | 0.0014594 | -0.0073131 | 3.9849628   | -60.0000000 CYT | 0.0004429   | 32101.     | 72477473.  | 8.8269306   | 0.0039096 | -0.0253229 |
| 3.7509348 | -60.0000000 CY | 0.0001363  | 30541. | 224151034. | 10.9237589 | 0.0014884 | -0.0075041 | 3.9678478   | -60.0000000 CYT |             |            |            |             |           |            |
| 3.7795009 | -60.0000000 CY | 0.0001396  | 30614. | 219324125. | 10.8610507 | 0.0015160 | -0.0076965 |             |                 |             |            |            |             |           |            |
| 3.8051550 | -60.0000000 CY | 0.0001429  | 30675. | 214638137. | 10.7949259 | 0.0015428 | -0.0078897 |             |                 |             |            |            |             |           |            |
| 3.8284280 | -60.0000000 CY | 0.0001462  | 30721. | 210061524. | 10.7274636 | 0.0015689 | -0.0080836 |             |                 |             |            |            |             |           |            |
| 3.8496984 | -60.0000000 CY | 0.0001496  | 30767. | 205686102. | 10.6635175 | 0.0015951 | -0.0082774 |             |                 |             |            |            |             |           |            |
| 3.8696201 | -60.0000000 CY | 0.0001529  | 30813. | 201498674. | 10.6028632 | 0.0016214 | -0.0084711 |             |                 |             |            |            |             |           |            |
| 3.8881806 | -60.0000000 CY | 0.0001562  | 30857. | 197487167. | 10.5452954 | 0.0016477 | -0.0086648 |             |                 |             |            |            |             |           |            |
| 3.9053676 | -60.0000000 CY | 0.0001596  | 30902. | 193640518. | 10.4906261 | 0.0016741 | -0.0088584 | 4.16667E-07 | 1719.           | 4124782891. | 37.2909811 | 0.00001554 | -0.00001196 |           |            |
| 3.9211681 | -60.0000000 CY | 0.0001629  | 30946. | 189948568. | 10.4386828 | 0.0017006 | -0.0090519 | 0.0650492   | 0.3987619       |             |            |            |             |           |            |
| 3.9355693 | -60.0000000 CY | 0.0001662  | 30989. | 186401970. | 10.3893072 | 0.0017272 | -0.0092453 | 8.33333E-07 | 3429.           | 4115290261. | 35.1519071 | 0.00002929 | -0.00002571 |           |            |
| 3.9485579 | -60.0000000 CY | 0.0001696  | 31032. | 182992115. | 10.3423534 | 0.0017539 | -0.0094386 | 0.1221248   | 0.7458294       |             |            |            |             |           |            |
| 3.9601206 | -60.0000000 CY | 0.0001729  | 31075. | 179711052. | 10.2976870 | 0.0017806 | -0.0096319 | 0.00000125  | 5132.           | 4105662141. | 34.4389202 | 0.00004305 | -0.00003945 |           |            |
| 3.9702435 | -60.0000000 CY | 0.0001762  | 31117. | 176551436. | 10.2551840 | 0.0018075 | -0.0098250 | 0.1787836   | 1.0928984       |             |            |            |             |           |            |
| 3.9789127 | -60.0000000 CY | 0.0001796  | 31158. | 173501492. | 10.2126789 | 0.0018340 | -0.0100185 | 0.00000167  | 6827.           | 4095999922. | 34.0824484 | 0.00005680 | -0.00005320 |           |            |
|           |                |            |        |            |            |           |            | 0.2350256   | 1.4399683       |             |            |            |             |           |            |
|           |                |            |        |            |            |           |            | 0.00000208  | 8513.           | 4086324047. | 33.8685821 | 0.00007056 | -0.00006694 |           |            |
|           |                |            |        |            |            |           |            | 0.2908508   | 1.7870393       |             |            |            |             |           |            |
|           |                |            |        |            |            |           |            | 0.00000250  | 10192.          | 4076641334. | 33.7260179 | 0.00008432 | -0.00008068 |           |            |
|           |                |            |        |            |            |           |            | 0.3462592   | 2.1341113       |             |            |            |             |           |            |
|           |                |            |        |            |            |           |            | 0.00000292  | 11862.          | 4066954714. | 33.6241979 | 0.00009807 | -0.00009443 |           |            |
|           |                |            |        |            |            |           |            | 0.4012507   | 2.4811842       |             |            |            |             |           |            |
|           |                |            |        |            |            |           |            | 0.00000333  | 13524.          | 4057265651. | 33.5478431 | 0.0001118  | -0.0001082  |           |            |



|           |             |    |            |        |            |            |           |            |            |             |    |            |        |            |            |           |            |
|-----------|-------------|----|------------|--------|------------|------------|-----------|------------|------------|-------------|----|------------|--------|------------|------------|-----------|------------|
| 1.8359114 | -51.5427358 | C  | 0.00003792 | 19747. | 520810961. | 13.7841465 | 0.0005226 | -0.0019799 | 3.2822463  | -60.0000000 | CY | 0.00009625 | 29512. | 306621352. | 11.9380855 | 0.0011490 | -0.0052035 |
| 1.8710099 | -52.6984697 | C  | 0.00003875 | 20162. | 520319055. | 13.7867306 | 0.0005342 | -0.0020233 | 3.3351920  | -60.0000000 | CY | 0.00009958 | 29667. | 297906817. | 11.8411953 | 0.0011792 | -0.0053933 |
| 1.9058670 | -53.8537739 | C  | 0.00003958 | 20577. | 519839078. | 13.7895829 | 0.0005458 | -0.0020667 | 3.3844634  | -60.0000000 | CY | 0.0001029  | 29774. | 289304016. | 11.7395897 | 0.0012082 | -0.0055843 |
| 1.9404817 | -55.0086454 | C  | 0.00004042 | 20991. | 519370244. | 13.7926892 | 0.0005575 | -0.0021100 | 3.4300284  | -60.0000000 | CY | 0.0001063  | 29881. | 281234788. | 11.6451477 | 0.0012373 | -0.0057752 |
| 1.9748533 | -56.1630814 | C  | 0.00004125 | 21405. | 518911829. | 13.7960364 | 0.0005691 | -0.0021534 | 3.4739702  | -60.0000000 | CY | 0.0001096  | 29988. | 273650353. | 11.5572234 | 0.0012665 | -0.0059660 |
| 2.0089809 | -57.3170789 | C  | 0.00004208 | 21819. | 518463164. | 13.7996129 | 0.0005807 | -0.0021968 | 3.5162744  | -60.0000000 | CY | 0.0001129  | 30090. | 266475772. | 11.4677555 | 0.0012949 | -0.0061576 |
| 2.0428637 | -58.4706350 | C  | 0.00004292 | 22232. | 518023633. | 13.8034076 | 0.0005924 | -0.0022401 | 3.5557313  | -60.0000000 | CY | 0.0001163  | 30191. | 259704500. | 11.3834541 | 0.0013233 | -0.0063492 |
| 2.0765007 | -59.6237465 | C  | 0.00004375 | 22643. | 517545766. | 13.8070100 | 0.0006041 | -0.0022834 | 3.5935154  | -60.0000000 | CY | 0.0001196  | 30291. | 253305580. | 11.3045545 | 0.0013518 | -0.0065407 |
| 2.1098491 | -60.0000000 | CY | 0.00004458 | 23011. | 516143269. | 13.8026891 | 0.0006154 | -0.0023271 | 3.6297289  | -60.0000000 | CY | 0.0001229  | 30391. | 247248646. | 11.2306251 | 0.0013804 | -0.0067321 |
| 2.1418844 | -60.0000000 | CY | 0.00004542 | 23321. | 513487206. | 13.7873346 | 0.0006262 | -0.0023713 | 3.66443574 | -60.0000000 | CY | 0.0001263  | 30490. | 241506537. | 11.1612803 | 0.0014091 | -0.0069234 |
| 2.1721978 | -60.0000000 | CY | 0.00004625 | 23606. | 510408002. | 13.7681946 | 0.0006368 | -0.0024157 | 3.6973866  | -60.0000000 | CY | 0.0001296  | 30589. | 236054887. | 11.0961744 | 0.0014379 | -0.0071146 |
| 2.2016913 | -60.0000000 | CY | 0.00004708 | 23890. | 507398481. | 13.7496547 | 0.0006474 | -0.0024601 | 3.7288014  | -60.0000000 | CY | 0.0001329  | 30687. | 230871770. | 11.0349966 | 0.0014667 | -0.0073058 |
| 2.2309345 | -60.0000000 | CY | 0.00004792 | 24140. | 503784403. | 13.7253421 | 0.0006577 | -0.0025048 | 3.7558568  | -60.0000000 | CY | 0.0001363  | 30784. | 225937408. | 10.9774667 | 0.0014957 | -0.0074968 |
| 2.2590778 | -60.0000000 | CY | 0.00004875 | 24347. | 499434146. | 13.6939010 | 0.0006676 | -0.0025499 | 3.7867275  | -60.0000000 | CY | 0.0001396  | 30862. | 221097929. | 10.9175660 | 0.0015239 | -0.0076886 |
| 2.2859182 | -60.0000000 | CY | 0.00004958 | 24555. | 495224755. | 13.6636882 | 0.0006775 | -0.0025950 | 3.8124692  | -60.0000000 | CY | 0.0001429  | 30927. | 216401707. | 10.8545255 | 0.0015513 | -0.0078812 |
| 2.3125736 | -60.0000000 | CY | 0.00005292 | 25359. | 479224774. | 13.5493335 | 0.0007170 | -0.0027755 | 3.8358281  | -60.0000000 | CY | 0.0001462  | 30973. | 211783352. | 10.7859103 | 0.0015774 | -0.0080751 |
| 2.4166798 | -60.0000000 | CY | 0.00005625 | 25931. | 460995621. | 13.3994477 | 0.0007537 | -0.0029588 | 3.8566436  | -60.0000000 | CY | 0.0001496  | 31019. | 207368015. | 10.7208672 | 0.0016037 | -0.0082688 |
| 2.5103339 | -60.0000000 | CY | 0.00005958 | 26492. | 444617173. | 13.2655677 | 0.0007904 | -0.0031421 | 3.8761060  | -60.0000000 | CY | 0.0001529  | 31064. | 203142395. | 10.6591681 | 0.0016300 | -0.0084625 |
| 2.6010192 | -60.0000000 | CY | 0.00006292 | 26950. | 428348740. | 13.1265693 | 0.0008259 | -0.0033266 | 3.8942027  | -60.0000000 | CY | 0.0001562  | 31108. | 199094310. | 10.6006044 | 0.0016563 | -0.0086562 |
| 2.6859058 | -60.0000000 | CY | 0.00006625 | 27306. | 412166394. | 12.9826866 | 0.0008601 | -0.0035124 | 3.9109212  | -60.0000000 | CY | 0.0001596  | 31153. | 195212594. | 10.5449852 | 0.0016828 | -0.0088497 |
| 2.7651915 | -60.0000000 | CY | 0.00006958 | 27660. | 397507794. | 12.8529349 | 0.0008944 | -0.0036981 | 3.9262485  | -60.0000000 | CY | 0.0001629  | 31196. | 191486995. | 10.4921354 | 0.0017093 | -0.0090432 |
| 2.8420652 | -60.0000000 | CY | 0.00007292 | 28010. | 384130442. | 12.7287466 | 0.0009281 | -0.0038844 | 3.9401715  | -60.0000000 | CY | 0.0001662  | 31240. | 187908080. | 10.4418941 | 0.0017360 | -0.0092365 |
| 2.9154543 | -60.0000000 | CY | 0.00007625 | 28304. | 371194459. | 12.6041706 | 0.0009611 | -0.0040714 | 3.9526769  | -60.0000000 | CY | 0.0001696  | 31283. | 184467161. | 10.3941132 | 0.0017627 | -0.0094298 |
| 2.9846096 | -60.0000000 | CY | 0.00007958 | 28509. | 358229939. | 12.4714149 | 0.0009925 | -0.0042600 | 3.9637511  | -60.0000000 | CY | 0.0001729  | 31325. | 181156215. | 10.3486562 | 0.0017895 | -0.0096230 |
| 3.0484246 | -60.0000000 | CY | 0.00008292 | 28714. | 346296204. | 12.3504616 | 0.0010241 | -0.0044484 | 3.9733801  | -60.0000000 | CY | 0.0001762  | 31367. | 177967828. | 10.3053970 | 0.0018163 | -0.0098162 |
| 3.1103559 | -60.0000000 | CY | 0.00008625 | 28917. | 335273575. | 12.2399550 | 0.0010557 | -0.0046368 | 3.9815499  | -60.0000000 | CY | 0.0001796  | 31408. | 174895134. | 10.2642192 | 0.0018433 | -0.0100092 |
| 3.1703864 | -60.0000000 | CY | 0.00008958 | 29117. | 325030328. | 12.1324650 | 0.0010869 | -0.0048256 | 3.9882460  | -60.0000000 | CY | 0.0001829  | 31449. | 171930173. | 10.2243378 | 0.0018702 | -0.0102023 |
| 3.2274508 | -60.0000000 | CY | 0.00009292 | 29315. | 315500604. | 12.0312730 | 0.0011179 | -0.0050146 | 3.9934325  | -60.0000000 | CY | 0.0002029  | 31671. | 156078510. | 9.9977136  | 0.0020287 | -0.0113638 |

|           |                 |            |           |           |            |  |  |
|-----------|-----------------|------------|-----------|-----------|------------|--|--|
| 3.9961585 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0002229 | 31862.          | 142931738. | 9.8214299 | 0.0021894 | -0.0125231 |  |  |
| 3.9952906 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0002429 | 31962.          | 131576944. | 9.6553772 | 0.0023455 | -0.0136870 |  |  |
| 3.9883136 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0002629 | 32027.          | 121815947. | 9.5052540 | 0.0024991 | -0.0148534 |  |  |
| 3.9982815 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0002829 | 32080.          | 113388750. | 9.3724109 | 0.0026516 | -0.0160209 |  |  |
| 3.9936894 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0003029 | 32127.          | 106058793. | 9.2634841 | 0.0028061 | -0.0171864 |  |  |
| 3.9936887 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0003229 | 32169.          | 99620007.  | 9.1748021 | 0.0029627 | -0.0183498 |  |  |
| 3.9896905 | -60.0000000 CY  |            |           |           |            |  |  |
| 0.0003429 | 32208.          | 93923344.  | 9.1007620 | 0.0031208 | -0.0195117 |  |  |
| 3.9998818 | -60.0000000 CYT |            |           |           |            |  |  |
| 0.0003629 | 32242.          | 88841282.  | 9.0407705 | 0.0032810 | -0.0206715 |  |  |
| 3.9757370 | -60.0000000 CYT |            |           |           |            |  |  |
| 0.0003829 | 32274.          | 84283952.  | 8.9903453 | 0.0034426 | -0.0218299 |  |  |
| 3.9916018 | -60.0000000 CYT |            |           |           |            |  |  |
| 0.0004029 | 32303.          | 80173605.  | 8.9479762 | 0.0036053 | -0.0229872 |  |  |
| 3.9998987 | -60.0000000 CYT |            |           |           |            |  |  |
| 0.0004229 | 32329.          | 76443222.  | 8.9141385 | 0.0037699 | -0.0241426 |  |  |
| 3.9782557 | -60.0000000 CYT |            |           |           |            |  |  |
| 0.0004429 | 32329.          | 72991412.  | 8.9650505 | 0.0039708 | -0.0252617 |  |  |
| 3.9869021 | 60.0000000 CYT  |            |           |           |            |  |  |

Axial Thrust Force = 28.916 kips

| Conc        | Bending      | Bending     | Depth to   | Max Comp   | Max Tens    | Max    |
|-------------|--------------|-------------|------------|------------|-------------|--------|
| Curvature   | Max Steel    | Run         |            |            |             |        |
| Stress      | Stress       | Moment      | Stiffness  | N Axis     | Strain      | Strain |
| rad/in.     | in-kip       | kip-in2     |            | in         | in/in       | in/in  |
| ksi         |              |             |            |            |             | ksi    |
| 4.16667E-07 | 1719.        | 4124712412. | 37.6469593 | 0.00001569 | -0.00001181 |        |
| 0.0656731   | 0.4030633    |             |            |            |             |        |
| 8.33333E-07 | 3429.        | 4115254564. | 35.3304217 | 0.00002944 | -0.00002556 |        |
| 0.1227460   | 0.7501435    |             |            |            |             |        |
| 0.00000125  | 5132.        | 4105638170. | 34.5582857 | 0.00004320 | -0.00003930 |        |
| 0.1794021   | 1.0972254    |             |            |            |             |        |
| 0.00000167  | 6827.        | 4095981828. | 34.1722416 | 0.00005695 | -0.00005305 |        |
| 0.2356414   | 1.4443083    |             |            |            |             |        |
| 0.00000208  | 8513.        | 4086309480. | 33.9406333 | 0.00007071 | -0.00006679 |        |
| 0.2914638   | 1.7913924    |             |            |            |             |        |
| 0.00000250  | 18192.       | 4076629121. | 33.7862424 | 0.00008447 | -0.00008053 |        |
| 0.3468695   | 2.1384776    |             |            |            |             |        |
| 0.00000292  | 11862.       | 4066944181. | 33.6759757 | 0.00009822 | -0.00009428 |        |
| 0.4018582   | 2.4855638    |             |            |            |             |        |
| 0.00000333  | 13524.       | 4057256378. | 33.5932867 | 0.0001120  | -0.0001080  |        |
| 0.4564301   | 2.8326510    |             |            |            |             |        |
| 0.00000375  | 13524.       | 3606450114. | 15.8687102 | 0.00005951 | -0.0001880  |        |
| 0.2433166   | -4.9852403 C |             |            |            |             |        |
| 0.00000417  | 13524.       | 3245805102. | 15.6307502 | 0.00006513 | -0.0002099  |        |

|            |               |             |            |            |            |  |
|------------|---------------|-------------|------------|------------|------------|--|
| 0.2658186  | -5.5679093 C  |             |            |            |            |  |
| 0.00000458 | 13524.        | 2950731911. | 15.4328163 | 0.00007073 | -0.0002318 |  |
| 0.2881924  | -6.1510090 C  |             |            |            |            |  |
| 0.00000500 | 13524.        | 2704837585. | 15.2631801 | 0.00007632 | -0.0002537 |  |
| 0.3104034  | -6.7347889 C  |             |            |            |            |  |
| 0.00000542 | 13524.        | 2496773156. | 15.1201451 | 0.00008190 | -0.0002756 |  |
| 0.3325588  | -7.3184897 C  |             |            |            |            |  |
| 0.00000583 | 13524.        | 2318432216. | 14.9980121 | 0.00008749 | -0.0002975 |  |
| 0.3546586  | -7.9021113 C  |             |            |            |            |  |
| 0.00000625 | 13524.        | 2163870068. | 14.8926017 | 0.00009308 | -0.0003194 |  |
| 0.3767026  | -8.4856534 C  |             |            |            |            |  |
| 0.00000667 | 13524.        | 2028628189. | 14.7981070 | 0.00009865 | -0.0003413 |  |
| 0.3986192  | -9.0696326 C  |             |            |            |            |  |
| 0.00000708 | 13524.        | 1909297119. | 14.7130907 | 0.0001042  | -0.0003633 |  |
| 0.4204227  | -9.6539484 C  |             |            |            |            |  |
| 0.00000750 | 13524.        | 1803225057. | 14.6378997 | 0.0001098  | -0.0003852 |  |
| 0.4421713  | -10.2381818 C |             |            |            |            |  |
| 0.00000792 | 13524.        | 1708318475. | 14.5709836 | 0.0001154  | -0.0004071 |  |
| 0.4638650  | -10.8223325 C |             |            |            |            |  |
| 0.00000833 | 13524.        | 1622902551. | 14.5111021 | 0.0001209  | -0.0004291 |  |
| 0.4855038  | -11.4064003 C |             |            |            |            |  |
| 0.00000875 | 13524.        | 1545621477. | 14.4572511 | 0.0001265  | -0.0004510 |  |
| 0.5070875  | -11.9903850 C |             |            |            |            |  |
| 0.00000917 | 13524.        | 1475365956. | 14.4086091 | 0.0001321  | -0.0004729 |  |
| 0.5286161  | -12.5742864 C |             |            |            |            |  |
| 0.00000958 | 13524.        | 1411219610. | 14.3644974 | 0.0001377  | -0.0004948 |  |
| 0.5500895  | -13.1581042 C |             |            |            |            |  |
| 0.00001000 | 13524.        | 1352418793. | 14.3243505 | 0.0001432  | -0.0005168 |  |
| 0.5715076  | -13.7418383 C |             |            |            |            |  |
| 0.00001042 | 13524.        | 1298322041. | 14.2876934 | 0.0001488  | -0.0005387 |  |
| 0.5928703  | -14.3254884 C |             |            |            |            |  |
| 0.00001083 | 13524.        | 1248386578. | 14.2541240 | 0.0001544  | -0.0005606 |  |
| 0.6141776  | -14.9998543 C |             |            |            |            |  |
| 0.00001125 | 13524.        | 1202150038. | 14.2233001 | 0.0001600  | -0.0005825 |  |
| 0.6354294  | -15.4925358 C |             |            |            |            |  |
| 0.00001167 | 13524.        | 1159216108. | 14.1949282 | 0.0001656  | -0.0006044 |  |
| 0.6566256  | -16.0759326 C |             |            |            |            |  |
| 0.00001208 | 13524.        | 1119243139. | 14.1675416 | 0.0001712  | -0.0006263 |  |
| 0.6777095  | -16.6596698 C |             |            |            |            |  |
| 0.00001250 | 13524.        | 1081935034. | 14.1419636 | 0.0001768  | -0.0006482 |  |
| 0.6987258  | -17.2434132 C |             |            |            |            |  |
| 0.00001292 | 13524.        | 1047033904. | 14.1182738 | 0.0001824  | -0.0006701 |  |
| 0.7196873  | -17.8270674 C |             |            |            |            |  |
| 0.00001333 | 13524.        | 1014314094. | 14.0962958 | 0.0001880  | -0.0006920 |  |
| 0.7405938  | -18.4106322 C |             |            |            |            |  |
| 0.00001375 | 13524.        | 983577304.  | 14.0758747 | 0.0001935  | -0.0007140 |  |
| 0.7614453  | -18.9941074 C |             |            |            |            |  |
| 0.00001417 | 13524.        | 954648560.  | 14.0568737 | 0.0001991  | -0.0007359 |  |
| 0.7822417  | -19.5774927 C |             |            |            |            |  |
| 0.00001458 | 13524.        | 927372886.  | 14.0391717 | 0.0002047  | -0.0007578 |  |
| 0.8029829  | -20.1607877 C |             |            |            |            |  |
| 0.00001500 | 13524.        | 901612528.  | 14.0226611 | 0.0002103  | -0.0007797 |  |
| 0.8236687  | -20.7439928 C |             |            |            |            |  |
| 0.00001542 | 13524.        | 877244622.  | 14.0072458 | 0.0002159  | -0.0008016 |  |
| 0.8442992  | -21.3271067 C |             |            |            |            |  |
| 0.00001583 | 13524.        | 854159237.  | 13.9928400 | 0.0002216  | -0.0008234 |  |

|           |             |   |            |        |            |            |           |            |           |             |    |            |        |            |            |           |            |
|-----------|-------------|---|------------|--------|------------|------------|-----------|------------|-----------|-------------|----|------------|--------|------------|------------|-----------|------------|
| 0.8648743 | -21.9101296 | C | 0.00001625 | 13524. | 832257719. | 13.9793665 | 0.0002272 | -0.0008453 | 1.9085969 | -53.8279674 | C  | 0.00003958 | 20619. | 520906062. | 13.8121143 | 0.0005467 | -0.0020658 |
| 0.8853939 | -22.4930613 | C | 0.00001708 | 13524. | 791659781. | 13.9549459 | 0.0002384 | -0.0008891 | 1.9431950 | -54.9827813 | C  | 0.00004042 | 21033. | 520414237. | 13.8148055 | 0.0005583 | -0.0021092 |
| 0.9262662 | -23.6586497 | C | 0.00001792 | 13524. | 754838396. | 13.9335054 | 0.0002496 | -0.0009329 | 1.9775499 | -56.1371592 | C  | 0.00004125 | 21447. | 519933753. | 13.8177549 | 0.0005700 | -0.0021525 |
| 0.9669154 | -24.8238703 | C | 0.00001875 | 13524. | 721290023. | 13.9146518 | 0.0002609 | -0.0009766 | 2.0116607 | -57.2910981 | C  | 0.00004208 | 21861. | 519463886. | 13.8209497 | 0.0005816 | -0.0021959 |
| 1.0073408 | -25.9887206 | C | 0.00001958 | 13524. | 690596830. | 13.8980585 | 0.0002722 | -0.0010203 | 2.0455266 | -58.4445952 | C  | 0.00004292 | 22274. | 519003971. | 13.8243778 | 0.0005933 | -0.0022392 |
| 1.0475419 | -27.1531984 | C | 0.00002042 | 13524. | 662409205. | 13.8834527 | 0.0002835 | -0.0010640 | 2.0791467 | -59.5976473 | C  | 0.00004375 | 22685. | 518508073. | 13.8276413 | 0.0006050 | -0.0022825 |
| 1.0875178 | -28.3173020 | C | 0.00002125 | 13524. | 636432373. | 13.8706041 | 0.0002948 | -0.0011077 | 2.1124708 | -60.0000000 | CY | 0.00004458 | 23055. | 517128605. | 13.8233447 | 0.0006163 | -0.0023262 |
| 1.1272680 | -29.4810281 | C | 0.00002208 | 13524. | 612416057. | 13.8593173 | 0.0003061 | -0.0011514 | 2.1445455 | -60.0000000 | CY | 0.00004542 | 23366. | 514476314. | 13.8078524 | 0.0006271 | -0.0023704 |
| 1.1667917 | -30.6443750 | C | 0.00002292 | 13524. | 590146382. | 13.8494254 | 0.0003174 | -0.0011951 | 2.1748684 | -60.0000000 | CY | 0.00004625 | 23651. | 511378627. | 13.7883799 | 0.0006377 | -0.0024148 |
| 1.2060883 | -31.8073405 | C | 0.00002375 | 13524. | 569439492. | 13.8407849 | 0.0003287 | -0.0012388 | 2.2043451 | -60.0000000 | CY | 0.00004708 | 23935. | 508363163. | 13.7696311 | 0.0006483 | -0.0024592 |
| 1.2451571 | -32.9699221 | C | 0.00002458 | 13524. | 550136458. | 13.8332718 | 0.0003401 | -0.0012824 | 2.2335864 | -60.0000000 | CY | 0.00004792 | 24186. | 504760607. | 13.7452804 | 0.0006586 | -0.0025039 |
| 1.2839973 | -34.1321176 | C | 0.00002542 | 13526. | 532157215. | 13.8267784 | 0.0003514 | -0.0013261 | 2.2617499 | -60.0000000 | CY | 0.00004875 | 24394. | 500393231. | 13.7135296 | 0.0006685 | -0.0025490 |
| 1.3226082 | -35.2939247 | C | 0.00002625 | 13946. | 531259510. | 13.8212108 | 0.0003628 | -0.0013697 | 2.2885738 | -60.0000000 | CY | 0.00004958 | 24602. | 496167215. | 13.6830168 | 0.0006784 | -0.0025941 |
| 1.3609891 | -36.4553409 | C | 0.00002708 | 14365. | 530405224. | 13.8164865 | 0.0003742 | -0.0014133 | 2.3152125 | -60.0000000 | CY | 0.00005292 | 25407. | 480123356. | 13.5677400 | 0.0007180 | -0.0027745 |
| 1.3991394 | -37.6163637 | C | 0.00002792 | 14784. | 529590408. | 13.8125331 | 0.0003856 | -0.0014569 | 2.4192777 | -60.0000000 | CY | 0.00005625 | 25980. | 461862418. | 13.4182535 | 0.0007548 | -0.0029577 |
| 1.4370582 | -38.7769909 | C | 0.00002875 | 15203. | 528811570. | 13.8092865 | 0.0003970 | -0.0015005 | 2.5130706 | -60.0000000 | CY | 0.00005958 | 26540. | 445434031. | 13.2834200 | 0.0007915 | -0.0031410 |
| 1.4747448 | -39.9372198 | C | 0.00002958 | 15622. | 528065611. | 13.8066899 | 0.0004084 | -0.0015441 | 2.6036859 | -60.0000000 | CY | 0.00006292 | 27001. | 429149609. | 13.1439435 | 0.0008270 | -0.0033255 |
| 1.5121985 | -41.0970481 | C | 0.00003042 | 16040. | 527349770. | 13.8046927 | 0.0004199 | -0.0015876 | 2.6885617 | -60.0000000 | CY | 0.00006625 | 27356. | 412925885. | 12.9992592 | 0.0008612 | -0.0035113 |
| 1.5494185 | -42.2564730 | C | 0.00003125 | 16458. | 526661581. | 13.8032499 | 0.0004314 | -0.0016311 | 2.7677773 | -60.0000000 | CY | 0.00006958 | 27711. | 398236095. | 12.8699997 | 0.0008955 | -0.0036970 |
| 1.5864041 | -43.4154922 | C | 0.00003208 | 16876. | 525998833. | 13.8023208 | 0.0004428 | -0.0016747 | 2.8447732 | -60.0000000 | CY | 0.00007292 | 28060. | 384824447. | 12.7451110 | 0.0009293 | -0.0038832 |
| 1.6231545 | -44.5741031 | C | 0.00003292 | 17293. | 525359538. | 13.8018694 | 0.0004543 | -0.0017182 | 2.9180879 | -60.0000000 | CY | 0.00007625 | 28356. | 371879398. | 12.6202891 | 0.0009623 | -0.0040702 |
| 1.6596690 | -45.7323029 | C | 0.00003375 | 17710. | 524741905. | 13.8018629 | 0.0004658 | -0.0017617 | 2.9872341 | -60.0000000 | CY | 0.00007958 | 28561. | 358885413. | 12.4869162 | 0.0009938 | -0.0042587 |
| 1.6959467 | -46.8900891 | C | 0.00003458 | 18127. | 524144314. | 13.8022719 | 0.0004773 | -0.0018052 | 3.0509748 | -60.0000000 | CY | 0.00008292 | 28766. | 346924572. | 12.3653966 | 0.0010253 | -0.0044472 |
| 1.7319869 | -48.0474589 | C | 0.00003542 | 18543. | 523565296. | 13.8030695 | 0.0004889 | -0.0018486 | 3.1128311 | -60.0000000 | CY | 0.00008625 | 28969. | 335876924. | 12.2543685 | 0.0010569 | -0.0046356 |
| 1.7677887 | -49.2044097 | C | 0.00003625 | 18959. | 523003519. | 13.8042317 | 0.0005004 | -0.0018921 | 3.1727858 | -60.0000000 | CY | 0.00008958 | 29170. | 325616378. | 12.1476220 | 0.0010882 | -0.0048243 |
| 1.8033515 | -50.3609388 | C | 0.00003708 | 19374. | 522457769. | 13.8057365 | 0.0005120 | -0.0019355 | 3.2299796 | -60.0000000 | CY | 0.00009292 | 29368. | 316064936. | 12.0459498 | 0.0011193 | -0.0050132 |
| 1.8386743 | -51.5170433 | C | 0.00003792 | 19790. | 521926938. | 13.8075638 | 0.0005235 | -0.0019790 | 3.2846942 | -60.0000000 | CY | 0.00009625 | 29565. | 307165474. | 11.9523165 | 0.0011504 | -0.0052021 |
| 1.8737564 | -52.6727204 | C | 0.00003875 | 20205. | 521410011. | 13.8096953 | 0.0005351 | -0.0020224 | 3.3375582 | -60.0000000 | CY | 0.00009958 | 29720. | 298447484. | 11.8554075 | 0.0011806 | -0.0053919 |

|           |             |        |            |            |           |            |
|-----------|-------------|--------|------------|------------|-----------|------------|
| 3.3868158 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001029   | 29828. | 289826633. | 11.7533872 | 0.0012096 | -0.0055829 |
| 3.4322994 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001063   | 29935. | 281740483. | 11.6585574 | 0.0012387 | -0.0057738 |
| 3.4761593 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001096   | 30041. | 274140149. | 11.5702698 | 0.0012679 | -0.0059646 |
| 3.5183807 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001129   | 30144. | 266956053. | 11.4817311 | 0.0012965 | -0.0061560 |
| 3.5575950 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001163   | 30245. | 260170532. | 11.3970811 | 0.0013249 | -0.0063476 |
| 3.5956543 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001196   | 30345. | 253758152. | 11.3178534 | 0.0013534 | -0.0065391 |
| 3.6317781 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001229   | 30445. | 247688483. | 11.2436147 | 0.0013820 | -0.0067305 |
| 3.6663161 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001263   | 30544. | 241934306. | 11.1739781 | 0.0014107 | -0.0069218 |
| 3.6992538 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001296   | 30643. | 236471202. | 11.1085965 | 0.0014395 | -0.0071130 |
| 3.7305761 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001329   | 30741. | 231277202. | 11.0471578 | 0.0014684 | -0.0073041 |
| 3.7602681 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001363   | 30838. | 226332483. | 10.9893809 | 0.0014973 | -0.0074952 |
| 3.7883142 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001396   | 30916. | 221488048. | 10.9294480 | 0.0015256 | -0.0076869 |
| 3.8139892 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001429   | 30983. | 216791762. | 10.8677557 | 0.0015532 | -0.0078793 |
| 3.8374488 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001462   | 31029. | 212164157. | 10.7988849 | 0.0015793 | -0.0080732 |
| 3.8581631 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001496   | 31074. | 207739991. | 10.7335986 | 0.0016056 | -0.0082669 |
| 3.8775234 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001529   | 31119. | 203505923. | 10.6716678 | 0.0016319 | -0.0084606 |
| 3.8955170 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001562   | 31164. | 199449746. | 10.6128834 | 0.0016583 | -0.0086542 |
| 3.9121313 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001596   | 31208. | 195560272. | 10.5570537 | 0.0016847 | -0.0088478 |
| 3.9273534 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001629   | 31252. | 191827229. | 10.5040030 | 0.0017113 | -0.0090412 |
| 3.9411702 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001662   | 31295. | 188241165. | 10.4535698 | 0.0017379 | -0.0092346 |
| 3.9535681 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001696   | 31338. | 184793374. | 10.4056056 | 0.0017646 | -0.0094279 |
| 3.9645337 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001729   | 31380. | 181475817. | 10.3599733 | 0.0017914 | -0.0096211 |
| 3.9740529 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001762   | 31422. | 178281066. | 10.3165466 | 0.0018183 | -0.0098142 |
| 3.9821116 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001796   | 31463. | 175202239. | 10.2752085 | 0.0018453 | -0.0100072 |
| 3.9886954 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0001829   | 31504. | 172232960. | 10.2358509 | 0.0018723 | -0.0102002 |
| 3.9937895 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0002029   | 31726. | 156351288. | 10.0091612 | 0.0020310 | -0.0113615 |
| 3.9964577 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0002229   | 31917. | 143180193. | 9.8323699  | 0.0021918 | -0.0125207 |
| 3.9956388 | -60.0000000 | CY     |            |            |           |            |
|           | 0.0002429   | 32018. | 131807080. | 9.6660745  | 0.0023481 | -0.0136844 |

|           |             |            |           |           |            |  |
|-----------|-------------|------------|-----------|-----------|------------|--|
| 3.9889017 | -60.0000000 | CY         |           |           |            |  |
| 0.0002629 | 32084.      | 122030058. | 9.5173041 | 0.0025023 | -0.0148502 |  |
| 3.9972882 | -60.0000000 | CY         |           |           |            |  |
| 0.0002829 | 32136.      | 113587052. | 9.3838601 | 0.0026549 | -0.0160176 |  |
| 3.9942232 | -60.0000000 | CY         |           |           |            |  |
| 0.0003029 | 32183.      | 106243076. | 9.2745188 | 0.0028094 | -0.0171831 |  |
| 3.9926407 | -60.0000000 | CY         |           |           |            |  |
| 0.0003229 | 32225.      | 99792386.  | 9.1853704 | 0.0029661 | -0.0183464 |  |
| 3.9904122 | -60.0000000 | CY         |           |           |            |  |
| 0.0003429 | 32263.      | 94085177.  | 9.1109390 | 0.0031243 | -0.0195082 |  |
| 3.9999485 | -60.0000000 | CYT        |           |           |            |  |
| 0.0003629 | 32297.      | 88993576.  | 9.0506693 | 0.0032846 | -0.0206679 |  |
| 3.9746107 | -60.0000000 | CYT        |           |           |            |  |
| 0.0003829 | 32329.      | 84427945.  | 8.9999146 | 0.0034462 | -0.0218263 |  |
| 3.9922988 | -60.0000000 | CYT        |           |           |            |  |
| 0.0004029 | 32358.      | 80310102.  | 8.9572650 | 0.0036090 | -0.0229835 |  |
| 3.9999628 | -60.0000000 | CYT        |           |           |            |  |
| 0.0004229 | 32384.      | 76572786.  | 8.9232468 | 0.0037738 | -0.0241387 |  |
| 3.9770480 | -60.0000000 | CYT        |           |           |            |  |
| 0.0004429 | 32384.      | 73115125.  | 8.9741310 | 0.0039748 | -0.0252577 |  |
| 3.9878600 | 60.0000000  | CYT        |           |           |            |  |

---

### Summary of Results for Nominal (Unfactored) Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

| Load No. | Axial Thrust kips | Nominal Mom. Cap. in-kip | Max. Comp. Strain |
|----------|-------------------|--------------------------|-------------------|
| 1        | 16.688            | 31930.461                | 0.00300000        |
| 2        | 26.701            | 32178.143                | 0.00300000        |
| 3        | 28.916            | 32332.927                | 0.00300000        |

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.70).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, Section 9.3.2.2 or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

| Axial Load No. | Resist. Factor for Moment | Nominal Moment Cap in-kips | Ult. (Fac) Ax. Thrust kips | Ult. (Fac) Moment Cap in-kips | Bend. Stiff. at Ult Mom kip-in <sup>2</sup> |
|----------------|---------------------------|----------------------------|----------------------------|-------------------------------|---------------------------------------------|
| 1              | 0.65                      | 31930                      | 10,847,200                 | 20755                         | 514689336                                   |

|   |      |        |           |        |            |
|---|------|--------|-----------|--------|------------|
| 2 | 0.65 | 32178. | 17.355650 | 20916. | 519455603. |
| 3 | 0.65 | 32233. | 18.795400 | 20951. | 520511610. |
| 1 | 0.75 | 31930. | 11.681600 | 23948. | 498965830. |
| 2 | 0.75 | 32178. | 18.690700 | 24134. | 503872157. |
| 3 | 0.75 | 32233. | 20.241200 | 24175. | 504929252. |
| 1 | 0.90 | 31930. | 12.516000 | 28737. | 329644256. |
| 2 | 0.90 | 32178. | 20.025750 | 28960. | 333071644. |
| 3 | 0.90 | 32233. | 21.687000 | 29010. | 333816303. |

Layering Correction Equivalent Depths of Soil & Rock Layers

| Layer No. | Top of Layer Below Pile Head ft | Equivalent Top Depth Below Grnd Surf ft | Same Layer Type As Layer Above | Layer is Rock or Rock Layer | F0 Integral for Layer lbs | F1 Integral for Layer lbs |
|-----------|---------------------------------|-----------------------------------------|--------------------------------|-----------------------------|---------------------------|---------------------------|
| 1         | 2.5000                          | 0.00                                    | N.A.                           | No                          | 0.00                      | 1855163.                  |
| 2         | 25.5000                         | 16.3916                                 | Yes                            | No                          | 1855163.                  | 9264060.                  |
| 3         | 45.5000                         | 33.0786                                 | Yes                            | No                          | 1.11E+07                  | N.A.                      |

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

|                                |   |                   |
|--------------------------------|---|-------------------|
| Shear force at pile head       | = | 12849.0 lbs       |
| Applied moment at pile head    | = | 12771456.0 in-lbs |
| Axial thrust load on pile head | = | 26701.0 lbs       |

| Depth         | Deflect.  | Bending  | Shear  | Slope    | Total | Bending  | Soil Res. | Soil    |         |
|---------------|-----------|----------|--------|----------|-------|----------|-----------|---------|---------|
| Spr. Distrib. | X         | y        | Moment | Force    | S     | Stress   | Stiffness | p       |         |
| Es*h          | Lat. Load | feet     | inches | in-lbs   | lbs   | radians  | psi*      | in-lb^2 | lb/inch |
| lb/inch       | lb/inch   |          |        |          |       |          |           |         |         |
| 0.00          | 0.2032    | 1.28E+07 | 12849. | -0.00170 | 0.00  | 4.06E+12 | 0.00      |         |         |

|          |         |          |           |           |      |          |           |  |  |
|----------|---------|----------|-----------|-----------|------|----------|-----------|--|--|
| 0.00     | 0.00    |          |           |           |      |          |           |  |  |
| 0.5050   | 0.1930  | 1.28E+07 | 12849.    | -0.00168  | 0.00 | 4.06E+12 | 0.00      |  |  |
| 0.00     | 0.00    |          |           |           |      |          |           |  |  |
| 1.0100   | 0.1829  | 1.29E+07 | 12849.    | -0.00166  | 0.00 | 4.06E+12 | 0.00      |  |  |
| 0.00     | 0.00    |          |           |           |      |          |           |  |  |
| 1.5150   | 0.1729  | 1.30E+07 | 12849.    | -0.00164  | 0.00 | 4.06E+12 | 0.00      |  |  |
| 0.00     | 0.00    |          |           |           |      |          |           |  |  |
| 2.0200   | 0.1630  | 1.31E+07 | 12849.    | -0.00162  | 0.00 | 4.06E+12 | 0.00      |  |  |
| 0.00     | 0.00    |          |           |           |      |          |           |  |  |
| 2.5250   | 0.1533  | 1.32E+07 | 12836.    | -0.00160  | 0.00 | 4.06E+12 | -4.1389   |  |  |
| 163.6200 | 0.00    |          |           |           |      |          |           |  |  |
| 3.0300   | 0.1437  | 1.32E+07 | 12575.    | -0.00158  | 0.00 | 4.06E+12 | -82.2297  |  |  |
| 3469.    | 0.00    |          |           |           |      |          |           |  |  |
| 3.5350   | 0.1341  | 1.33E+07 | 11871.    | -0.00156  | 0.00 | 4.06E+12 | -149.9463 |  |  |
| 6774.    | 0.00    |          |           |           |      |          |           |  |  |
| 4.0400   | 0.1248  | 1.34E+07 | 10788.    | -0.00154  | 0.00 | 4.06E+12 | -207.4860 |  |  |
| 10079.   | 0.00    |          |           |           |      |          |           |  |  |
| 4.5450   | 0.1155  | 1.34E+07 | 9387.     | -0.00152  | 0.00 | 4.06E+12 | -255.0471 |  |  |
| 13384.   | 0.00    |          |           |           |      |          |           |  |  |
| 5.0500   | 0.1063  | 1.35E+07 | 7727.     | -0.00150  | 0.00 | 4.06E+12 | -292.8296 |  |  |
| 16689.   | 0.00    |          |           |           |      |          |           |  |  |
| 5.5550   | 0.09730 | 1.35E+07 | 5867.     | -0.00147  | 0.00 | 1.75E+12 | -321.0340 |  |  |
| 19994.   | 0.00    |          |           |           |      |          |           |  |  |
| 6.0600   | 0.08856 | 1.36E+07 | 3862.     | -0.00137  | 0.00 | 5.32E+11 | -340.4826 |  |  |
| 23299.   | 0.00    |          |           |           |      |          |           |  |  |
| 6.5650   | 0.08075 | 1.36E+07 | 1756.     | -0.00121  | 0.00 | 5.32E+11 | -354.5071 |  |  |
| 26605.   | 0.00    |          |           |           |      |          |           |  |  |
| 7.0700   | 0.07388 | 1.36E+07 | -422.5539 | -0.00106  | 0.00 | 5.32E+11 | -364.6480 |  |  |
| 29910.   | 0.00    |          |           |           |      |          |           |  |  |
| 7.5750   | 0.06795 | 1.36E+07 | -2656.    | -9.01E-04 | 0.00 | 5.32E+11 | -372.4426 |  |  |
| 33215.   | 0.00    |          |           |           |      |          |           |  |  |
| 8.0800   | 0.06296 | 1.36E+07 | -4934.    | -7.46E-04 | 0.00 | 5.32E+11 | -379.4228 |  |  |
| 36520.   | 0.00    |          |           |           |      |          |           |  |  |
| 8.5850   | 0.05890 | 1.35E+07 | -7257.    | -6.40E-04 | 0.00 | 1.40E+12 | -387.1115 |  |  |
| 39825.   | 0.00    |          |           |           |      |          |           |  |  |
| 9.0900   | 0.05521 | 1.35E+07 | -9620.    | -6.00E-04 | 0.00 | 4.06E+12 | -392.9086 |  |  |
| 43130.   | 0.00    |          |           |           |      |          |           |  |  |
| 9.5950   | 0.05163 | 1.34E+07 | -12009.   | -5.80E-04 | 0.00 | 4.06E+12 | -395.6046 |  |  |
| 46435.   | 0.00    |          |           |           |      |          |           |  |  |
| 10.1000  | 0.04817 | 1.33E+07 | -14406.   | -5.60E-04 | 0.00 | 4.06E+12 | -395.3942 |  |  |
| 49740.   | 0.00    |          |           |           |      |          |           |  |  |
| 10.6050  | 0.04484 | 1.32E+07 | -16793.   | -5.41E-04 | 0.00 | 4.06E+12 | -392.4694 |  |  |
| 53046.   | 0.00    |          |           |           |      |          |           |  |  |
| 11.1100  | 0.04162 | 1.31E+07 | -19155.   | -5.21E-04 | 0.00 | 4.06E+12 | -387.0194 |  |  |
| 56351.   | 0.00    |          |           |           |      |          |           |  |  |
| 11.6150  | 0.03852 | 1.30E+07 | -21477.   | -5.01E-04 | 0.00 | 4.06E+12 | -379.2304 |  |  |
| 59656.   | 0.00    |          |           |           |      |          |           |  |  |
| 12.1200  | 0.03554 | 1.29E+07 | -23745.   | -4.82E-04 | 0.00 | 4.06E+12 | -369.2847 |  |  |
| 62961.   | 0.00    |          |           |           |      |          |           |  |  |
| 12.6250  | 0.03268 | 1.27E+07 | -25947.   | -4.63E-04 | 0.00 | 4.06E+12 | -357.3610 |  |  |
| 66266.   | 0.00    |          |           |           |      |          |           |  |  |
| 13.1300  | 0.02993 | 1.25E+07 | -28071.   | -4.44E-04 | 0.00 | 4.06E+12 | -343.6337 |  |  |
| 69571.   | 0.00    |          |           |           |      |          |           |  |  |
| 13.6350  | 0.02730 | 1.24E+07 | -30107.   | -4.26E-04 | 0.00 | 4.06E+12 | -328.2728 |  |  |
| 72876.   | 0.00    |          |           |           |      |          |           |  |  |
| 14.1400  | 0.02477 | 1.22E+07 | -32045.   | -4.07E-04 | 0.00 | 4.06E+12 | -311.4434 |  |  |



|         |           |           |           |          |      |          |          |  |
|---------|-----------|-----------|-----------|----------|------|----------|----------|--|
| 116119. | 0.00      |           |           |          |      |          |          |  |
| 42.9250 | -0.00539  | 593705.   | -13647.   | 5.92E-05 | 0.00 | 4.12E+12 | 104.5546 |  |
| 117588. | 0.00      |           |           |          |      |          |          |  |
| 43.4300 | -0.00503  | 512915.   | -13031.   | 6.00E-05 | 0.00 | 4.12E+12 | 98.7626  |  |
| 119057. | 0.00      |           |           |          |      |          |          |  |
| 43.9350 | -0.00466  | 435752.   | -12451.   | 6.07E-05 | 0.00 | 4.12E+12 | 92.7046  |  |
| 120526. | 0.00      |           |           |          |      |          |          |  |
| 44.4400 | -0.00429  | 361994.   | -11908.   | 6.13E-05 | 0.00 | 4.12E+12 | 86.3912  |  |
| 121995. | 0.00      |           |           |          |      |          |          |  |
| 44.9450 | -0.00392  | 291408.   | -11404.   | 6.18E-05 | 0.00 | 4.12E+12 | 79.8328  |  |
| 123464. | 0.00      |           |           |          |      |          |          |  |
| 45.4500 | -0.00354  | 223753.   | -10941.   | 6.21E-05 | 0.00 | 4.12E+12 | 73.0402  |  |
| 124933. | 0.00      |           |           |          |      |          |          |  |
| 45.9550 | -0.00317  | 158781.   | -9595.    | 6.24E-05 | 0.00 | 4.12E+12 | 371.3846 |  |
| 711011. | 0.00      |           |           |          |      |          |          |  |
| 46.4600 | -0.00279  | 107448.   | -7467.    | 6.26E-05 | 0.00 | 4.12E+12 | 330.7207 |  |
| 719274. | 0.00      |           |           |          |      |          |          |  |
| 46.9650 | -0.00241  | 68260.    | -5590.    | 6.27E-05 | 0.00 | 4.12E+12 | 288.9086 |  |
| 727536. | 0.00      |           |           |          |      |          |          |  |
| 47.4700 | -0.00203  | 39681.    | -3969.    | 6.28E-05 | 0.00 | 4.12E+12 | 245.9866 |  |
| 735799. | 0.00      |           |           |          |      |          |          |  |
| 47.9750 | -0.00165  | 20136.    | -2612.    | 6.29E-05 | 0.00 | 4.12E+12 | 201.9836 |  |
| 744062. | 0.00      |           |           |          |      |          |          |  |
| 48.4800 | -0.00126  | 8009.     | -1524.    | 6.29E-05 | 0.00 | 4.12E+12 | 156.9196 |  |
| 752325. | 0.00      |           |           |          |      |          |          |  |
| 48.9850 | -8.83E-04 | 1644.     | -712.8763 | 6.29E-05 | 0.00 | 4.12E+12 | 110.8075 |  |
| 760588. | 0.00      |           |           |          |      |          |          |  |
| 49.4900 | -5.02E-04 | -651.9010 | -184.2570 | 6.29E-05 | 0.00 | 4.12E+12 | 63.6543  |  |
| 768850. | 0.00      |           |           |          |      |          |          |  |
| 49.9950 | -1.21E-04 | -609.8678 | 55.4665   | 6.29E-05 | 0.00 | 4.12E+12 | 15.4624  |  |
| 777113. | 0.00      |           |           |          |      |          |          |  |
| 50.5000 | 2.61E-04  | 0.00      | 0.00      | 6.29E-05 | 0.00 | 4.12E+12 | -33.7682 |  |
| 392688. | 0.00      |           |           |          |      |          |          |  |

\* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

#### Output Summary for Load Case No. 1:

|                                  |   |                                 |
|----------------------------------|---|---------------------------------|
| Pile-head deflection             | = | 0.20322977 inches               |
| Computed slope at pile head      | = | -0.00169626 radians             |
| Maximum bending moment           | = | 13591988. inch-lbs              |
| Maximum shear force              | = | -45820. lbs                     |
| Depth of maximum bending moment  | = | 7.0700000 feet below pile head  |
| Depth of maximum shear force     | = | 21.2100000 feet below pile head |
| Number of iterations             | = | 490                             |
| Number of zero deflection points | = | 2                               |

#### Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

|                                |   |                  |
|--------------------------------|---|------------------|
| Shear force at pile head       | = | 5782.0 lbs       |
| Applied moment at pile head    | = | 5747155.0 in-lbs |
| Axial thrust load on pile head | = | 16688.0 lbs      |

| Depth    | Deflect. | Bending  | Shear     | Slope     | Total  | Bending  | Soil Res. | Soil      |         |         |
|----------|----------|----------|-----------|-----------|--------|----------|-----------|-----------|---------|---------|
| Spr.     | Distrib. | X        | y         | Moment    | Force  | S        | Stress    | Stiffness | p       |         |
| Es*h     | Lat.     | Load     | feet      | inches    | in-lbs | lbs      | radians   | psi*      | in-lb^2 | lb/inch |
| lb/inch  | lb/inch  |          |           |           |        |          |           |           |         |         |
| 0.00     | 0.06416  | 5747155. | 5782.     | -4.33E-04 | 0.00   | 4.10E+12 | 0.00      |           |         |         |
| 0.00     | 0.00     | 5782237. | 5782.     | -4.25E-04 | 0.00   | 4.10E+12 | 0.00      |           |         |         |
| 0.00     | 0.00     | 5817319. | 5782.     | -4.16E-04 | 0.00   | 4.10E+12 | 0.00      |           |         |         |
| 0.00     | 0.00     | 5852399. | 5782.     | -4.08E-04 | 0.00   | 4.10E+12 | 0.00      |           |         |         |
| 0.00     | 0.00     | 5887479. | 5782.     | -3.99E-04 | 0.00   | 4.10E+12 | 0.00      |           |         |         |
| 0.00     | 0.00     | 5922558. | 5778.     | -3.90E-04 | 0.00   | 4.10E+12 | -1.3954   |           |         |         |
| 163.6200 | 0.00     | 5957585. | 5688.     | -3.81E-04 | 0.00   | 4.10E+12 | -28.2434  |           |         |         |
| 3469.    | 0.00     | 5991573. | 5443.     | -3.73E-04 | 0.00   | 4.10E+12 | -52.6004  |           |         |         |
| 4.0400   | 0.04483  | 6023629. | 5058.     | -3.64E-04 | 0.00   | 4.10E+12 | -74.5543  |           |         |         |
| 10079.   | 0.00     | 6052946. | 4546.     | -3.55E-04 | 0.00   | 4.10E+12 | -94.1934  |           |         |         |
| 4.5450   | 0.04265  | 6078804. | 3923.     | -3.46E-04 | 0.00   | 4.10E+12 | -111.6068 |           |         |         |
| 13384.   | 0.00     | 6100561. | 3200.     | -3.37E-04 | 0.00   | 4.10E+12 | -126.8840 |           |         |         |
| 5.0500   | 0.04053  | 6117659. | 2391.     | -3.28E-04 | 0.00   | 4.10E+12 | -140.1147 |           |         |         |
| 16689.   | 0.00     | 6129609. | 1508.     | -3.19E-04 | 0.00   | 4.10E+12 | -151.3892 |           |         |         |
| 5.5550   | 0.03846  | 6135999. | 562.0352  | -3.10E-04 | 0.00   | 4.10E+12 | -160.7975 |           |         |         |
| 19994.   | 0.00     | 6136484. | -435.5241 | -3.01E-04 | 0.00   | 4.10E+12 | -168.4300 |           |         |         |
| 6.0600   | 0.03644  | 6130782. | -1474.    | -2.92E-04 | 0.00   | 4.10E+12 | -174.3764 |           |         |         |
| 33215.   | 0.00     | 6118675. | -2544.    | -2.83E-04 | 0.00   | 4.10E+12 | -178.7265 |           |         |         |
| 8.0800   | 0.02894  | 610004.  | -3636.    | -2.73E-04 | 0.00   | 4.10E+12 | -181.5693 |           |         |         |
| 36520.   | 0.00     | 61260.   | 0.02720   |           |        |          |           |           |         |         |
| 8.5850   | 0.02551  | 610004.  | 43130.    | 0.00      |        |          |           |           |         |         |

|         |           |          |         |           |      |          |           |         |          |          |         |           |      |          |         |
|---------|-----------|----------|---------|-----------|------|----------|-----------|---------|----------|----------|---------|-----------|------|----------|---------|
| 9.5950  | 0.02388   | 6074664. | -4740.  | -2.64E-04 | 0.00 | 4.10E+12 | -182.9932 | 23.7350 | -0.00198 | 3369111. | -20078. | -6.00E-05 | 0.00 | 4.12E+12 | 45.3216 |
| 46435.  | 0.00      |          |         |           |      |          |           | 138979. | 0.00     |          |         |           |      |          |         |
| 10.1000 | 0.02231   | 6042603. | -5850.  | -2.56E-04 | 0.00 | 4.10E+12 | -183.0858 | 24.2400 | -0.00232 | 3248278. | -19775. | -5.51E-05 | 0.00 | 4.12E+12 | 54.5772 |
| 49740.  | 0.00      |          |         |           |      |          |           | 142284. | 0.00     |          |         |           |      |          |         |
| 10.6050 | 0.02078   | 6003818. | -6956.  | -2.47E-04 | 0.00 | 4.10E+12 | -181.9335 | 24.7450 | -0.00264 | 3129449. | -19417. | -5.04E-05 | 0.00 | 4.12E+12 | 63.5166 |
| 53046.  | 0.00      |          |         |           |      |          |           | 145589. | 0.00     |          |         |           |      |          |         |
| 11.1100 | 0.01932   | 5958350. | -8051.  | -2.38E-04 | 0.00 | 4.10E+12 | -179.6217 | 25.2500 | -0.00294 | 3012952. | -19006. | -4.59E-05 | 0.00 | 4.12E+12 | 72.1182 |
| 56351.  | 0.00      |          |         |           |      |          |           | 148894. | 0.00     |          |         |           |      |          |         |
| 11.6150 | 0.01790   | 5906286. | -9129.  | -2.29E-04 | 0.00 | 4.10E+12 | -176.2342 | 25.7550 | -0.00320 | 2899103. | -18679. | -4.15E-05 | 0.00 | 4.12E+12 | 35.7168 |
| 59656.  | 0.00      |          |         |           |      |          |           | 67644.  | 0.00     |          |         |           |      |          |         |
| 12.1200 | 0.01654   | 5847748. | -10184. | -2.20E-04 | 0.00 | 4.10E+12 | -171.8536 | 26.2600 | -0.00344 | 2786565. | -18452. | -3.73E-05 | 0.00 | 4.12E+12 | 39.2143 |
| 62961.  | 0.00      |          |         |           |      |          |           | 69113.  | 0.00     |          |         |           |      |          |         |
| 12.6250 | 0.01523   | 5782898. | -11210. | -2.12E-04 | 0.00 | 4.10E+12 | -166.5605 | 26.7650 | -0.00365 | 2675466. | -18205. | -3.33E-05 | 0.00 | 4.12E+12 | 42.5381 |
| 66266.  | 0.00      |          |         |           |      |          |           | 70582.  | 0.00     |          |         |           |      |          |         |
| 13.1300 | 0.01397   | 5711931. | -12200. | -2.03E-04 | 0.00 | 4.10E+12 | -160.4340 | 27.2700 | -0.00384 | 2565930. | -17937. | -2.95E-05 | 0.00 | 4.12E+12 | 45.6819 |
| 69571.  | 0.00      |          |         |           |      |          |           | 72051.  | 0.00     |          |         |           |      |          |         |
| 13.6350 | 0.01277   | 5635071. | -13152. | -1.95E-04 | 0.00 | 4.10E+12 | -153.5511 | 27.7750 | -0.00401 | 2458071. | -17652. | -2.58E-05 | 0.00 | 4.12E+12 | 48.6402 |
| 72876.  | 0.00      |          |         |           |      |          |           | 73520.  | 0.00     |          |         |           |      |          |         |
| 14.1400 | 0.01161   | 5552572. | -14059. | -1.87E-04 | 0.00 | 4.10E+12 | -145.9866 | 28.2800 | -0.00415 | 2351997. | -17348. | -2.22E-05 | 0.00 | 4.12E+12 | 51.4083 |
| 76181.  | 0.00      |          |         |           |      |          |           | 74989.  | 0.00     |          |         |           |      |          |         |
| 14.6450 | 0.01051   | 5464710. | -14919. | -1.78E-04 | 0.00 | 4.10E+12 | -137.8135 | 28.7850 | -0.00428 | 2247811. | -17029. | -1.88E-05 | 0.00 | 4.12E+12 | 53.9823 |
| 79487.  | 0.00      |          |         |           |      |          |           | 76458.  | 0.00     |          |         |           |      |          |         |
| 15.1500 | 0.00945   | 5371787. | -15728. | -1.70E-04 | 0.00 | 4.10E+12 | -129.1021 | 29.2900 | -0.00438 | 2145608. | -16695. | -1.56E-05 | 0.00 | 4.12E+12 | 56.3589 |
| 82792.  | 0.00      |          |         |           |      |          |           | 77927.  | 0.00     |          |         |           |      |          |         |
| 15.6550 | 0.00844   | 5274122. | -16483. | -1.63E-04 | 0.00 | 4.10E+12 | -119.9206 | 29.7950 | -0.00447 | 2045473. | -16347. | -1.25E-05 | 0.00 | 4.12E+12 | 58.5354 |
| 86097.  | 0.00      |          |         |           |      |          |           | 79396.  | 0.00     |          |         |           |      |          |         |
| 16.1600 | 0.00748   | 5172052. | -17180. | -1.55E-04 | 0.00 | 4.11E+12 | -110.3346 | 30.3000 | -0.00453 | 1947488. | -15986. | -9.60E-06 | 0.00 | 4.12E+12 | 60.5101 |
| 89402.  | 0.00      |          |         |           |      |          |           | 80865.  | 0.00     |          |         |           |      |          |         |
| 16.6650 | 0.00656   | 5065929. | -17819. | -1.47E-04 | 0.00 | 4.11E+12 | -100.4071 | 30.8050 | -0.00458 | 1851725. | -15614. | -6.80E-06 | 0.00 | 4.12E+12 | 62.2814 |
| 92707.  | 0.00      |          |         |           |      |          |           | 82334.  | 0.00     |          |         |           |      |          |         |
| 17.1700 | 0.00569   | 4956119. | -18396. | -1.40E-04 | 0.00 | 4.11E+12 | -90.1989  | 31.3100 | -0.00462 | 1758249. | -15232. | -4.15E-06 | 0.00 | 4.12E+12 | 63.8487 |
| 96012.  | 0.00      |          |         |           |      |          |           | 83803.  | 0.00     |          |         |           |      |          |         |
| 17.6750 | 0.00487   | 4842995. | -18911. | -1.33E-04 | 0.00 | 4.11E+12 | -79.7678  | 31.8150 | -0.00463 | 1667117. | -14841. | -1.63E-06 | 0.00 | 4.13E+12 | 65.2117 |
| 99317.  | 0.00      |          |         |           |      |          |           | 85271.  | 0.00     |          |         |           |      |          |         |
| 18.1800 | 0.00408   | 4726941. | -19363. | -1.26E-04 | 0.00 | 4.11E+12 | -69.1691  | 32.3200 | -0.00464 | 1578380. | -14442. | 7.49E-07  | 0.00 | 4.13E+12 | 66.3706 |
| 102622. | 0.00      |          |         |           |      |          |           | 86740.  | 0.00     |          |         |           |      |          |         |
| 18.6850 | 0.00334   | 4608346. | -19749. | -1.19E-04 | 0.00 | 4.11E+12 | -58.4554  | 32.8250 | -0.00463 | 1492079. | -14037. | 3.00E-06  | 0.00 | 4.13E+12 | 67.3263 |
| 105928. | 0.00      |          |         |           |      |          |           | 88209.  | 0.00     |          |         |           |      |          |         |
| 19.1900 | 0.00265   | 4487604. | -20071. | -1.12E-04 | 0.00 | 4.11E+12 | -47.6768  | 33.3300 | -0.00460 | 1408252. | -13627. | 5.14E-06  | 0.00 | 4.13E+12 | 68.0797 |
| 109233. | 0.00      |          |         |           |      |          |           | 89678.  | 0.00     |          |         |           |      |          |         |
| 19.6950 | 0.00199   | 4365111. | -20327. | -1.06E-04 | 0.00 | 4.11E+12 | -36.8804  | 33.8350 | -0.00456 | 1326924. | -13212. | 7.14E-06  | 0.00 | 4.13E+12 | 68.6325 |
| 112538. | 0.00      |          |         |           |      |          |           | 91147.  | 0.00     |          |         |           |      |          |         |
| 20.2000 | 0.00137   | 4241262. | -20518. | -9.92E-05 | 0.00 | 4.11E+12 | -26.1109  | 34.3400 | -0.00451 | 1248116. | -12795. | 9.04E-06  | 0.00 | 4.13E+12 | 68.9867 |
| 115843. | 0.00      |          |         |           |      |          |           | 92616.  | 0.00     |          |         |           |      |          |         |
| 20.7050 | 7.84E-04  | 4116454. | -20644. | -9.30E-05 | 0.00 | 4.11E+12 | -15.4101  | 34.8450 | -0.00445 | 1171842. | -12377. | 1.08E-05  | 0.00 | 4.13E+12 | 69.1445 |
| 119148. | 0.00      |          |         |           |      |          |           | 94085.  | 0.00     |          |         |           |      |          |         |
| 21.2100 | 2.38E-04  | 3991079. | -20705. | -8.71E-05 | 0.00 | 4.11E+12 | -4.8175   | 35.3500 | -0.00438 | 1098106. | -11958. | 1.25E-05  | 0.00 | 4.13E+12 | 69.1085 |
| 122453. | 0.00      |          |         |           |      |          |           | 95554.  | 0.00     |          |         |           |      |          |         |
| 21.7150 | -2.71E-04 | 3865527. | -20703. | -8.13E-05 | 0.00 | 4.11E+12 | 5.6302    | 35.8550 | -0.00430 | 1026909. | -11540. | 1.40E-05  | 0.00 | 4.13E+12 | 68.8817 |
| 125758. | 0.00      |          |         |           |      |          |           | 97023.  | 0.00     |          |         |           |      |          |         |
| 22.2200 | -7.47E-04 | 3740181. | -20637. | -7.57E-05 | 0.00 | 4.11E+12 | 15.8987   | 36.3600 | -0.00421 | 958240.  | -11124. | 1.55E-05  | 0.00 | 4.13E+12 | 68.4674 |
| 129063. | 0.00      |          |         |           |      |          |           | 98492.  | 0.00     |          |         |           |      |          |         |
| 22.7250 | -0.00119  | 3615418. | -20510. | -7.02E-05 | 0.00 | 4.11E+12 | 25.9560   | 36.8650 | -0.00411 | 892086.  | -10711. | 1.69E-05  | 0.00 | 4.13E+12 | 67.8688 |
| 132369. | 0.00      |          |         |           |      |          |           | 99961.  | 0.00     |          |         |           |      |          |         |
| 23.2300 | -0.00160  | 3491608. | -20323. | -6.50E-05 | 0.00 | 4.11E+12 | 35.7728   | 37.3700 | -0.00401 | 828425.  | -10302. | 1.81E-05  | 0.00 | 4.13E+12 | 67.0897 |
| 135674. | 0.00      |          |         |           |      |          |           | 101430. | 0.00     |          |         |           |      |          |         |

|         |           |           |           |          |      |          |          |
|---------|-----------|-----------|-----------|----------|------|----------|----------|
| 37.8750 | -0.00389  | 767227.   | -9898.    | 1.93E-05 | 0.00 | 4.13E+12 | 66.1339  |
| 102899. | 0.00      |           |           |          |      |          |          |
| 38.3800 | -0.00377  | 708457.   | -9501.    | 2.04E-05 | 0.00 | 4.13E+12 | 65.0054  |
| 104368. | 0.00      |           |           |          |      |          |          |
| 38.8850 | -0.00365  | 652075.   | -9111.    | 2.14E-05 | 0.00 | 4.13E+12 | 63.7085  |
| 105837. | 0.00      |           |           |          |      |          |          |
| 39.3900 | -0.00352  | 598032.   | -8729.    | 2.23E-05 | 0.00 | 4.13E+12 | 62.2474  |
| 107306. | 0.00      |           |           |          |      |          |          |
| 39.8950 | -0.00338  | 546275.   | -8357.    | 2.31E-05 | 0.00 | 4.13E+12 | 60.6264  |
| 108775. | 0.00      |           |           |          |      |          |          |
| 40.4000 | -0.00323  | 496744.   | -7995.    | 2.39E-05 | 0.00 | 4.13E+12 | 58.8502  |
| 110244. | 0.00      |           |           |          |      |          |          |
| 40.9050 | -0.00309  | 449375.   | -7644.    | 2.46E-05 | 0.00 | 4.13E+12 | 56.9234  |
| 111712. | 0.00      |           |           |          |      |          |          |
| 41.4100 | -0.00294  | 404095.   | -7305.    | 2.52E-05 | 0.00 | 4.13E+12 | 54.8505  |
| 113181. | 0.00      |           |           |          |      |          |          |
| 41.9150 | -0.00278  | 360830.   | -6980.    | 2.58E-05 | 0.00 | 4.13E+12 | 52.6363  |
| 114650. | 0.00      |           |           |          |      |          |          |
| 42.4200 | -0.00262  | 319498.   | -6668.    | 2.63E-05 | 0.00 | 4.13E+12 | 50.2856  |
| 116119. | 0.00      |           |           |          |      |          |          |
| 42.9250 | -0.00246  | 280013.   | -6370.    | 2.67E-05 | 0.00 | 4.13E+12 | 47.8032  |
| 117588. | 0.00      |           |           |          |      |          |          |
| 43.4300 | -0.00230  | 242283.   | -6089.    | 2.71E-05 | 0.00 | 4.13E+12 | 45.1939  |
| 119057. | 0.00      |           |           |          |      |          |          |
| 43.9350 | -0.00213  | 206213.   | -5823.    | 2.74E-05 | 0.00 | 4.13E+12 | 42.4625  |
| 120526. | 0.00      |           |           |          |      |          |          |
| 44.4400 | -0.00197  | 171702.   | -5574.    | 2.77E-05 | 0.00 | 4.13E+12 | 39.6141  |
| 121995. | 0.00      |           |           |          |      |          |          |
| 44.9450 | -0.00180  | 138646.   | -5343.    | 2.79E-05 | 0.00 | 4.13E+12 | 36.6534  |
| 123464. | 0.00      |           |           |          |      |          |          |
| 45.4500 | -0.00163  | 106936.   | -5130.    | 2.81E-05 | 0.00 | 4.13E+12 | 33.5854  |
| 124933. | 0.00      |           |           |          |      |          |          |
| 45.9550 | -0.00146  | 76459.    | -4510.    | 2.83E-05 | 0.00 | 4.13E+12 | 171.0859 |
| 711011. | 0.00      |           |           |          |      |          |          |
| 46.4600 | -0.00129  | 52265.    | -3529.    | 2.84E-05 | 0.00 | 4.13E+12 | 152.7067 |
| 719274. | 0.00      |           |           |          |      |          |          |
| 46.9650 | -0.00111  | 33679.    | -2661.    | 2.84E-05 | 0.00 | 4.13E+12 | 133.8037 |
| 727536. | 0.00      |           |           |          |      |          |          |
| 47.4700 | -9.42E-04 | 20007.    | -1909.    | 2.85E-05 | 0.00 | 4.13E+12 | 114.3951 |
| 735799. | 0.00      |           |           |          |      |          |          |
| 47.9750 | -7.70E-04 | 10535.    | -1276.    | 2.85E-05 | 0.00 | 4.13E+12 | 94.4946  |
| 744062. | 0.00      |           |           |          |      |          |          |
| 48.4800 | -5.97E-04 | 4534.     | -765.2392 | 2.85E-05 | 0.00 | 4.13E+12 | 74.1119  |
| 752325. | 0.00      |           |           |          |      |          |          |
| 48.9850 | -4.24E-04 | 1255.     | -379.3223 | 2.85E-05 | 0.00 | 4.13E+12 | 53.2534  |
| 760588. | 0.00      |           |           |          |      |          |          |
| 49.4900 | -2.52E-04 | -68.8050  | -121.2392 | 2.85E-05 | 0.00 | 4.13E+12 | 31.9226  |
| 768850. | 0.00      |           |           |          |      |          |          |
| 49.9950 | -7.89E-05 | -220.2404 | 6.1525    | 2.85E-05 | 0.00 | 4.13E+12 | 10.1209  |
| 777113. | 0.00      |           |           |          |      |          |          |
| 50.5000 | 9.38E-05  | 0.00      | 0.00      | 2.85E-05 | 0.00 | 4.13E+12 | -12.1514 |
| 392688. | 0.00      |           |           |          |      |          |          |

\* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual

stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

#### Output Summary for Load Case No. 2:

|                                  |   |                                  |
|----------------------------------|---|----------------------------------|
| Pile-head deflection             | = | 0.06416126 inches                |
| Computed slope at pile head      | = | -0.00043335 radians              |
| Maximum bending moment           | = | 6136484. inch-lbs                |
| Maximum shear force              | = | -20705. lbs                      |
| Depth of maximum bending moment  | = | 7.57500000 feet below pile head  |
| Depth of maximum shear force     | = | 21.21000000 feet below pile head |
| Number of iterations             | = | 6                                |
| Number of zero deflection points | = | 2                                |

#### Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 3

#### Pile-head conditions are Shear and Moment (Loading Type 1)

|                                |   |                  |
|--------------------------------|---|------------------|
| Shear force at pile head       | = | 6210.0 lbs       |
| Applied moment at pile head    | = | 6231168.0 in-lbs |
| Axial thrust load on pile head | = | 28916.0 lbs      |

| Spr.  | Depth    | Deflect. | Bending  | Shear   | Slope  | Total     | Bending | Soil Res. | Soil      | Spr. Distrib. |   |        |
|-------|----------|----------|----------|---------|--------|-----------|---------|-----------|-----------|---------------|---|--------|
|       |          |          |          |         |        |           |         |           |           | X             | Y | Moment |
| Es'th | Lat.     | Load     | feet     | inches  | in-lbs | lbs       | radians | psi*      | in-lb^2   | lb/inch       |   |        |
|       |          |          | lb/inch  | lb/inch |        |           |         |           |           |               |   |        |
|       | 0.00     | 0.06948  | 6231168. |         | 6210.  | -4.70E-04 | 0.00    | 4.10E+12  | 0.00      |               |   |        |
|       | 0.00     | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 0.5050   | 0.06666  | 6268882. |         | 6210.  | -4.60E-04 | 0.00    | 4.10E+12  | 0.00      |               |   |        |
|       | 0.00     | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 1.0100   | 0.06390  | 6306595. |         | 6210.  | -4.51E-04 | 0.00    | 4.10E+12  | 0.00      |               |   |        |
|       | 0.00     | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 1.5150   | 0.06120  | 6344305. |         | 6210.  | -4.42E-04 | 0.00    | 4.10E+12  | 0.00      |               |   |        |
|       | 0.00     | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 2.0200   | 0.05855  | 6382015. |         | 6210.  | -4.32E-04 | 0.00    | 4.10E+12  | 0.00      |               |   |        |
|       | 0.00     | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 2.5250   | 0.05596  | 6419722. |         | 6205.  | -4.23E-04 | 0.00    | 4.10E+12  | -1.5108   |               |   |        |
|       | 163.6200 | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 3.0300   | 0.05342  | 6457372. |         | 6108.  | -4.13E-04 | 0.00    | 4.10E+12  | -30.5793  |               |   |        |
|       | 3469.    | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 3.5350   | 0.05095  | 6493898. |         | 5843.  | -4.04E-04 | 0.00    | 4.10E+12  | -56.9489  |               |   |        |
|       | 6774.    | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 4.0400   | 0.04853  | 6528331. |         | 5426.  | -3.94E-04 | 0.00    | 4.10E+12  | -80.7151  |               |   |        |
|       | 10079.   | 0.00     |          |         |        |           |         |           |           |               |   |        |
|       | 4.5450   | 0.04617  | 6559798. |         | 4872.  | -3.84E-04 | 0.00    | 4.10E+12  | -101.9736 |               |   |        |



|         |          |          |         |          |      |          |          |  |
|---------|----------|----------|---------|----------|------|----------|----------|--|
| 88209.  | 0.00     |          |         |          |      |          |          |  |
| 33.3300 | -0.00499 | 1523416. | -14749. | 5.61E-06 | 0.00 | 4.12E+12 | 73.7743  |  |
| 89678.  | 0.00     |          |         |          |      |          |          |  |
| 33.8350 | -0.00494 | 1435390. | -14300. | 7.78E-06 | 0.00 | 4.12E+12 | 74.3694  |  |
| 91147.  | 0.00     |          |         |          |      |          |          |  |
| 34.3400 | -0.00489 | 1350095. | -13848. | 9.83E-06 | 0.00 | 4.12E+12 | 74.7495  |  |
| 92616.  | 0.00     |          |         |          |      |          |          |  |
| 34.8450 | -0.00483 | 1267544. | -13395. | 1.18E-05 | 0.00 | 4.12E+12 | 74.9170  |  |
| 94085.  | 0.00     |          |         |          |      |          |          |  |
| 35.3500 | -0.00475 | 1187744. | -12941. | 1.36E-05 | 0.00 | 4.12E+12 | 74.8747  |  |
| 95554.  | 0.00     |          |         |          |      |          |          |  |
| 35.8550 | -0.00466 | 1110694. | -12488. | 1.52E-05 | 0.00 | 4.12E+12 | 74.6259  |  |
| 97023.  | 0.00     |          |         |          |      |          |          |  |
| 36.3600 | -0.00456 | 1036383. | -12037. | 1.68E-05 | 0.00 | 4.12E+12 | 74.1740  |  |
| 98492.  | 0.00     |          |         |          |      |          |          |  |
| 36.8650 | -0.00446 | 964797.  | -11590. | 1.83E-05 | 0.00 | 4.12E+12 | 73.5227  |  |
| 99961.  | 0.00     |          |         |          |      |          |          |  |
| 37.3700 | -0.00434 | 895910.  | -11147. | 1.97E-05 | 0.00 | 4.12E+12 | 72.6759  |  |
| 101430. | 0.00     |          |         |          |      |          |          |  |
| 37.8750 | -0.00422 | 829692.  | -10709. | 2.09E-05 | 0.00 | 4.12E+12 | 71.6379  |  |
| 102899. | 0.00     |          |         |          |      |          |          |  |
| 38.3800 | -0.00409 | 766105.  | -10279. | 2.21E-05 | 0.00 | 4.12E+12 | 70.4130  |  |
| 104368. | 0.00     |          |         |          |      |          |          |  |
| 38.8850 | -0.00395 | 705103.  | -9857.  | 2.32E-05 | 0.00 | 4.12E+12 | 69.0057  |  |
| 105837. | 0.00     |          |         |          |      |          |          |  |
| 39.3900 | -0.00381 | 646635.  | -9443.  | 2.42E-05 | 0.00 | 4.12E+12 | 67.4206  |  |
| 107306. | 0.00     |          |         |          |      |          |          |  |
| 39.8950 | -0.00366 | 590643.  | -9040.  | 2.51E-05 | 0.00 | 4.12E+12 | 65.6626  |  |
| 108775. | 0.00     |          |         |          |      |          |          |  |
| 40.4000 | -0.00350 | 537062.  | -8648.  | 2.59E-05 | 0.00 | 4.12E+12 | 63.7365  |  |
| 110244. | 0.00     |          |         |          |      |          |          |  |
| 40.9050 | -0.00334 | 485821.  | -8268.  | 2.67E-05 | 0.00 | 4.12E+12 | 61.6473  |  |
| 111712. | 0.00     |          |         |          |      |          |          |  |
| 41.4100 | -0.00318 | 436845.  | -7901.  | 2.73E-05 | 0.00 | 4.12E+12 | 59.4001  |  |
| 113181. | 0.00     |          |         |          |      |          |          |  |
| 41.9150 | -0.00301 | 390049.  | -7548.  | 2.79E-05 | 0.00 | 4.12E+12 | 56.9999  |  |
| 114650. | 0.00     |          |         |          |      |          |          |  |
| 42.4200 | -0.00284 | 345347.  | -7211.  | 2.85E-05 | 0.00 | 4.12E+12 | 54.4518  |  |
| 116119. | 0.00     |          |         |          |      |          |          |  |
| 42.9250 | -0.00267 | 302645.  | -6889.  | 2.90E-05 | 0.00 | 4.12E+12 | 51.7612  |  |
| 117588. | 0.00     |          |         |          |      |          |          |  |
| 43.4300 | -0.00249 | 261843.  | -6584.  | 2.94E-05 | 0.00 | 4.12E+12 | 48.9332  |  |
| 119057. | 0.00     |          |         |          |      |          |          |  |
| 43.9350 | -0.00231 | 222838.  | -6296.  | 2.97E-05 | 0.00 | 4.12E+12 | 45.9731  |  |
| 120526. | 0.00     |          |         |          |      |          |          |  |
| 44.4400 | -0.00213 | 185521.  | -6027.  | 3.00E-05 | 0.00 | 4.12E+12 | 42.8862  |  |
| 121995. | 0.00     |          |         |          |      |          |          |  |
| 44.9450 | -0.00195 | 149779.  | -5777.  | 3.03E-05 | 0.00 | 4.12E+12 | 39.6778  |  |
| 123464. | 0.00     |          |         |          |      |          |          |  |
| 45.4500 | -0.00176 | 115495.  | -5547.  | 3.05E-05 | 0.00 | 4.12E+12 | 36.3533  |  |
| 124933. | 0.00     |          |         |          |      |          |          |  |
| 45.9550 | -0.00158 | 82545.   | -4875.  | 3.06E-05 | 0.00 | 4.12E+12 | 185.1641 |  |
| 711011. | 0.00     |          |         |          |      |          |          |  |
| 46.4600 | -0.00139 | 56395.   | -3814.  | 3.07E-05 | 0.00 | 4.12E+12 | 165.2486 |  |
| 719274. | 0.00     |          |         |          |      |          |          |  |
| 46.9650 | -0.00121 | 36314.   | -2874.  | 3.08E-05 | 0.00 | 4.12E+12 | 144.7658 |  |

|         |           |           |           |          |      |          |          |  |
|---------|-----------|-----------|-----------|----------|------|----------|----------|--|
| 727536. | 0.00      |           |           |          |      |          |          |  |
| 47.4700 | -0.00102  | 21549.    | -2061.    | 3.08E-05 | 0.00 | 4.12E+12 | 123.7354 |  |
| 735799. | 0.00      |           |           |          |      |          |          |  |
| 47.9750 | -8.32E-04 | 11328.    | -1376.    | 3.09E-05 | 0.00 | 4.12E+12 | 102.1722 |  |
| 744062. | 0.00      |           |           |          |      |          |          |  |
| 48.4800 | -6.45E-04 | 4859.     | -823.9211 | 3.09E-05 | 0.00 | 4.12E+12 | 80.0866  |  |
| 752325. | 0.00      |           |           |          |      |          |          |  |
| 48.9850 | -4.58E-04 | 1331.     | -407.0773 | 3.09E-05 | 0.00 | 4.12E+12 | 57.4856  |  |
| 760588. | 0.00      |           |           |          |      |          |          |  |
| 49.4900 | -2.71E-04 | -85.8566  | -128.7461 | 3.09E-05 | 0.00 | 4.12E+12 | 34.3729  |  |
| 768850. | 0.00      |           |           |          |      |          |          |  |
| 49.9950 | -8.38E-05 | -240.3194 | 7.9766    | 3.09E-05 | 0.00 | 4.12E+12 | 10.7501  |  |
| 777113. | 0.00      |           |           |          |      |          |          |  |
| 50.5000 | 1.03E-04  | 0.00      | 0.00      | 3.09E-05 | 0.00 | 4.12E+12 | -13.3826 |  |
| 392688  | 0.00      |           |           |          |      |          |          |  |

\* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

### Output Summary for Load Case No. 3:

|                                  |   |                                 |
|----------------------------------|---|---------------------------------|
| Pile-head deflection             | = | 0.06947958 inches               |
| Computed slope at pile head      | = | -0.00046957 radians             |
| Maximum bending moment           | = | 6648595. inch-lbs               |
| Maximum shear force              | = | -22435. lbs                     |
| Depth of maximum bending moment  | = | 7.5750000 feet below pile head  |
| Depth of maximum shear force     | = | 21.2100000 feet below pile head |
| Number of iterations             | = | 6                               |
| Number of zero deflection points | = | 2                               |

## Summary of Pile-head Responses for Conventional Analyses

#### Definitions of Pile-head Loading Conditions:

- Load Type 1: Load 1 = Shear,  $V$ , lbs, and Load 2 = Moment,  $M$ , in-lbs
- Load Type 2: Load 1 = Shear,  $V$ , lbs, and Load 2 = Slope,  $S$ , radians
- Load Type 3: Load 1 = Shear,  $V$ , lbs, and Load 2 = Rot. Stiffness,  $R$ , in-lbs/rad
- Load Type 4: Load 1 = Top Deflection,  $y$ , inches, and Load 2 = Moment,  $M$ , in-lbs
- Load Type 5: Load 1 = Top Deflection,  $y$ , inches, and Load 2 = Slope,  $S$ , radians

| Load<br>Moment  | Load   | Load | Axial     | Pile-head | Pile-head  | Max Shear | Max     |
|-----------------|--------|------|-----------|-----------|------------|-----------|---------|
| Case<br>Pile    | Type   | Type | Pile-head | Loading   | Deflection | Rotation  | in Pile |
| No. 1<br>in-lbs | Load 1 | 2    | Load 2    | lbs       | inches     | radians   | lbs     |

```
-----  
1 V, lb 12849. M, in-lb 1.28E+07 26701. 0.2032 -0.00170 -45820.  
1.36E+07  
2 V, lb 5782. M, in-lb 5747155. 16688. 0.06416 -4.33E-04 -20705.  
6136484.  
3 V, lb 6210. M, in-lb 6231168. 28916. 0.06948 -4.70E-04 -22435.  
6648595.
```

Maximum pile-head deflection = 0.2032297745 inches  
Maximum pile-head rotation = -0.0016962550 radians = -0.097188 deg.

The analysis ended normally.



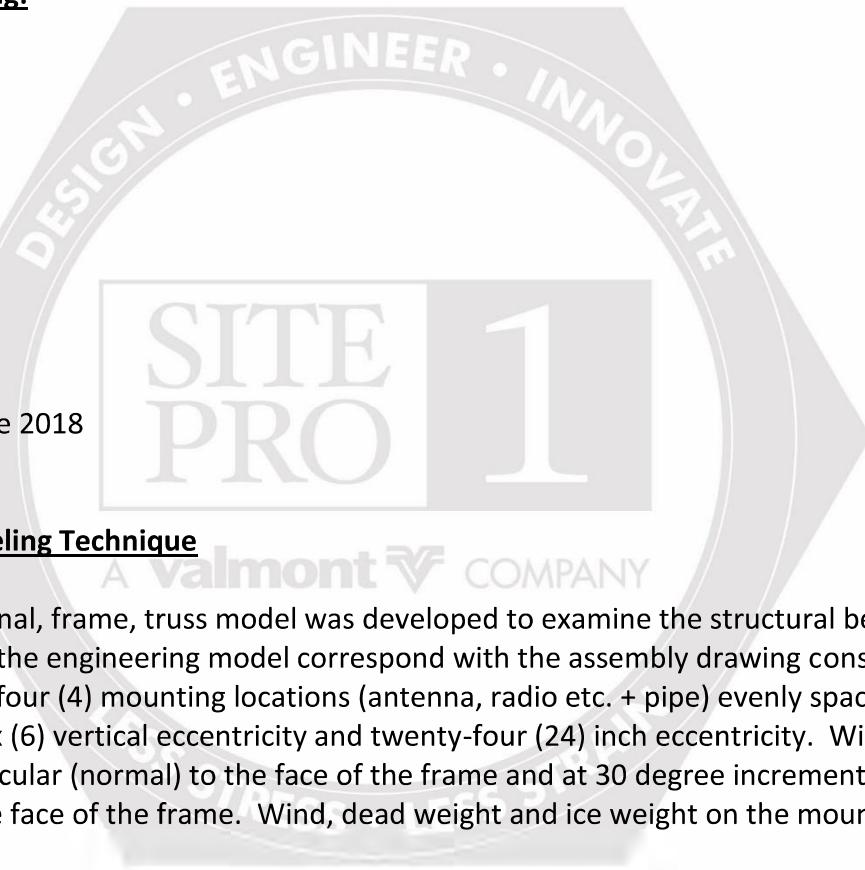
1545 Pidco Drive  
Plymouth, IN 46563  
Phone: 574.936.4221  
Fax: 574.936.8925  
Email: SP1Engineering@valmont.com  
www.sitepro1.com

June 3, 2022

### Site Pro 1 / Valmont Mounting System:

Part Number = RMVD12 -3xxx & RMVD12-NPNH  
Part Description = 12' Monopole Dual Triple T-arm kit. 2.5 sch 40 mast pipe

### Mount EPA & Weight (No antenna pipes, (0.67\*EPA )):


|                                       |                                                  |                                                |
|---------------------------------------|--------------------------------------------------|------------------------------------------------|
| EPA <sub>N</sub> = 21.51(14.35) Sq-Ft | EPA <sub>N</sub> (0.5" Ice) = 26.29(17.54) Sq-Ft | EPA <sub>N</sub> (1" Ice) = 31.18(20.79) Sq-Ft |
| EPA <sub>T</sub> = 20.57(13.72) Sq-Ft | EPA <sub>T</sub> (0.5" Ice) = 25.86(17.24) Sq-Ft | EPA <sub>T</sub> (1" Ice) = 30.37(20.24) Sq-Ft |
| Weight = 2081 lb                      | Weight (0.5" Ice) = 2317 lb                      | Weight (1" Ice) = 2620 lb                      |

### Classification Rating:

M1300R(1300)-4[6]  
M800R(1300)-4[24]

### Design Standards

ANSI/TIA-222-G-2012  
ANSI/TIA-222-H-2018  
AT&T Mount Classification  
ASCE 7-16  
International Building Code 2018  
TIA-5053



### Analysis and Modeling Technique

An elastic, three-dimensional, frame, truss model was developed to examine the structural behavior of the mount. All orientations in the engineering model correspond with the assembly drawing constraints. The mount was analyzed with four (4) mounting locations (antenna, radio etc. + pipe) evenly spaced across the face of the mount, with six (6) vertical eccentricity and twenty-four (24) inch eccentricity. Wind directions considered were perpendicular (normal) to the face of the frame and at 30 degree increments up to 90 degrees (tangential) to the face of the frame. Wind, dead weight and ice weight on the mount was also included in the model.

### Modeling Software

Autodesk Inventor  
RISA-3D



1545 Pidco Drive  
Plymouth, IN 46563  
Phone: 574.936.4221  
Fax: 574.936.8925  
Email: SP1Engineering@valmont.com  
www.sitepro1.com

### Analysis Design Criteria

|                                          |                         |
|------------------------------------------|-------------------------|
| Maximum Mount Height                     | 400'                    |
| Maximum Ultimate Wind Speed, no Ice      | 180 mph 3 sec gust      |
| Maximum Design Wind Speed, no Ice        | 140 mph 3 sec gust      |
| Maximum Design Wind Speed on Ice         | 60 mph 3 sec gust       |
| Structure Class                          | I or II                 |
| Exposure Category                        | B or C                  |
| Topographic Category                     | I                       |
| Maximum Design Ice Thickness, $t_i$      | 1" (2.75" factored ice) |
| Wind Direction Probability Factor, $K_d$ | 0.95                    |
| Gust Effect Factor, $G_h$                | 1.0                     |

### Capacity Results

The following factored loads at each mounting location represent the capacity of the mount based on the criteria and modeling technique described above. Capacity below represents 6 inch offset

|                                            |       |         |                       |
|--------------------------------------------|-------|---------|-----------------------|
| Normal Wind Load (no ice), $F_{no}$        | ..... | 1300 lb | [813lb Non-Factored]  |
| Tangential Wind Load (no ice), $F_{to}$    | ..... | 1300 lb | [813 lb Non-Factored] |
| Vertical (Dead) Load, $F_{zo}$             | ..... | 650 lb  | [542 lb Non-Factored] |
| Normal Wind on Ice, $F_{ni}$               | ..... | 325 lb  |                       |
| Tangential Wind on Ice, $F_{ti}$           | ..... | 325 lb  |                       |
| Vertical (Dead + Ice) Load, $F_{zi}$       | ..... | 1300 lb |                       |
| Normal Maintenance Wind Load, $F_{nm}$     | ..... | 130 lb  |                       |
| Tangential Maintenance Wind Load, $F_{tm}$ | ..... | 130 lb  |                       |
| Vertical Dead Load, $F_{zm}$               | ..... | 650 lb  | [417 lb Non-Factored] |
| Vertical Live Load, $L_M^*$                | ..... | 750 lb  | [500 lb Non-Factored] |

\* In addition to a nominal Live Load of two (2) 250 lb concentrated on either side of a mounting location to provide access for climbers.



1545 Pidco Drive  
Plymouth, IN 46563  
Phone: 574.936.4221  
Fax: 574.936.8925  
Email: SP1Engineering@valmont.com  
www.sitepro1.com

## 6 inch offset

| Effective Projected Area (EPA) <sub>A</sub><br>(sq-ft) |                        |         |         |         |         |         |         |         |         |         |         |
|--------------------------------------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                                                        | WIND LOAD: 1.0000 kips |         |         |         |         |         |         |         |         |         |         |
| HEIGHT<br>(ft)                                         | WIND SPEED (mph)       |         |         |         |         |         |         |         |         |         |         |
|                                                        | 90                     | 100     | 110     | 120     | 130     | 140     | 150     | 160     | 170     | 180     | 190     |
| 50                                                     | 46.4112                | 37.5931 | 31.0687 | 26.1063 | 22.2444 | 19.1802 | 16.7080 | 14.6848 | 13.0080 | 11.6028 | 10.4136 |
| 100                                                    | 40.1096                | 32.4888 | 26.8502 | 22.5617 | 19.2241 | 16.5759 | 14.4395 | 12.6909 | 11.2418 | 10.0274 | 8.9997  |
| 150                                                    | 36.8279                | 29.8306 | 24.6534 | 20.7157 | 17.6512 | 15.2197 | 13.2580 | 11.6526 | 10.3220 | 9.2070  | 8.2633  |
| 200                                                    | 34.6636                | 28.0775 | 23.2046 | 19.4983 | 16.6139 | 14.3253 | 12.4789 | 10.9678 | 9.7154  | 8.6659  | 7.7777  |
| 250                                                    | 33.0729                | 26.7890 | 22.1397 | 18.6035 | 15.8515 | 13.6679 | 11.9062 | 10.4645 | 9.2696  | 8.2682  |         |
| 300                                                    | 31.8275                | 25.7802 | 21.3060 | 17.9029 | 15.2546 | 13.1532 | 11.4579 | 10.0704 | 8.9205  | 7.9569  |         |
| 350                                                    | 30.8111                | 24.9570 | 20.6256 | 17.3313 | 14.7675 | 12.7332 | 11.0920 | 9.7488  | 8.6357  | 7.7028  |         |
| 400                                                    | 29.9570                | 24.2652 | 20.0539 | 16.8508 | 14.3581 | 12.3802 | 10.7845 | 9.4786  | 8.3963  | 7.4893  |         |
| 450                                                    | 29.2234                | 23.6709 | 19.5627 | 16.4381 | 14.0065 | 12.0770 | 10.5204 | 9.2465  | 8.1906  |         |         |
| 500                                                    | 28.5823                | 23.1517 | 19.1336 | 16.0775 | 13.6992 | 11.8121 | 10.2896 | 9.0436  | 8.0110  |         |         |

## 24 inch offset

| Effective Projected Area (EPA) <sub>A</sub><br>(sq-ft) |                        |         |         |         |         |         |         |         |         |         |         |
|--------------------------------------------------------|------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                                                        | WIND LOAD: 1.3000 kips |         |         |         |         |         |         |         |         |         |         |
| HEIGHT<br>(ft)                                         | WIND SPEED (mph)       |         |         |         |         |         |         |         |         |         |         |
|                                                        | 90                     | 100     | 110     | 120     | 130     | 140     | 150     | 160     | 170     | 180     | 190     |
| 50                                                     | 60.3346                | 48.8710 | 40.3893 | 33.9382 | 28.9178 | 24.9342 | 21.7205 | 19.0903 | 16.9104 | 15.0837 | 13.5377 |
| 100                                                    | 52.1425                | 42.2354 | 34.9053 | 29.3302 | 24.9914 | 21.5487 | 18.7713 | 16.4982 | 14.6143 | 13.0356 | 11.6996 |
| 150                                                    | 47.8762                | 38.7798 | 32.0494 | 26.9304 | 22.9466 | 19.7856 | 17.2354 | 15.1483 | 13.4186 | 11.9691 | 10.7423 |
| 200                                                    | 45.0627                | 36.5008 | 30.1659 | 25.3478 | 21.5981 | 18.6228 | 16.2226 | 14.2581 | 12.6300 | 11.2657 | 10.1110 |
| 250                                                    | 42.9947                | 34.8257 | 28.7816 | 24.1845 | 20.6069 | 17.7682 | 15.4781 | 13.6038 | 12.0504 | 10.7487 |         |
| 300                                                    | 41.3757                | 33.5143 | 27.6978 | 23.2738 | 19.8310 | 17.0991 | 14.8952 | 13.0915 | 11.5966 | 10.3439 |         |
| 350                                                    | 40.0545                | 32.4441 | 26.8133 | 22.5307 | 19.1977 | 16.5531 | 14.4196 | 12.6735 | 11.2263 | 10.0136 |         |
| 400                                                    | 38.9442                | 31.5448 | 26.0701 | 21.9061 | 18.6655 | 16.0943 | 14.0199 | 12.3222 | 10.9151 | 9.7360  |         |
| 450                                                    | 37.9904                | 30.7722 | 25.4316 | 21.3696 | 18.2084 | 15.7001 | 13.6765 | 12.0204 | 10.6478 |         |         |
| 500                                                    | 37.1570                | 30.0971 | 24.8737 | 20.9008 | 17.8090 | 15.3557 | 13.3765 | 11.7567 | 10.4142 |         |         |



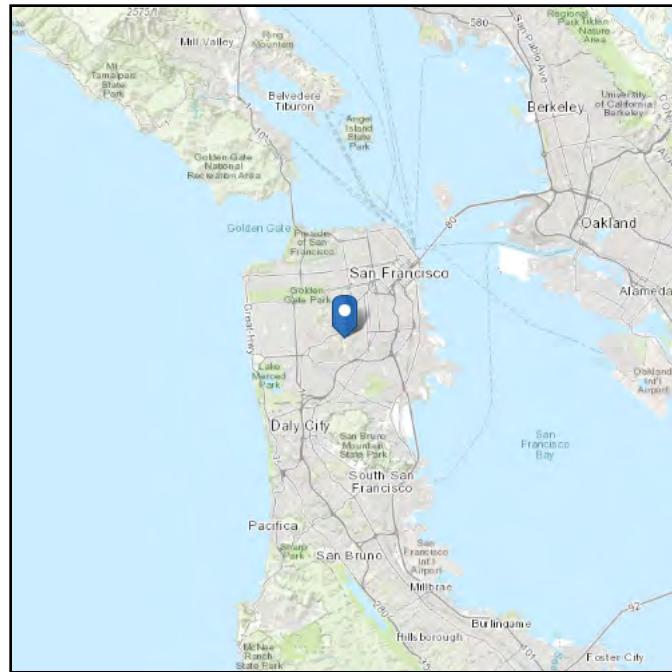
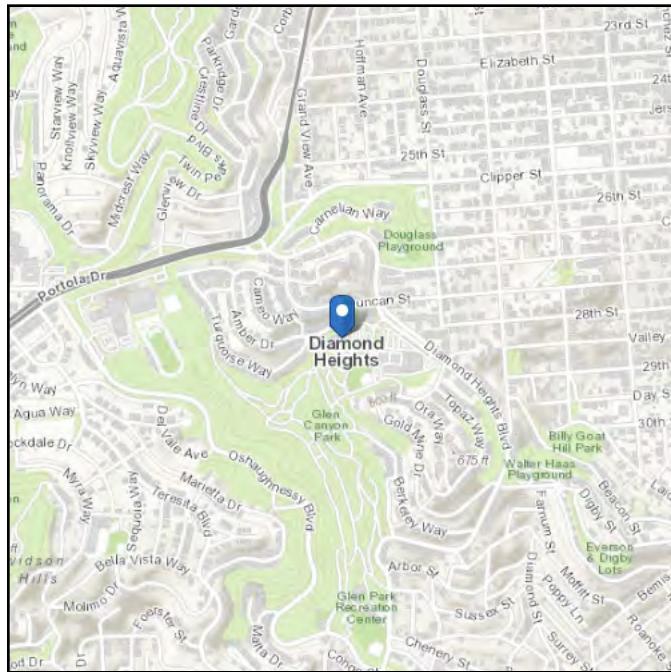
1545 Pidco Drive  
Plymouth, IN 46563  
Phone: 574.936.4221  
Fax: 574.936.8925  
Email: SP1Engineering@valmont.com  
[www.sitepro1.com](http://www.sitepro1.com)

## Seismic Results

The following Seismic Response Coefficient chart below represent the allowable weight capacity of the bracket based on the criteria and modeling technique described in TIA-222-H Section 2.7.7.1.1. Total allowable seismic shear must be less than or equal to the Capacity Results ( $F_{n0}$ ) stated above.



A **valmont** COMPANY


AMERICAN SOCIETY OF CIVIL ENGINEERS

**Address:**

350 Amber Dr  
San Francisco, California  
94131

# ASCE Hazards Report

**Standard:** ASCE/SEI 7-22**Risk Category:** III**Soil Class:** D - Stiff Soil**Latitude:** 37.744251**Longitude:** -122.441405**Elevation:** 558.5025355328418 ft  
(NAVD 88)

## Wind

**Results:**

|                    |          |
|--------------------|----------|
| Wind Speed         | 99 Vmph  |
| 10-year MRI        | 63 Vmph  |
| 25-year MRI        | 70 Vmph  |
| 50-year MRI        | 74 Vmph  |
| 100-year MRI       | 78 Vmph  |
| 300-year MRI       | 86 Vmph  |
| 700-year MRI       | 92 Vmph  |
| 1,700-year MRI     | 99 Vmph  |
| 3,000-year MRI     | 103 Vmph |
| 10,000-year MRI    | 112 Vmph |
| 100,000-year MRI   | 128 Vmph |
| 1,000,000-year MRI | 147 Vmph |

Data Source:

ASCE/SEI 7-22, Fig. 26.5-1C and Figs. CC.2-1-CC.2-4, and Section 26.5.2

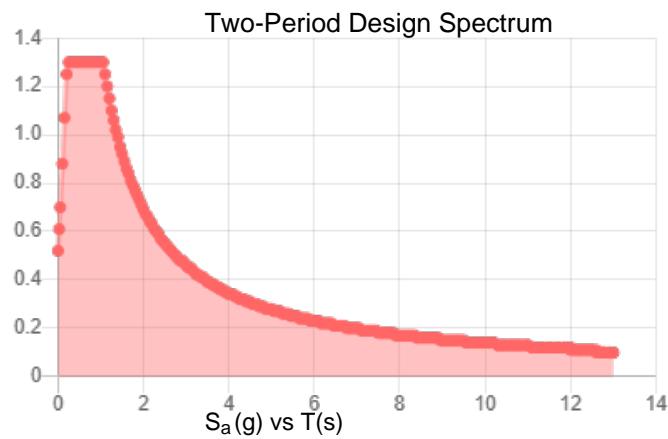
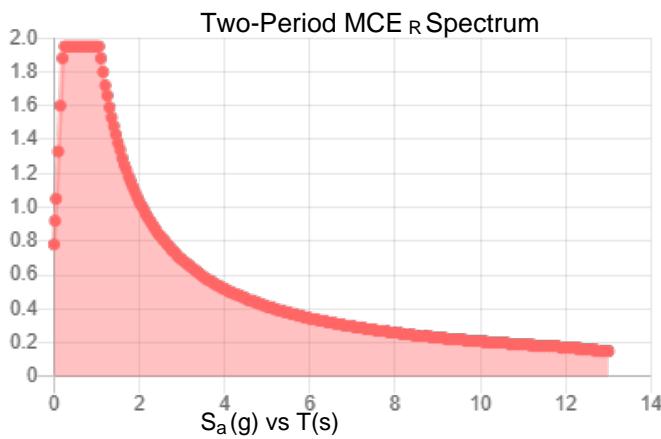
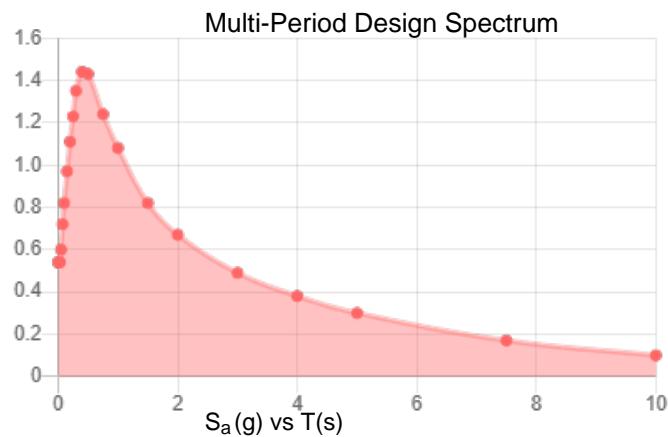
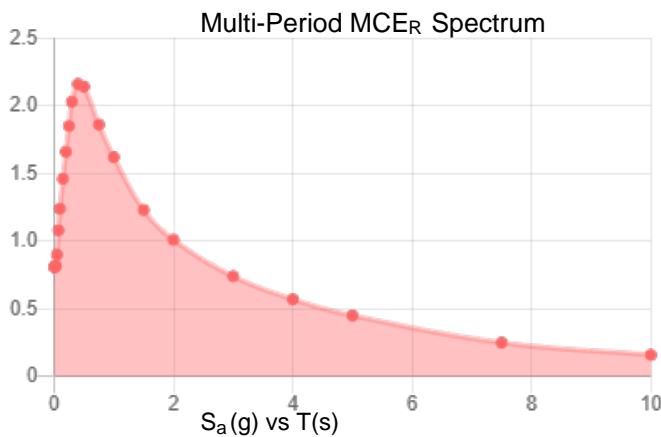
Date Accessed:

Tue Jan 27 2026



Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.





## Seismic

**Site Soil Class:** D - Stiff Soil

**Results:**

|                    |      |                    |      |
|--------------------|------|--------------------|------|
| PGA <sub>M</sub> : | 0.67 | T <sub>L</sub> :   | 12   |
| S <sub>MS</sub> :  | 1.95 | S <sub>S</sub> :   | 1.84 |
| S <sub>M1</sub> :  | 2.07 | S <sub>1</sub> :   | 0.7  |
| S <sub>DS</sub> :  | 1.3  | V <sub>S30</sub> : | 260  |
| S <sub>D1</sub> :  | 1.38 |                    |      |

**Seismic Design Category: D**



**MCE<sub>R</sub> Vertical Response Spectrum**  
Vertical ground motion data has not yet been made available by USGS.

**Design Vertical Response Spectrum**  
Vertical ground motion data has not yet been made available by USGS.



**Data Accessed:** **Tue Jan 27 2026**

**Date Source:**

**USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.**



## Ice

---

### Results:

|                         |     |
|-------------------------|-----|
| Ice Thickness:          | N/A |
| Concurrent Temperature: | N/A |
| 3-s Gust Speed          | N/A |

**Data Source:** Standard ASCE/SEI 7-22, Figs. 10-2 through 10-8

**Date Accessed:** Tue Jan 27 2026

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain for 250, 500, 1,000, and 1,400-year mean recurrence intervals along with concurrent 3-s gust speeds and concurrent air temperatures. The shading indicates special icing regions, with elevations above 2,100 ft (640 m) in the east, 6,000 ft (1829 m) in the west, and 1,600 ft (488 m) in Alaska, with sparse weather station data for determining design ice loads. In these regions, as well as in regions with complex terrain causing unusual icing conditions and regions where snow or in-cloud icing results in larger loads, the mapped values should be adjusted based on a combination of local historical records and experience, reanalysis data, and numerical weather prediction systems.

---

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

# **Exhibit E**

# **Exhibit E**

Thomas William Oldag

Retired Firefighter / Fire Investigator

[toldag@icloud.com](mailto:toldag@icloud.com)

530 919-4521

I, Thomas W. Oldag, declare as follows:

I am a retired fire investigator with over 33 years-experience in the suppression, investigation, and fighting of all types of fires. During that time, I have filled different roles in these areas as an employee of the California Department of Forestry and Fire Protection (Cal Fire), including arson and bomb investigator, fire suppression captain, fire apparatus engineer, and fire fighter.

I am an educator in the field of fire investigation and currently teach a class in Wildland Fire Origin and Cause Determination to multiple fire-fighting organizations. I hold several certificates and have completed countless training hours in the areas of fire prevention, control, and investigation. My experience and training has provided me with an understanding of the sources of fire ignition and the behavior of electrical equipment and its potential role in fire ignition.

I have been asked to review the proposed AT&T Macro Wireless Telecommunications Facility at 350 Amber Drive in San Francisco, CA. A monopole is proposed for to be installed near a San Francisco Police Academy building. I have been asked to review the proposed Facility in light of the opponents' allegations of supported fire and related risks.

The proposed tower sits on the southern side of the selected property. The tower will be placed in a small grove of eucalyptus trees, approximately 100 feet south of the San Francisco Police Academy building. Northeast of the site is an asphalt parking lot. A proposed 12' wide access road is shown east of the tower and wraps around to the north of the existing parking area. The George Christopher Playground and Diamond Heights Baseball Field are located to the east and south of the proposed site. Visible in Google

Earth satellite photos are walking trails with stairs going from the baseball field towards the labelled Islais Creek Trail. South and west of the site is an area that contains various types of grasses, brush and trees. Approximately 300 feet west of the site is Turquoise Way. This area is known as Glen Canyon Park.

Wildland fire concerns are very low in the Diamond Heights area due to several conditions. The proposed site is located within 4 miles of the Pacific Ocean and San Francisco Bay, and very high humidity in the area. The geography of Diamond Heights invites frequent fog to the area, based on the interaction of San Francisco's traditional marine layer and the neighborhood's exposed hilltop setting near Twin Peaks and Mount Davidson, which funnels, lifts, and cools moist ocean air arriving from the west. The neighborhood's elevation and exposure place it directly in the path of the funneled marine layer and westerly winds, so it runs cooler, windier, and fogger than many other San Francisco neighborhoods. Though San Francisco overall is not a fire friendly climate, the area of Diamond Heights tends to be fogger and windier than other areas of the City.

I have reviewed the submission of Susan Foster on behalf of the opponents of AT&T's cell tower installation. Ms. Foster offers many unsubstantiated and speculative assertions regarding alleged fire risk associated with the tower, some of which I discuss below. In particular, she attempts to offer cautionary examples of wildfires caused by downed or damaged power lines in Southern California in particularly hot and dry conditions, and fierce Santa Ana winds – conditions that simply do not exist in San Francisco.

The San Francisco area has a different climate and weather than Southern California. San Francisco averages 24 inches of rainfall per year while Los Angeles averages 15 inches per year. San Francisco Area does not get Santa Ana or El Diablo winds. Those winds are exceptionally strong easterly winds coming from the high elevation desert that blow downhill and are warmed up and sped up as they blow. San Francisco is surrounded on three sides by water which aids in the nighttime humidity recovery and

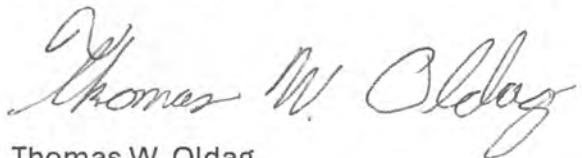
greatly reduces any possible wildland fire threat. Nor do the trees in the area of the proposed tower present any fire risk. As set out in a January 28, 2026, Arborist Report on the Facility, '[t]here is no tree-related fire risk associated with the vegetation at this site. The site is located within a gap in the tree canopies and has a flat non-flammable asphalt surface. The trees are not a threat to the infrastructure nor is the infrastructure a threat to the trees."

Ms. Foster states that macro cell towers "pose a fire risk," and that "these fires are covered up by the telecommunications industry," yet she offers no examples or evidence for this accusation. By law, local fire departments are required to complete an initial origin and cause reports for fires in their jurisdiction to which they are called to respond. The allegation that these fires are "covered up" by local fire departments is wholly unsupported by Ms. Foster, which is consistent with the conspiracy-based approach reflected in most of the assertions in her letter.

Cell towers are not known to randomly catch fire. The proposed AT&T tower and associated equipment will be constructed of noncombustible materials. The associated powerlines and communication lines will be enclosed within the metal structure. Cell towers require electricity to function. The power lines supplying the site will be underground. Wildland fires usually occur due to branches falling onto power lines, or power lines making contact with other nearby facilities. There are no exposed power lines associated with the proposed tower, however.

The National Fire Protection Association (NFPA) has a standard for telecommunications facilities, NFPA 76 – Standard for the Fire Protection of Telecommunications Facilities. This prevention guideline was created to minimize fires in telecommunication facilities. The proposed facility will comply with these standards, which mandates the storage of any combustible materials in approved non-combustible containers near or around the facility.

Most cell towers utilize a source of backup power in the event of a power failure. This site will have a diesel generator incorporated into its design. The positioning of diesel generators, as in this case, is regulated by accepted building standards.


I do not believe the location at 350 Amber Drive of this proposed tower presents a fire risk. The site's secure location, rigid engineering standards, compliance with NFPA Standards, the higher humidity in the area, and the absence of any exposed power lines near the proposed tower all reduce any potential fire threat.

I have reviewed the California Public Utility Commission (CPUC) Report on the 2007 Malibu Fire, which indicates that fire started when 3 wooden poles fell in 85-100 mph winds on a dry hot day in Malibu Canyon, causing a 12,000-volt Edison power line to contact dry grass, sparking a fire. There was no cell tower or wireless telephone equipment involved in that fire.

Based on the published Woolsey Fire (2018) Investigation Report, that fire started when a loose Edison guy wire came loose in 70 mph winds and contacted a 16,000-volt Edison power line. Moreover, no cell tower or wireless telephone equipment was involved in that fire. Neither of the other fires that Foster mentions (Guejito, Silverado) were caused by or in any way involved a cell tower. Power lines, loose wires, high winds and nearby receptive vegetation were the contributing factors in those fires' ignition, both of which occurred in conditions that do not exist in San Francisco, involving equipment that does not resemble the planned tower.

Ms. Foster claims that if there is a fire on a cell tower (which is by itself a rare event, and one for which Ms. Foster cannot give one example of, save for a football light tower fire that was not blamed on a nearby cell antenna), it would supposedly be difficult to combat such a fire, since the power "from the grid" will take time to shut off. Power provided to a macro cell tower, like all commercial power, is stepped down by transformers and regulated to the end user. There are also fuses and breakers built into the system. In the possible event of a fault (arc), the involved fuse or breaker will turn off the power to that

phase (power line). The grid at large is not affected. As an example, in a structure fire, firefighters can fight the fire after securing the utilities, power and gas to that structure; they do not need to shut off the power “on the grid,” or to the larger area.

A handwritten signature in black ink, appearing to read "Thomas W. Oldag". The signature is fluid and cursive, with "Thomas" and "Oldag" being the most distinct parts.

Thomas W. Oldag

# THOMAS W. OLDAG

## CURRICULUM VITAE

### **RETIRED FIRE INVESTIGATOR**

Currently instruct yearly wildland fire investigation (Wildland Fire Origin and Cause Determination FI-210) classes.

### **DUTIES WHILE EMPLOYED**

Investigate fires of accidental, suspicious, and incendiary origin and instruct various fire investigation classes.

### **POLICE / FIRE EMPLOYMENT HISTORY**

California Department of Forestry and Fire Protection – Office of the State Fire Marshal April 2015 to October 2015 – Senior Arson Bomb Investigator

California Department of Forestry and Fire Protection, November 2000 to 2015  
Fire Captain - Fire Investigator

Lake County Sheriff's Department June 1994 to June 1998  
Level II Reserve Deputy Sheriff

Lake County Sheriff's Search and Rescue, January 1990 to May 1996.  
Team K9 Team Leader

California Department of Forestry and Fire Protection, May 1994 to November 2000  
Fire Suppression Captain

California Department of Forestry and Fire Protection, August 1987 to May 1994  
Fire Apparatus Engineer

California Department of Forestry and Fire Protection, August 1982 to August 1986  
Seasonal Fire Fighter

| INVESTIGATIVE EXPERIENCE | # OF SCENES | ACCIDENTAL | ARSON | Undet. |
|--------------------------|-------------|------------|-------|--------|
| Structure Fires          | 79          | 38         | 32    | 9      |
| Mobile Homes             | 13          | 10         | 2     | 1      |
| Vehicle Fires            | 98          | 24         | 67    | 7      |
| Wildland Fires           | 1274        | 921        | 304   | 49     |
| Totals                   | 1464        | 993        | 405   | 66     |

While assigned to a fire engine, I have been involved in the suppression of approximately 1700 fires and assisted in approximately 700 fire investigations.

## **FORMAL EDUCATION**

American River College, Cosumnes River College, Ukiah College, Santa Rosa Jr. College – obtained over 95 college units.

## **VOCATIONAL CERTIFICATES**

Firefighter I - California State Board of Fire Service - 1988

Basic POST Academy, Sacramento Sheriff's Academy – 2001 – 707 hours

Basic POST Certificate – 2002

## **VOCATIONAL TRAINING AND EDUCATION**

Basic Fire Control / Fire Apparatus Engineer CDF Academy – 1988 – 360 hours

Arson / Bomb Investigation 1A, State Fire Marshal – 1988 – 40 hours

Hazardous Material Materials Recognition, State Fire Marshal – 1990 – 24 hours

Arson / Bomb Investigation 1B, State Fire Marshal – 1992 – 40 hours

Intermediate Fire Behavior – USFS – 1995 – 40 hours

Serial Arsonist Analysis and Planning, State Fire Marshal – 1998 – 40 hours

Arson / Bomb Investigation 2A, State Fire Marshal – 1999 – 40 hours

Prop 115 Class – Sacramento Sheriff's Academy - 2001

FEMA Juvenile Firesetters Prevention & Intervention Workshop – 2001 – 16 hours

Forest Practice Enforcement Course – 2002 – 32 hours

Interview and Interrogation Class – Interview and Interrogation Institute – 2003 – 24 hours

Fire Scene Death Investigations – State Fire Marshal – 2003 – 16 hours

Arson – Explosives Foundation Specialty Course, Robert Presley Institute of Criminal Investigation's – 2003 – 40 hours

Arson / Bomb Investigation 2B, State Fire Marshal – 2003 – 40 hours

Post Blast Explosive Class, Alcohol Tobacco and Firearms – 2003 – 40 hours

Electrical Fire Investigation – CCAI – 2003 – 6 hours

Statutes and Regulations Class, Title 19, State Fire Marshal – 2004 – 24 hours

CCAI Conference – 2005 – 40 hours

NFPA 921 Class – CCAI – 2005 – 8 hours

Wildland Fire Origin and Cause Determination FI-210 – USFS – 2005 – 40 hours

Public Display Fireworks Training – CSFM – 2005 – 6 hours

Vehicle Fire Investigation – Live Fire Training – CCAI – 2005 – 8 hours

CDF Type III Fire Investigator - 2006

Wildland Fire Case Development Course FI-310 – USFS – 2006 – 40 hours

CDF Type II Fire Investigator – 2007

Forensic Fire Death Investigation – San Luis Obispo CA – CCAI – 2009 – 40 hours

NFPA 921 Class – CCAI / Fire Cause Analysis – 2009 – 8 hours

Wildland Fire Civil Case Development Course FI-311 – 2011 – 40 Hours

Post Flashover Fire Investigation – 2011 – 8 hours

Wildland Fire Investigation Team Member – 2011

I have deliberately set approximately 550 fires in various wildland fuel types, construction type (wood framed, cement block, metal siding) buildings, and vehicles to observe fire spread and behavior. The fires duplicated accidental and incendiary fires. Many of the fires were used for fire suppression training.

I have instructed fire fighters in classes on Fire Suppression and Basic Fire Investigation, Origin and Cause. I taught thirteen Wildland Fire Origin and Cause Determination FI-210 Classes, seventeen Wildland Fire Origin and Cause Determination FI-110 Classes, and assisted at the 2010 - 2015 Forensic Fire Death Investigation Class in San Luis Obispo CA. Since retiring I have continued to teach FI-210 Classes.

I have attended thirteen seminars, eight to thirty-two hours in length sponsored by the California Conference of Arson Investigators. In 2012, I taught a three-hour block on serial arson at the Fall California Conference of Arson Investigators in San Luis Obispo. In 2012, I taught at an Arson for Prosecutor's Class in El Dorado County. In 2013, I taught a two-hour block at a Serial Arson Conference in Las Vegas. November 2014, I taught a two-and-a-half-day course on wildland fire investigation at the California Conference of Arson Investigators.

In 2022, I co-wrote a chapter in the book, The Path of Flames – Understanding and Responding to Fatal Wildfires.

I have testified six times in El Dorado County as an expert witness. Three times during the Preliminary Hearings for arson cases, once to the Grand Jury involving a homicide case and once during a homicide trial:

2001 – El Dorado County Superior - Juvenile Court – Arson Case – Sentencing  
2007 – El Dorado County Superior Court – Cunha Arson Case – Preliminary Hearing  
2008 – El Dorado County Superior Court – McFarland Arson Case – Preliminary Hearing  
2009 – El Dorado County Grand Jury – Presba Murder / Arson Case – Grand Jury  
2011 – El Dorado County Superior Court – Tyler / Whit Murder Case – Jury Trial  
2013 – El Dorado County Superior Court – Dobbs Arson Case – Jury Trial

I testified once in El Dorado County in a non fire related murder trial in 2009 – Mt. Aukum Shooting.

I have testified once as an expert witness in Amador County:

2004 – Amador County Superior Court – Juvenile Court – Arson Case - Sentencing

I testified once in Amador County in a non fire related pursuit and resisting trial in 2006.

While employed by CAL FIRE, I was a member from 2001 of the Sacramento – Sierra Arson Task Force and the El Dorado County Arson Task Force.

In addition to fire related cases, I have also been involved in investigating fraud, theft, conspiracy, narcotics, burglary, forgery, forest practice issues and vehicle code violations to name a few.

Deposition and Civil Court:

Giovannotto Land and Cattle, LLC, A California Corporation v. Elliot French, and individual; and DOES 1-50, – Case No.: 20CV372857 – Superior Court of the State of California County of Santa Clara

# Exhibit F

# Exhibit F

# Tree Management Experts

## Consulting Arborists

3109 Sacramento Street  
San Francisco, CA 94115

Member, American Society of Consulting Arborists  
Certified Arborists, Tree Risk Assessment Qualified



---

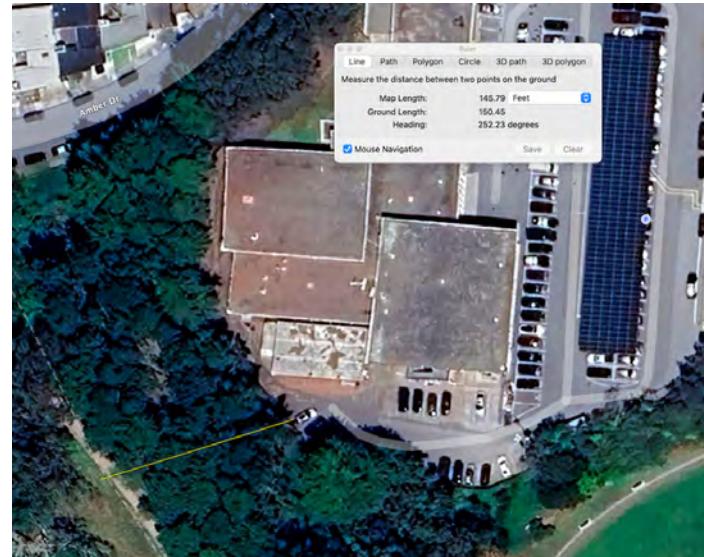
### NextEdge Networks

Attn: Ben Foust, Senior Program Manager  
via email: [ben.foust@nextedgenetworks.com](mailto:ben.foust@nextedgenetworks.com)

**RE: AT&T Site Number CCL05350**  
**AT&T Site Name: SF Police Academy**

**Date: 1/28/26**

## ARBORIST REPORT


### Assignment and Summary

On 1/20/26, Certified Arborist Roy Leggett provide a site visit to inspect trees that are adjacent to the construction site and within a distance that would likely have roots present. Trees and vegetation on the adjacent park property and at the south corner of the SF Police Academy site were inspected, photographed and characterized. Plans dated 11/18/25 were provided and considered during the assessment. Construction impacts that might put any tree at a risk of harm, and risk mitigation that could benefit the trees was considered. In addition, consideration was given to any fire risk issues, as related to trees. As discussed in detail below, anticipated root impacts are negligible and there is not tree-related fire risk associated with the vegetation at the site.

### Trees Adjacent to Site

There are 6 trees adjacent to the site that are Monterey cypress (*Hesperocyparis macrocarpa*). Of these trees, only one is close enough potentially be impacted by construction. The tree is 25 feet away from construction, measures 47.4" diameter and is in fair condition.

There is no impact to an "Mixed Exotic Oak Woodland" since there are no oaks anywhere near this project. The nearest oak is 145 feet away (as shown at right), is a small tree, and is the other side of a park pathway and retaining wall. All trees closer than this are exotic species not native to San Francisco ecosystems and include Tasmanian blue gum eucalyptus, Monterey cypress and Monterey pine. These trees would be correctly referred to as "Mixed Exotic Species", and



# Tree Management Experts

## Consulting Arborists

3109 Sacramento Street  
San Francisco, CA 94115

Member, American Society of Consulting Arborists  
Certified Arborists, Tree Risk Assessment Qualified



---

there is no “Oak Woodland” present. The “Mixed Exotic Species” in the adjacent park will not be affected by construction.

### Root Zones and Potential Construction Impacts

Structural roots (a subset of the entire root system discussed above) are close to the trunk and hold the tree up. Other roots, typically further out, absorb water and nutrients, but given the pavement there is little water available and therefore less root growth in such an area. The more distant roots are likely far fewer and far less important than those on the park side of the tree. There will be no impacts to structural roots since the proposed AT&T non-exclusive parking space already exists and will not change existing conditions for the tree.

The root zone of the subject tree likely extends throughout the construction area, although root development is severely limited by the existing concrete curbing and asphalt surface. Under ideal conditions, the root zone could extend to a radius in feet of 10 times the trunk diameter inches, and therefore creating a circle that is 474 inches radius, or 39.5 feet.

The root zone is expected to have developed preferentially in the park and much less so where it is covered by pavement. The reduced root development due to the pavement is predictive that the root system will be less than half as extensive and reaching less than 20 feet radius. The entire lease area is about 550 square feet, and the built portion of the lease area is less than half of that area. The percent root loss is under 5 percent, even with a fully developed root zone. Given the limited development of a root zone beneath pavement, it is likely that 2 to 3 percent of the root zone could be affected. This is a negligible amount of root loss and does not pose any threat to the tree.

The utility trench is located within the road/driveway portion of the existing parking lot and is far from this tree and any other tree. It is anticipated that few if any roots are present at that distance.

### Best Practices

- Anticipated root impacts are negligible.
- A Project Arborist from Tree Management Experts shall be on site during all demolition and excavation work.
- Saw cut asphalt in discreet locations as shown on plans for placement of the pier, structures, generator pad and utility trench.
- Retain adjacent asphalt to protect soil and any potential roots.
- Any roots encountered will be cleanly cut with a sharp tool.

### Tree-Related Fire Risk

There is no tree-related fire risk associated with the vegetation at this site. The site is located within a gap in the tree canopies, and has a flat non-flammable asphalt surface. The trees are not a threat to the infrastructure nor is the infrastructure a threat to the trees.

# Tree Management Experts

## Consulting Arborists

3109 Sacramento Street

San Francisco, CA 94115

Member, American Society of Consulting Arborists  
Certified Arborists, Tree Risk Assessment Qualified



### Assumptions and Limiting Conditions

1. Any legal description provided to the consultant is assumed to be correct. Title and ownership of all property considered are assumed to be good and marketable. No responsibility is assumed for matters legal in character. Any and all property is appraised or evaluated as though free and clear, under responsible ownership and competent management.
2. It is assumed that any property is not in violation of any applicable codes, ordinances, statutes or other governmental regulations.
3. Care has been taken to obtain all information from reliable sources. All data has been verified insofar as possible. The consultant can neither guarantee nor be responsible for the accuracy of information provided by others.
4. Various diagrams, sketches and photographs in this report are intended as visual aids and are not to scale, unless specifically stated as such on the drawing. These communication tools in no way substitute for nor should be construed as surveys, architectural or engineering drawings.
5. Loss or alteration of any part of this report invalidates the entire report.
6. Possession of this report or a copy thereof does not imply right of publication or use for any purpose by any other than the person to whom it is addressed, without the prior written or verbal consent of the consultant.
7. This report is intended to be conveyed to the City and County of San Francisco and will be part of the Public record. Such limitations apply to the original report, a copy, facsimile, scanned image or digital version thereof.
8. This report represents the opinion of the consultant. In no way is the consultant's fee contingent upon a stipulated result, the occurrence of a subsequent event, nor upon any finding to be reported.
9. The consultant shall not be required to give testimony or to attend court by reason of this report unless subsequent contractual arrangements are made, including payment of an additional fee for such services as described in the fee schedule, an agreement or a contract.
10. Information contained in this report reflects observations made only to those items described and only reflects the condition of those items at the time of the site visit. Furthermore, the inspection is limited to visual examination of items and elements at the site, unless expressly stated otherwise. There is no expressed or implied warranty or guarantee that problems or deficiencies of the plants or property inspected may not arise in the future.

# Tree Management Experts

## Consulting Arborists

3109 Sacramento Street

San Francisco, CA 94115

Member, American Society of Consulting Arborists  
Certified Arborists, Tree Risk Assessment Qualified



---

### Disclosure Statement

Arborists are tree specialists who use their education, knowledge, training, and experience to examine trees, recommend measures to enhance the beauty and health of trees, and attempt to reduce the risk of living near trees. Clients may choose to accept or disregard the recommendations of the arborist, or to seek additional advice.

Arborists cannot detect every condition that could possibly lead to the structural failure of a tree. Trees are living organisms that fail in ways we do not fully understand. Conditions are often hidden within trees and below ground. Arborists cannot guarantee that a tree will be healthy or safe under all circumstances, or for a specified period of time. Likewise, remedial treatments, like any medicine, cannot be guaranteed.

Treatment, pruning, and removal of trees may involve considerations beyond the scope of the arborist's services such as property boundaries, property ownership, site lines, disputes between neighbors, and other issues. An arborist cannot take such considerations into account unless complete and accurate information is disclosed to the arborist. An arborist should then be expected to reasonably rely upon the completeness and accuracy of the information provided.

Trees can be managed, but they cannot be controlled. To live near trees is to accept some degree of risk. The only way to eliminate all risk associated with trees is to eliminate the trees.

Tree risk assessment is not tree risk management. The arborist typically has the distinct and separate role of being the tree risk assessor. The tree risk manager is typically the property owner or the agent thereof. Tree risk management should consider tree risk assessment, and may consider many additional factors related to property management decision making.

# Tree Management Experts

## Consulting Arborists

3109 Sacramento Street  
San Francisco, CA 94115

Member, American Society of Consulting Arborists  
Certified Arborists, Tree Risk Assessment Qualified



---

### Certification of Performance

I, Roy C. Leggitt, III, Certify:

- That we have inspected the trees and/or property evaluated in this report. We have stated findings accurately, insofar as the limitations of the Assignment and within the extent and context identified by this report;
- That we have no current or prospective interest in the vegetation or any real estate that is the subject of this report, and have no personal interest or bias with respect to the parties involved;
- That the analysis, opinions and conclusions stated herein are original and are based on current scientific procedures and facts and according to commonly accepted arboricultural practices;
- That no significant professional assistance was provided, except as indicated by the inclusion of another professional report or professional attribution within this report;
- That compensation is not contingent upon the reporting of a predetermined conclusion that favors the cause of the client or any other party.

I am a member in good standing of the American Society of Consulting Arborists, and of the International Society of Arboriculture.

I am a Certified Arborist and am Tree Risk Assessment Qualified (TRAQ), as designated by the International Society of Arboriculture.

I maintain a California State Contractor's License for Tree Service (C-61, D-49).

I have attained professional training in all areas of knowledge asserted through this report by completion of a Bachelor of Science degree in Plant Science, by routinely attending pertinent professional conferences and by reading current research from professional journals, books and other media.

I have rendered professional services in a full-time capacity in the field of horticulture and arboriculture for more than 38 years.

Signed:

Certified Arborist WE-0564A

Date:

1/2826

[roy@treemanagementexperts.com](mailto:roy@treemanagementexperts.com)


Cell (415) 606-3610













**Cypress, Pine  
and Eucalyptus**

**Oaks and  
Willows**

# **Exhibit G**

# **Exhibit G**




CCL05350 SF Police Academy  
350 Amber Drive, San Francisco, CA  
Photosims Produced on 1-23-2026



## Existing



## Proposed



view from lot adjacent to Diamond Heights Boulevard looking southwest at site

## Existing




## Proposed



view from Duncan Street looking southwest at site

## Existing



## Proposed



view from Duncan Street looking southwest at site