

SITE USE AGREEMENT

THIS SITE USE AGREEMENT ("<u>Agreement</u>") is entered into this _____ day of ______, 2022 ("<u>Effective Date</u>"), by and between VB NIMBUS, LLC, a Delaware limited liability company ("<u>Owner</u>"), and CITY AND COUNTY OF SAN FRANCISCO, a California municipal corporation, by and through its Public Utilities Commission, ("<u>User</u>"). Owner and User may each be referred to as a "<u>Party</u>" or collectively as the "<u>Parties</u>".

WHEREAS, Owner owns the communications structure or tower (the "<u>Tower</u>") located on a portion of the real property owned by Owner in San Joaquin County, California, designated as Assessor's Parcel No. 251-120-080-000 and described on <u>Exhibit A</u> attached hereto and incorporated herein (the "<u>Property</u>", and collectively with the Tower, the "<u>Site</u>"). The Tower is located in San Joaquin County, California and has a latitude and longitude of 37.65252222, -121.47806667

WHEREAS, User desires to lease from Owner, and Owner desires to lease to User certain space on the Tower and/or certain ground space on the Property pursuant to the terms and conditions of this Agreement.

NOW, THEREFORE, for good and valuable consideration the receipt and sufficiency of which is hereby acknowledged, the Parties agree as follows.

Premises and Use.

Subject to the terms and conditions of this Agreement and the Prime Agreement, if applicable, Owner hereby leases to User, and User leases from Owner (i) certain space on the Tower at the heights set forth on <u>Exhibit B-1</u> (Colocation Application) (the "Tower Space"), (ii) certain space on the Property measuring approximately 345 square feet (the "Ground Space"), and (iii) certain non-exclusive space running between the Tower Space, Ground Space and certain electrical, fiber, accessory and telephone utility sources located on or about Property for the installation, operation and maintenance of wires, fiber, cables, conduits and pipes (the "Cable Space", and collectively with the Ground Space and Tower Space, the "Premises"). The Tower Space and Ground Space shall be used for the following (together, the "Permitted Use"): the installation, operation and maintenance of the communications equipment, antennas, technology, wires, coaxial cables, and accessory equipment described on <u>Exhibit B-1</u> (Colocation Application) attached hereto and incorporated herein (collectively, the "Facilities") and for the transmission and reception of communication signals pursuant to and in compliance with all applicable laws, ordinances, rules, and regulations of any governmental entity or agency (federal, state or local) having jurisdiction over the Site and User's operations, including without limitation, the Federal Communications Commission (the "FCC"). In the event User providers Owner installation plans for User's Facilities, such installations plans shall be attached hereto as <u>Exhibit B-2</u> (Installation Plans).

2. <u>Intentionally Deleted</u>.

Inspections.

Subject to the terms and conditions of this Agreement, following the Effective Date, User, its agents, employees, contractors and subcontractors shall have the right to enter upon the Site to inspect and examine the Premises, to perform engineering and environmental tests and studies with respect to the Premises (provided that in no event shall User be permitted to perform any invasive, Phase II or similar environmental testing), to survey the

Premises, and to perform such other studies and tests reasonably necessary to determine the feasibility of the Site for User's Permitted Use (collectively, "Inspections"). Immediately following such entry, User shall restore the Site to its condition existing prior to User, its agents, employees, contractors or subcontractors' entry thereon and remove any equipment, gear or materials brought onto the Site. If such entry or Inspections result in any damage to the Site or exacerbate any previously existing condition, User shall, at User's sole cost and expense, promptly repair and remediate such damage or exacerbation.

4. <u>Term</u>.

The term of this Agreement shall be five (5) years, commencing on the Commencement Date (as hereafter defined) ("Term"). The Term shall commence on the earlier of: (A) the first day of the month in which User commences installation of its equipment on the Premises if such installation commences on or before the 15th day of the month, or the first day of the month after User commences installation of its equipment on the Premises if such installation commences after the 15th day of the month; or (B) November 1, 2022 (such earlier date the "Commencement Date"). User shall have the right to renew this Agreement for four (4) successive five (5) year periods (each, a "Renewal Term") on the same terms and conditions as set forth herein. This Agreement shall be renewed for such successive Renewal Terms, provided User notifies Owner of its intention to renew this Agreement at least one hundred eighty (180) days prior to the commencement of the succeeding Renewal Term. For the purposes of this Agreement, "Term" shall mean the Initial Term and any applicable Renewal Term(s).

5. <u>Initial Installation of Facilities</u>.

- (a) Prior to the installation of the Facilities on the Premises:
 - (i) User shall submit to Owner for Owner's review and approval, which approval shall not be unreasonably withheld, conditioned or delayed: (i) User's final set of installation plans and/or construction and engineering drawings for the Facilities (which approved final set of installation plans and/or construction and engineering drawings and (ii) User's final installation schedule for the installation of the Facilities (collectively, the "Installation Plans"). If Owner rejects all or a portion of the Installation Plans, then the Parties shall cooperate in good faith to amend the applicable item(s) to the extent necessary to cause the Parties to mutually agree on the substance of the Installation Plans. Owner's approval of the Installation Plans shall be in the form of a Notice to Proceed to User (the "Initial Installation NTP"). Owner's approval of the Installation Plans is not a representation that User's Facilities or operations are in compliance with any laws, ordinances, rules or regulations or that User's Facilities or operations will not cause interference with other communications operations on the Site, if any;
 - (ii) Owner shall perform, at User's sole cost and expense at Owner's then current rate, a structural analysis of the Tower on the basis of applicable ANSI/TIA standards. As of the date of this Agreement Owner's current rate is \$(3,500.00). If such structural analysis determines that the Tower requires structural modifications for the Tower to accommodate the weight and/or wind load of the Facilities, then User shall have the right to: (A) to terminate this Agreement upon written notice to Owner, or (B) request that Owner perform, at User's sole cost and expense, the necessary structural modifications to the Tower for the Tower to accommodate the Facilities. If Owner agrees to perform such Tower modifications, then User shall submit a purchase order to Owner for the Tower

modifications and Owner shall thereafter promptly commence performing the structural modifications to the Tower. If Owner does not agree to perform such Tower modifications, then the Parties shall agree to terminate this Agreement in writing; and

- (iii) Owner shall perform, at User's sole cost and expense at Owner's then current rate, a structural analysis of the mount User intends to install on the on the basis of applicable ANSI/TIA standards. As of the date of this Agreement Owner's current rate is \$(3,500.00). If User has already performed or intends to cause a licensed, professional third-party engineering company to perform such mount analysis, then Owner shall forego performing a mount analysis of User's mount, provided that User shall submit User's mount analysis to Owner for review. Owner shall review, at User's sole cost and expense at Owner's then current rate, User's mount analysis on the basis of applicable ANSI/TIA. If Owner's mount analysis or Owner's review of User's mount analysis determines that the mount User intends to install on the Tower is not structurally capable of supporting the Facilities, then User shall replace such mount with a mount that is structurally capable of supporting the Facilities (as demonstrated by a new mount analysis in accordance with the terms hereof). If Owner is to perform a mount analysis and User does not provide Owner complete and accurate design drawings of User's mount, the Owner shall map User's mount at User's sole cost and expense at Owner's then current rate.
- (b) User shall not commence the installation of the Facilities unless the conditions in Section 5(a) are completed and Owner issues User an Initial Installation NTP. User shall notify Owner at least five (5) business days prior to User, its agents, employees, contractors and/or subcontractors commence the installation of the Facilities on the Premises. User shall install the Facilities in accordance with the Installation Plans and in compliance with the standards of good engineering practice and the applicable requirements of the FCC and all other government bodies or agencies with jurisdiction over User, the Facilities and User's operations. If the Tower is painted to be in compliance with certain codes or regulations, then User shall paint its Facilities to match as nearly as possible the color of the Tower. During the installation of the Facilities, User, its agents, employees, contractors and/or subcontractors shall not interfere with Owner's operations at the Site and the operations of their respective lessees, sublessees, and licensees. Upon completing the installation of the Facilities, User shall clear the Site of all debris, machinery, and materials brought to the Site by User its agents, employees, contractors and subcontractors and not intended to remain on the Premises for the operation of User's Facilities.

6. <u>Use Fee</u>.

User shall pay Owner monthly rent in the amount of Two Thousand Five Hundred and No/100 Dollars (\$2,500.00) per month (the "<u>Use Fee</u>"), payable on the first day of the month, in advance, beginning on the Commencement Date. The Use Fee for any partial month during the Term shall be pro-rated based on the number of days in such month. On each annual anniversary of the Commencement Date, the Use Fee shall increase by three percent (3%) percent of the Use Fee for the immediately preceding twelve (12) month period. For illustration purposes a Use Fee schedule for the Initial Term is attached hereto as <u>Exhibit B-4</u> (Use Fee Schedule). The Use Fee shall be sent via ACH or wire transfer to Owner's bank account, which Owner shall notify User of in advance.

If the Use Fee is not paid in accordance with the terms hereof, User will pay interest on the past due amounts at the legal rate permitted by applicable law.

7. Access.

User, its agents, employees, contractors and subcontractors shall have the non-exclusive right to access the Premises using common or designated access routes to the extent reasonably necessary to enable User to install, operate, and maintain the Facilities and to otherwise undertake User's obligations set forth in this Agreement. Notwithstanding the foregoing, User shall have the right to access its ground-based Facilities twenty-four (24) hours a day, seven (7) days a week. User acknowledges that Owner's control of access to the Tower is essential to the safe operations of all parties utilizing the Tower; accordingly, if User wishes to access User's Facilities located on the Tower, User shall provide reasonable advance notice to Owner of User's need to do so and Owner and User shall coordinate a mutually agreeable time for User to access User's Facilities located on the Tower. In the event of an emergency threatening life or property damage, User shall have the right to access its ground-based and tower-based Facilities upon telephonic notice to Owner's NOC at 877-589-6411.

8. Utilities.

- (a) User shall at its sole cost and expense initiate, contract for, obtain and pay for any electrical, telephone, or other utility services used by User at the Premises. User agrees to cooperate with Owner's reasonable requests regarding the manner and timing of the installation of User's utilities. A meter shall be installed and maintained by User at User's sole cost and expense which shall separately record the amount of the electrical power used by User. User shall timely pay all charges for electrical power and all other services used by User in connection with the operation of User's Facilities. No additional utilities (water, sewer or gas) will be available at the Premises during the Term. In no event shall Owner be liable for the quality, quantity, failure or interruption of electrical service to the Premises or damages resulting directly or indirectly therefrom by reason of or resulting from any accident, or the need or priority of repairs or improvements to the electrical transmission system to the Site, or by reason of orders of any military, any act or omission of any civil or governmental authority, or any strike, riot, insurrection or invasion, any fire or casualty or any unusually severe weather conditions or any reason beyond the control of Owner.
- (b) User shall have the right, at its sole cost and expense, to install a temporary emergency generator on the Property at a location designated and approved by Owner, provided sufficient space is available. The generator must be removed within five (5) days following the emergency need unless otherwise agreed to by Owner. User agrees that any such installation and use of a generator shall be in compliance with all applicable federal, state, and local environmental, health, fire, safety laws and other applicable laws or regulations, now or hereafter enacted or promulgated by any governmental authority having jurisdiction over the Site, including, without limitation, any applicable guidelines promulgated by the United States Environmental Protection Agency (EPA), and the California EPA, whichever is more stringent.

9. <u>Maintenance and Repairs</u>.

(a) Owner shall maintain the portions of the Site it has a legal interest in and the Premises (but not User's Facilities), including all required Tower marking and lighting, in reasonable condition and in compliance with all Federal Aviation Administration and FCC rules and regulations, and shall promptly repair any material damage to the Premises; and perform all necessary maintenance and repairs; provided, however, that when such maintenance and repair is made necessary by or because of the fault of User (reasonable wear and tear and damage by casualty excepted),

User shall reimburse Owner for the reasonable cost thereof. In the performance of its obligation to maintain and repair the Tower, and to allow other lessees to install, remove, relocate, maintain and repair their equipment, it may be necessary from time to time for Owner to require User to temporarily cease transmission activities for a reasonable period under the circumstances but for no longer than twenty-four (24) hours during any event of repair, to turn off electrical power, and/or to make other adjustments to its Facilities or operations. Owner shall use commercially reasonable efforts to schedule such work so as to cause minimum disruption to User's operations and shall provide User with no fewer than forty-eight (48) hours' notice of Owner's need for User to cease transmission activities. User agrees to cooperate with Owner and to comply with and honor Owner's requests for temporary cessation of transmission activities, to turn off electrical power for no longer than twenty-four (24) hours during any event of repair, and/or to make reasonable adjustments to its Facilities or operation, as necessary, to allow orderly performance and carrying out of such work.

(b) User, at its sole cost and expense, shall carry out maintenance of the Facilities, including, but not limited to, the electrical and mechanical maintenance of the Facilities. Maintenance shall be conducted by User in accordance with standards of good engineering practice to assure that at all times the Facilities conform to the applicable requirements of the FCC and all other government bodies or agencies with jurisdiction over User, the Facilities and User's operations.

10. <u>Modifications</u>.

- Should User desire to make any installations, modifications, additions, changes, alterations or upgrades to its Facilities or Premises (a "Modification"), User shall complete and submit to Owner for Owner's review and approval, which shall not be unreasonably withheld, conditioned or delayed, a Colocation Application (using Owner's then current form of Colocation Application) detailing User's desired Modification. User shall not be permitted to perform a Modification without Owner's prior written approval, which approval, if granted, shall be in the form of a Notice to Proceed. If the Modification will result in an enlargement of the Premises (whether Ground Space or Tower Space) or increase the weight or wind loading on the Tower beyond the amount originally approved under this Agreement or the amount then existing on the Tower, then Owner shall have the right to condition its approval of a Modification upon (i) an increase to User's then current Use Fee; (ii) Owner performing, at User's sole cost and expense at Owner's then current rate, a structural analysis of the Tower on the basis of applicable ANSI/TIA standards, (iii) Owner performing, at User's sole cost and expense at Owner's then current rate of which Owner has provided User with written notice, a mount analysis of User's mount on the basis of applicable ANSI/TIA standards and (iv) amending this Agreement to memorialize User's Modification. Any approved Modification shall further be subject to User obtaining all applicable governmental licenses, permits and approvals necessary for User to perform the Modification. Owner's approval of a Modification is not a representation that the Modification is in compliance with applicable laws, ordinances, rules or regulations or that the Modification will not cause interference with other communications operations at the Site.
- (b) Notwithstanding the foregoing, if the structural analysis performed by Owner in connection with a proposed Modification determines that the Tower requires structural modifications for the Tower to accommodate the weight and/or wind load of User's proposed Modification, then User shall either (i) elect to forego performing the Modification or (ii) request that Owner perform, at User's sole cost and expense, the necessary structural modifications to the Tower for the Tower to accommodate the Modification. If Owner agrees to perform such structural modifications to the Tower, then User shall submit a purchase order to Owner for the Tower modifications and Owner shall thereafter

promptly commence performing the structural modifications to the Tower. If Owner does not agree to perform such structural modifications to the Tower, then User shall forego performing the Modification or the portion thereof adding weight and/or wind load to the Tower.

(c) In the event User performs a Modification without the prior written approval of Owner, such Modification shall be subject to an additional monthly fee in the amount of one hundred fifty percent (150%) of the fair market rental value of the Modification at the time of discovery of such unapproved Modification (the "Additional Use Fee"). The Additional Use Fee shall accrue (i.e., shall be back-billed) from the date the installation of such unapproved Modification commenced.

11. <u>Non-Interference</u>.

- (a) If the Facilities or portion thereof (the "Interfering Equipment") cause interference with any equipment placed on the Site prior to the installation of the Interfering Equipment, then User shall take all reasonable steps necessary to correct and eliminate the interference. If such interference cannot be eliminated within forty-eight (48) hours after receipt by User from Owner of written notice of the existence of interference, User shall cease operating and power-down the interfering Equipment (except for intermittent testing for the purpose of correcting such interference) until the interference is corrected. If the interference is not rectified to the reasonable satisfaction of Owner, within thirty (30) business days after receipt by User of such written notice from Owner, User shall remove the Interfering Equipment from the Site. User agrees that it shall not alter the operations of the Facilities or replace, upgrade or otherwise Modify the Facilities in a manner which will cause interference with the operations of any other equipment which is then operating on the Site.
- (b) If the communications equipment belonging to another tenant of Owner's on the Site causes interference with the Facilities or portion thereof, as applicable, and the interfering equipment was installed on the Site after the Facilities being interfered with, then Owner will require such tenant to take all steps necessary to correct and eliminate the interference. If such interference cannot be eliminated within forty-eight (48) hours after receipt by Owner of notice from User of the existence of interference, Owner shall take such actions as are permitted by law and can be conducted without breach of the peace such as causing the tenant to cease operating and power-down its interfering equipment (except for intermittent testing for the purpose of correcting such interference) until such interference is corrected. If the interference is not rectified to the reasonable satisfaction of User within thirty (30) days after receipt by Owner of such notice from User, Owner shall exercise the remedies available to it under the tenant's written agreement granting the tenant an interest in the Site to cause such tenant to cease the interfering activity. User agrees to exercise commercially reasonable and good faith efforts to cooperate with Owner and the tenant causing interference to try to resolve any interference issues on the Site.
- (c) If antenna power output ("<u>RF Emissions</u>") becomes subject to any restrictions imposed by the FCC or any other government agency for RF Emissions standards on Maximum Permissible Exposure ("<u>MPE</u>") limits, or if the Site otherwise becomes subject to federal, state or local rules, regulations, restrictions or ordinances, User shall comply with Owner's reasonable requests for modifications to the Facilities which are reasonably necessary for Owner to comply with such limits, rules, regulations, restrictions or ordinances. Owner also shall request any other user(s) of the Tower to modify its equipment or otherwise assist in any actions which are reasonably necessary to comply with such limits, rules, regulations, restrictions or ordinances. The RF Emissions requirements of User shall be subordinate to any prior users of the Site. Similarly, the RF Emissions of users subsequent to User shall become subordinate to

any requirements of User. If Owner or User require an engineering evaluation or other power density study be performed to evaluate RF Emissions compliance with MPE limits, then all reasonable costs of such evaluation or study shall be shared equally between Owner, User, and any other users of the Site. If said study indicates that RF Emissions at the Site do not comply with MPE limits, then Owner, User, and any subsequent tenants shall immediately take any steps necessary to ensure that they are individually, and collectively, in compliance with such limits or shall at the demand of Owner cease operations until a maintenance program or other mitigating measures can be implemented to comply with MPE limits. User shall have the right to terminate this Agreement in the event that such mitigation measures cannot be implemented without materially and adversely affecting the operation of the Facilities.

12. <u>Taxes</u>.

Owner shall be responsible for timely payment to the appropriate taxing or governmental authority of the full amount of all taxes and assessments levied upon the Property. Owner shall be responsible for timely payment to the appropriate taxing or governmental authority for the taxes and assessments. Owner shall be responsible for timely payment to the appropriate taxing or governmental authority of the full amount of all taxes and assessments levied upon the Tower and improvements or equipment located on the Property to which Owner holds title. Notwithstanding the foregoing, User shall be responsible for reimbursing Owner for any taxes and assessments reasonably attributable to User's Facilities and operations on the Premises, including without limitation, any sales tax. In the event Owner receives a notice of assessment with respect to which any portion is attributable to User's Facilities or operations on the Premises, Owner shall promptly provide User with copies of each such notice.

13. **Default**.

- (a) In the event User shall (i) default in the payment of the Use Fee or any other sum payable by User under this Agreement, and such default shall continue for a period of thirty (30) days after receipt of written notice by Owner, (ii) default in the performance of any other covenants or agreements of this Agreement and such default shall continue for thirty (30) days after User's receipt of written notice thereof or after the applicable cure period elsewhere set forth in this Agreement; provided, however, that if the default is of the type that cannot be cured within thirty (30) days of User's receipt of written notice, User shall have such reasonable time as may be necessary to cure such default so long as User has commenced such cure within the first 10 days of the initial 30-day period and is continuing in good faith to effectuate the cure to completion, (ii) become bankrupt or insolvent or should any debtor proceeding by initiated by or against User, which have not been dismissed within sixty (60) days, then Owner may pursue the following rights and remedies:
 - (A) Cure the default and invoice User for the reasonable costs and expenses of same, which invoice shall be payable within ten (30) business days of its receipt by User;
 - (B) Retake possession of the Premises in accordance to Section 15 of this agreement (Removal of Equipment); and;
 - (C) Terminate this Agreement; and/or
 - (D) Exercise any other remedy available at law or in equity.

- (b) If User remains in default beyond any applicable cure period, whether or not Owner shall have terminated this Agreement, the following shall be immediately due and payable by User, (i) all Use Fees and other charges, payments, costs and expenses of which Owner has provided written notice of the charges, payments, costs and expenses due from User to Owner and in arrears at the time of the default plus (ii) the Use Fee owed for the balance of the then current Term (not including, for the avoidance of doubt, any remaining Renewal Terms), plus (iii) all other charges, payments, costs and expenses herein agreed to be paid by User up to the end of such Term. User further agrees to pay the reasonable attorney's fees and costs of Owner, including court costs, if User engages an attorney to collect the Use Fee or otherwise enforce the terms and provisions of this Agreement.
- (c) If User remains in default beyond any applicable cure period, whether or not Owner shall have terminated this Agreement, Owner may demand immediate removal by User of the Facilities from the Property, and if User fails to do so within thirty (30) days of receipt of Owner's demand, Owner may remove the Facilities at User's sole cost and expense. In such event, Owner shall not be liable to User for damage to the Facilities in the course of such removal, and User shall reimburse Owner for any damages to the Property caused by such removal.
- (d) In the event Owner shall default in the performance of its covenants or agreements under this Agreement and such default shall continue for thirty (30) days after Owner's receipt of written notice thereof or after the applicable cure period elsewhere set forth in this Agreement, then User shall have the immediate right to terminate/ this Agreement upon written notice to Owner.

14. Termination.

Following the Commencement Date and provided that no default exists at the time of issuance of User's written notice, User may terminate this Agreement upon thirty (30) days' prior written notice to Owner in the event that User, through no fault of its own, is unable to obtain or maintain, any governmental licenses, permits and approvals required of User for its use of the Premises.

15. Removal of Equipment.

Upon the expiration or termination of this Agreement, this Agreement and the Term shall terminate and all rights of User hereunder shall expire and terminate (but not any obligations that expressly survive termination of this Agreement) and User shall surrender the Premises to Owner and, within ninety (90) days after the expiration or termination of this Agreement, remove the Facilities and restore the Premises to substantially the same condition existing prior to User commencing the installation of the Facilities on the Premises, except for ordinary wear and tear, casualty, or acts of God. In the event the Facilities remain on the Premises for more than ninety (90) days following the expiration or termination of this Agreement (even if it has been disconnected) or if User does not completely surrender or restore the Premises in accordance with this Section 15, User shall pay Owner holdover fees equal to one hundred fifty percent (150%) of the Use Fee in effect immediately prior to the expiration or termination of this Agreement, which holdover fees shall accrue from the date of expiration or termination to the date User completes its obligations under this Section 15. If User fails to complete its obligations under this Section 15 within one hundred twenty (120) days following the expiration or termination of this Agreement, Owner shall have the right to perform User's obligations hereunder. If Owner performs User's obligations under this Section 15, Owner shall not be liable to User for damage to the Facilities in the course of such removal, and User shall reimburse Owner for any restoration

costs or any damages to the Property caused by such removal. This <u>Section 15</u> shall survive the expiration or termination of this Agreement.

16. <u>Tower Damage</u>.

In the event that the Tower is fully or more than twenty-five (25) percent (25%) destroyed or damaged by fire, lightning, windstorm, explosion, collapse, vandalism, civil disturbance, aircraft or other vehicle damage or other casualty so as to be unfit for User's occupancy and Permitted Use and Owner determines, in Owner's sole discretion, that the Tower cannot be restored or rebuilt by Owner within 180 days or if Owner determines, in Owner's sole discretion, that it shall not undertake restoring or rebuilding the Tower, then either Owner or User may elect to terminate this Agreement by thirty (30) days' written notice to the other Party. User shall be entitled to a pro rata refund of its prepaid Use Fee for such time as it is unable to conduct its normal operations as a result of such total or partial destruction or damage or need of repair. Under no circumstances shall Owner be liable for any financial loss due to business interruption caused by the aforementioned circumstances.

17. <u>Eminent Domain</u>.

If the portion of the Property upon which the Tower, foundation, guy wire anchors or associated improvements is located or the Premises are acquired or condemned under the power of eminent domain whether by public authority, public utility, or otherwise, then this Agreement shall terminate as of the date title shall have vested in public authority. Owner shall be entitled to the entire amount of any condemnation award, except that User shall be entitled to make claim for and retain a condemnation award based on and attributed to the expense of removing its Facilities.

18. <u>Insurance</u>.

- (a) User, at its own cost and expense, shall carry the following insurance during the Term of this Agreement: (i) "All Risk" property insurance which insures User's Facilities for its full replacement cost; (ii) commercial general liability insurance with a minimum limit of liability of \$1,000,000 per occurrence and \$2,000,000 general aggregate covering all operations by or on behalf of User for personal injury and damage to property; (iii) commercial automobile liability insurance, including coverage for all owned, non-owned and hired automobiles, with a coverage amount not less than \$1,000,000 combined single limit for each accident and for bodily injury and property damage, (iv) workers' compensation insurance as mandated by state law where the Property is located for all of User's employees and employer's liability insurance in amount not less than \$1,000,000, (v) an umbrella insurance policy providing coverage in excess of User's primary commercial general liability, automobile liability and employer's liability policies in an amount not less than \$5,000,000; and (v) Workers' Compensation at statutory limits and Employers Liability and/or Stop Gap insurance with minimum limits of \$1,000,000 per accident or disease per employee. Vertical Bridge REIT, LLC, its parents, affiliates, subsidiaries, successors and/or assigns, shall be named as additional insurance under User's commercial general liability insurance, commercial auto liability insurance, and umbrella insurance policy.
- (b) User shall cause each contractor or subcontractor hired to perform work on the Property to maintain insurance coverages and limits of liability of the same type and the same amount as required of User under this <u>Section 18</u>, adjusted to the nature of the contractor's or subcontractor's operations.

(c) Certificates of insurance, as evidence of the insurance required by this Agreement, shall be furnished by User to Owner before any access to the Property or construction is commenced by User, its employees, agents, contractors or subcontractors. The certificates of insurance shall provide that the broker will endeavor to give written notice of cancellation of the above-required insurance policies or reduction in the limits required above to the certificate holder thirty (30) days prior to cancellation. Notwithstanding the foregoing or any contrary provision contained herein, Owner acknowledges and agrees that User may elect to self-insure to meet the insurance requirements contained herein.

19. **Indemnification**.

- (a) User agrees to indemnify, defend and hold Owner, their affiliates, and their respective officers, directors, employees, managers, equity holders, agents, and lenders (collectively, the "Owner Indemnified Parties") harmless from and against injury, loss, damage or liability (or any claims in respect of the foregoing), costs or expenses (including reasonable attorneys' fees and court costs) which may be imposed upon or incurred by or asserted against the Owner Indemnified Parties to the extent arising from (i) any negligent act or omission of User or any of its employees, agents, contractors, or subcontractors in, on or around the Property (together, "Agents") or (ii) User's breach of this Agreement, except to the extent caused by the negligence or willful misconduct of Owner.
- (b) Owner agrees to indemnify, defend and hold User, its affiliates, and their respective supervisors, commissioners, officers, directors, employees, managers, equity holders, agents, and lenders (the "<u>User Indemnified Parties</u>") harmless from and against any and all injury, loss, damage or liability (or any claims in respect of the foregoing), costs or expenses (including reasonable attorneys' fees and court costs) which may be imposed upon or incurred by or asserted against the User Indemnified Parties and which arise from any act of negligence or omission of Owner or its employees, agents contractors or subcontractors in, on or around the Property, except to the extent caused by the gross negligence or willful misconduct of User or its Agents.
- (c) Notwithstanding anything in this Agreement to the contrary, User and Owner hereby waive any claim that they may have against the other Party with respect to any consequential, punitive, or special damages.
 - (d) This <u>Section 19</u> shall survive the expiration or termination of this Agreement.

20. Assignment.

User shall not assign, mortgage or encumber this Agreement without the express written consent of Owner. User acknowledges and agrees that it shall not have any rights to sublet or permit the Premises or any part thereof to be used by others. Notwithstanding the foregoing, User may freely, without Owner's consent, assign its interest hereunder to any entity which directly controls, is controlled by, or is under common control of User or an entity that obtains control of User during the term of this Agreement. For the purposes of this Section 20, the term "control" means the ownership, direct or indirect, of sufficient voting shares of an entity, or otherwise the possession, direct or indirect, of the power to direct or cause the direction of the management and policies of an entity, or the power to veto major policy decisions of any such entity, whether through the ownership of voting securities, by contract or otherwise. No such assignment or transfer shall release User or its assignee or transferee from any of the obligations arising under this Agreement. A sale or other transfer of the direct or indirect ownership interests in User shall be deemed an assignment hereunder.

21. Waiver of Lien.

User hereby waives any and all lien rights User may have, in its proprietary capacity, statutory or otherwise, in and to the Site or any portion thereof, regardless of whether or not same is deemed real or personal property under applicable laws.

22. Warranty of Title and Quiet Enjoyment.

Owner warrants that upon User paying the Use Fee and observing and performing all of the terms, covenants and conditions on User's part to be observed and performed under this Agreement, User may peacefully and quietly enjoy the Premises.

23. Non-Recourse.

In no event will any member, manager, officer, agent or employee of Owner have any personal liability to User. User agrees that this provision will apply to any and all liabilities, claims, and causes of action whatsoever, including those based on any provision of this Agreement, any implied covenant, or any statute or common law principle.

24. <u>Estoppel Certificate</u>.

User agrees that it will from time to time, within thirty (30) days after receipt of written request by Owner, execute and deliver to such persons as Owner shall request, a statement, in recordable form, certifying that the Agreement is unmodified and in full force and effect (or if there have been modifications, that the same is in full force and effect as so modified), stating the dates to which fees and other charges payable under the Agreement have been paid, stating that to User's actual knowledge (without independent investigation) that Owner is not in material default under the Agreement (or if User alleges a default, stating the nature of such alleged default), and further stating such other matters as Owner may reasonably request regarding the status of this Agreement.

25. **Subordination**.

This Agreement is and shall be subordinate to all mortgages, deeds of trust and similar security documents which may now or hereafter be secured upon the Property by Owner, and to all renewals, modifications, consolidations and extensions thereof. This clause shall be self-operative and no further instrument of subordination shall be required by any lessor, mortgagee or applicable security interest holder. Upon User's request, Owner agrees to exercise commercially reasonably efforts to obtain from Owner's mortgagee who may now or hereafter have an interest in the Site a Subordination, Non-Disturbance and Attornment Agreement (an "SNDA") in a form acceptable to User and such mortgagee. In the event Owner's mortgagee declines to enter into an SNDA, Owner shall be deemed to have satisfied its obligations hereunder.

26. Mechanics Liens.

Owner and User expressly acknowledge and agree that neither User nor any one claiming by, through or under User, including without limitation contractors, sub-contractors, materialmen, mechanics and laborers, shall have any right to file or place any mechanics' or materialmen's liens of any kind whatsoever upon the Site nor upon any building or improvement thereon. All parties with whom User may deal are hereby put on notice that User has no power to subject Owner's interest in the Site to any claim or lien of any kind or character and any persons dealing with User must look solely to the credit of User for payment and not to Owner's interest in the Site or otherwise. Owner shall have the right to post notices of non-responsibility on the Premises. User agrees to allow such notices to remain posted on the Premises throughout the construction period and to notify Owner if such notices are damaged or removed. However, if by reason of any alteration, repair, labor performed or materials furnished to the Site for or on behalf of User any mechanic's or materialmen's lien shall be filed, claimed, perfected or otherwise established or as provided by law against the Site, User shall discharge or remove the lien by bonding or otherwise, within thirty (30) days after User receives notice from Owner of the filing of same.

27. <u>Hazardous Substances</u>.

- (a) User covenants that (a) User shall at its own cost comply with all Environmental Laws with respect to its operations on the Property; (b) User shall not Manage any Hazardous Materials on the Premises, nor conduct nor authorize the same, including installation of any underground storage tanks, without prior written disclosure to and approval of Owner, in Owner's sole discretion; (c) User shall not take any action that would subject the Property to permit requirements under Environmental Law for storage, treatment or disposal of Hazardous Materials; (d) User shall not dispose of Hazardous Materials on the Premises; (e) User shall not discharge Hazardous Materials into drains or sewers in violation of environmental laws; (f) User shall not suffer, cause or allow the Release of any Hazardous Materials on, to or from the Premises in violation of environmental law or in quantities requiring a permit; and (g) User shall at its own cost arrange for the lawful transportation and off-site disposal of all Hazardous Materials that it generates.
- (b) "Environmental Law" shall mean and include all applicable federal, state and local statutes, ordinances, regulations and rules relating to environmental quality, health, safety, contamination and clean-up. "Hazardous Material" shall mean petroleum or any petroleum product, asbestos, any substance known by the state in which the Site is located to cause cancer and/or reproductive toxicity, and/or any substance, chemical or waste that is identified as hazardous, toxic or dangerous under Environmental Law, but excluding the use of solvents and commercial cleaners used in compliance with Environmental Law. "Manage" means to generate, manufacture, process, treat, store, use, re-use, refine, recycle, reclaim, blend or burn for energy recovery, incinerate, accumulate speculatively, transport, transfer, dispose of or abandon Hazardous Materials. "Release" shall mean any actual or threatened spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, presence, dumping, migration from adjacent property or disposing of Hazardous Materials into the environment, as "environment" is defined under Environmental Law.

28. <u>Labeling</u>.

User shall identify its equipment and equipment cabinets (unless such cabinet is located in a building owned by User) with labels permanently affixed thereto, indicating User's name, contact phone number, and installation date.

User's coaxial cables shall be labeled at both the top and bottom of the Tower. Owner shall provide written notice to the User of the failure to identify its equipment and equipment cabinets, and within thirty (30) days after receipt of such written request by Owner, User shall adequately label its equipment and equipment cabinets. If User fails to so identify its equipment, Owner may label User's equipment and assess against User a fee of \$2,000.00 (or Owner's then current fee for same), which shall be promptly due and payable by User upon receipt of invoice from Owner.

29. Notices.

Except as otherwise expressly provided herein, all notices, requests, claims, demands and other communications hereunder shall be in writing and shall be deemed to have been duly given when received if delivered by certified mail, postage prepaid, return receipt requested, or sent by receipted overnight delivery service to the following addresses:

As to Owner: VB NIMBUS, LLC

750 Park of Commerce Drive, Suite 200

Boca Raton, Florida 33487 Attention: Lease Administration

Ref: US-CA-5177

With a mandatory copy to: VB NIMBUS, LLC

750 Park of Commerce Drive, Suite 200

Boca Raton, Florida 33487 Attention: General Counsel

Ref: US-CA-5177

As to User: San Francisco Public Utilities Commission

Information Technology Services Division 525 Golden Gate Avenue, 5th Floor

San Francisco, CA 94102

Attention: Radio Communications Manager

Re: VB Nimbus, LLC, San Joaquin County, Site Use Agreement:

US-CA-5177 Corral Hollow

With a copy to: San Francisco Public Utilities Commission

Real Estate Services Division

525 Golden Gate Avenue., 10th Floor

San Francisco, CA 94102 Attention: Real Estate Director

Re: VB Nimbus, LLC, San Joaquin County, Site Use Agreement:

US-CA-5177 Corral Hollow

With a copy to: Office of the City Attorney

City and County of San Francisco

Room 234, City Hall

1 Dr. Carlton B. Goodlett Place

San Francisco, CA 94102-4682 Attn: Real Estate/Finance Team

30. <u>Miscellaneous</u>.

- (a) <u>Entire Agreement; Amendments</u>. This Agreement and any other documents or exhibit referred to herein or delivered pursuant hereto, which form a part hereof, contains the entire understanding of the Parties with respect to its subject matter. There are no restrictions, agreements, promises, warranties, covenants or undertaking other than expressly set forth herein. This Agreement supersedes all prior agreements and understandings between the Parties. No modification of this Agreement shall be effective unless contained in writing signed by the authorized representative of both Parties.
- (b) <u>Severability</u>. It is the intention of the Parties that if any provision of this Agreement is capable of two constructions, one of which would render the provision valid, then the provision shall have the meaning which renders it valid. If any term or provision, or any portion thereof, of this Agreement, or the application thereof to any person or circumstances shall, to any extent, held to be invalid or unenforceable by a court of competent jurisdiction, the remainder of this Agreement, or the application of such term or provision to persons or circumstances other than those as to which it is held invalid or unenforceable, shall not be affected thereby, and each other term and provision of this Agreement shall be valid and be enforced to the fullest extent permitted by law.
- (c) <u>Successor and Assigns</u>. This Agreement shall inure to the benefit of and be binding upon Owner, its successors and assigns, and shall be binding upon User, its permitted successors and assigns, and shall inure to the benefit of User and only such assigns of User as are permitted herein. Except as expressly provided otherwise, nothing contained in this Agreement shall be construed so as to confer upon any person's rights of a third-party beneficiary.
- (d) <u>Remedies Cumulative</u>. The remedies provided herein shall be cumulative and shall not preclude the assertion by any Party of any other rights or the seeking of and other remedies against the other Party.
- (e) <u>No Waiver</u>. Should Owner permit a continuing default of User in User's performance of the terms of this Agreement, the obligations of User hereunder shall continue and such permissive default shall not be construed as a renewal of the term hereof nor as a waiver of any of the rights of Owner or obligations of User hereunder.
- (e) <u>Applicable Law</u>. This Agreement shall be governed by the laws of the State where the Property is located without regard to the principles of conflict of laws thereunder.
- (f) <u>Waiver of Jury Trial</u>. To the extent permitted by law, the Parties hereby irrevocably and unconditionally waive trial by jury in any legal action or proceeding relating in any way to this Agreement, including any counterclaim made in such action or proceeding, and agree that any such action or proceeding shall be decided solely by a judge. Each Party hereby acknowledges that it has been represented by counsel in the negotiation, execution and delivery of this Agreement and that its lawyers have fully explained the meaning of this Agreement, including in particular the jury-trial waiver.
- (g) <u>Attorneys' Fees</u>. In the event of any dispute between the Parties, the prevailing party shall be reimbursed for its reasonable attorneys' fees and other costs incurred in enforcing its rights or exercising its remedies under this Agreement. For all purposes under this Agreement, reasonable attorneys' fees of User will be based on the

fees regularly charged by private attorneys in San Francisco with comparable experience in the subject matter area practicing in firms of comparable size as the Office of the City Attorney. Such right of reimbursement shall be in addition to any other right or remedy that the prevailing Party may have under this Agreement.

- (h) <u>Counterparts; DocuSigned Signature Pages</u>. This Agreement may be executed in one or more counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same instrument. Any signature page signed via DocuSign hereof shall be considered an original signature page and be effective for all purposes to evidence such party's execution hereof.
- (i) Owner and User Entity. Owner and User hereby covenant and warrant that: (i) each is a duly constituted organization (corporation, limited partnership, limited liability company, partnership non-profit corporation, etc.) qualified to do business in the state in which the Property is located; (ii) all corporate franchise or other entity-related taxes have been paid to date; (iii) all future forms, reports, fees and other documents necessary to comply with applicable laws will be filed by Owner or User, as applicable and when due; (iv) and such person signing on behalf of Owner or User is duly authorized by the governing body of such corporation to execute and deliver this Lease on behalf of the corporation.
- (j) <u>Representations and Warranties</u>. Owner and User each represent and warrant to the other that it is legally qualified, empowered and able to enter into this Agreement, and that the execution, delivery and performance hereof shall not constitute a breach or violation of any agreement, contract or other obligation or any kind to which the party is subject or by which it is bound.
- (k) <u>User's Mandatory Provisions</u>. Owner acknowledges that User, as a public entity, is subject to the laws, ordinance, and Charter of the City and County of San Francisco and that, accordingly, the provisions set forth on the attached Exhibit E are required by applicable law to be incorporated, and are hereby incorporated, into this Agreement.

[Remainder of Page Intentionally Left Blank]

IN WITNESS WHEREOF, the parties have executed this Agreement as of the date first written above.

OWNER:	USER:	
VB NIMBUS, LLC a Delaware limited liability company	CITY AND COUNTY OF SAN FRANCISCO, a California municipal corporation	
By: Name: Title:	By: Name: Dennis J. Herrera Title: General Manager San Francisco Public Utilities Commission	
	Date:	
	APPROVED AS TO FORM	
	DAVID CHIU City Attorney	
	Ву:	

EXHIBIT A

Property

The following described real property in the County of San Joaquin, State of California:

A portion of Section 24, Township 3 South, Range 4 East, Mount Diablo Base and Meridian, being Parcel A as shown upon Parcel Map filed January 20, 1976, in Volume 2 of Parcel Maps, at Page 113, San Joaquin County Records.

TOGETHER WITH AND SUBJECT TO

A 25-foot private right of way to be used for access to proposed radio tower only as shown upon Parcel Map filed January 20, 1976, in Volume 2 of Parcel Maps, at Page 113, San Joaquin County Records.

AND BEING the same property conveyed to Citadel Communications Corporation, a Nevada corporation from Fuller-Jeffrey Broadcasting Companies, Inc., a corporation by Corporation Grant Deed dated September 24, 1993 and recorded October 4, 1993 in Instrument No. 93114694.

Tax Parcel No. 251-120-080-000

EXHIBIT B-1

Co-location Application

Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

SUMMARY

PRIMARY INFO

Application #: P-006561

Application Version: 5 (Submitted: 4/21/2022 8:38:00 PM)

Application Type: Broadband

Site Name: MD007 KHKK-FM KATM-FM **Application Name:**

New Lease Lease Type:

ASR Number: Description:

Approximately (8) sq. ft. of equipment rack space in shelter; Tower Space - (2)-3 diameter microwave antennas at 16 and 22-feet above ground level (AGL); (2)-9 receive antennas at 120 feet AGL; and (1)-9 transmit antenna at 100' AGL; Conduits - Space for power conduit and coaxial cables on ladder rack; Utility Power - Electrical sub-panel and power meter for On-Premises electricity.

VERTICAL BRIDGE SITE INFO

VB Site #: US-CA-5177

VB Site Name: MD007 KHKK-FM KATM-FM STL KHKK-FM

37.65252222 Latitude: -121.47806667 Longitude: **Guyed Tower** Structure Type: Structure Height: 346.0400

32322 Corral Hollow Road -Site Address:

Tracy, CA 95377

VERTICAL BRIDGE DEAL TEAM

RLM: Tiffany McClurg RLS: Pilar Lozano ROM: Mark Stennett

MStennett@verticalbridge.com TMcClurg@verticalbridge.com PLozano@verticalbridge.com (206) 719-1639

(561) 348-5212 (512) 569-3445

TENANT LEGAL INFO

Tenant Legal Name: City and County of San Francisco

State of Registration: California Type of Entity: **Public Utility** Carrier NOC #: 4155514357

Tenant Site #: US-CA-5177 (Same as Vertical Bridge site

Tenant Site Name: Corral Hollow

APPLICANT

Brian Rolley Name:

525 Golden Gate Ave. **Address**

San Francisco, CA 94102

(415) 559-9722 **Phone Number:**

brolliet7@gmail.com **Email Address:**

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type	
1	Panel	
2	Microwave Dish	
2	Omni/Whip	

FINAL LINES

Qty	Line Type
2	Rigid
3	Heliax

Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

FREQUENCY & TECHNOLOGY INFO

Type of Technology: Public Safety

Is TX Frequency Licensed: Yes

TX Frequency: 771.73125, 800.26875, WRDP497; 813.5375, 813.8625, 814.6125, 858.53750, 858.8625, 859.61250,

WRDF582

Is RX Frequency Licensed: Yes

RX Frequency: 770.26875, 801.73125, 800.26875, WRDP497; 813.5375, 813.8625, 814.6125, WRDF582

MOUNT & STRUCTURAL ANALYSIS

MOUNT ANALYSIS Provided by Tenant: No To Be Run by VB: Yes Include Mount Mapping: No STRUCTURAL HARD COPIES Required: No Number of Hard Copies

CONTACTS

INVOICE CONTACT						
Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	Email 2
Principal Administrative Analyst	Kristen McGuire	525 Golden Gate Ave., 5th Floor San Francisco, CA 94102	(401) 418-3085		KMcGuire@sfwat er.org	jhorrisberger@sfw ater.org

PO CONTACT			
Name	Phone Number	Email	
Alma Tam	(628) 255-9712	AlTam@sfwater.org	

LEASING CONTACT			
Name	Phone Number	Email	
Brian Rolley	(415) 559-9722	BRolley@sfwater.org	

NOTICE CONTACT			
Notice To	Attention To	Name	Address
San Francisco Public Utilities Commission	SFPUC Radio Communications Services	Radio Communications Manager	525 Golden Gate Ave., 5th Floor San Francisco, CA 94102

COPY NOTICE CONTACT			
Notice To	Attention To	Name	Address

Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

	San Francisco Public Utilities Commission	SFPUC Real Estate Services	Christopher Wong	525 Golden Gate Ave., 10th Floor San Francisco, CA 94102
- 1				

RF CONTACT			
Name	Phone Number	Email	
Jay Horrisberger	(415) 214-0394	jhorrisberger@sfwater.org	

TENANT CONSTRUCTION MANAGER CONTACT		
Name Phone Number Email		
Jim Hardimon	(310) 413-0604	j.hardimon@motorolasolutions.com

EMERGENCY CONTACT			
Name	Phone Number	Email	
SFPUC ITS HELP DESK	(415) 551-4357	ithelp@sfwater.org	

LINE & EQUIPMENT

NEW LINE(S)					
Qty	Line Type	Line Size(in.)	Line Location	Comments	
3	Heliax	1	Exterior		
2	Rigid	1	Exterior		

NEV	NEW EQUIPMENT									
Qty	Equipment Type	RAD Height	Mount (H')	Mount Type	Manufacturer	Model Number	Dimensions (H"xW"xD")	Weight (Lbs.)	Azimuth	Comments
1	Panel	100.00	100.00	Pipe Mount	RFI Technology Solutions	BPA-74 96-180- 11	60.00 x 10.40 x 6.00	17.00	80	Please see attached specificatio n sheet. Proposed mount on North-East tower leg.
1	Microwave Dish	22.00	22.00	Pipe Mount	Radio Frequency Systems (RFS)	SC3-W1 00B	39.36 x 39.36 x 14.57	39.70	248	Please see attached specificatio n sheet.
1	Microwave Dish	16.00	16.00	Pipe Mount	Radio Frequency Systems (RFS)	SC3-W1 00B	39.36 x 39.36 x 14.57	39.70	96	Please see attached specificatio n sheet.

Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

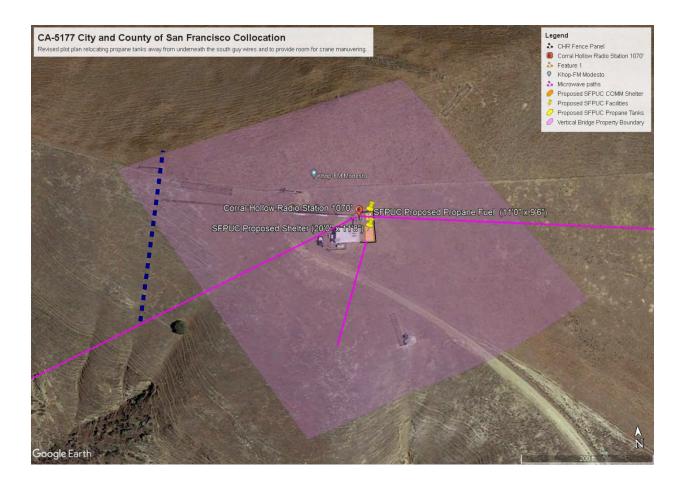
1	Omni/Whip	137.00	120.00	Pipe Mount	RFI Technology Solutions	CC807- 11-P	205.00 x 3.00 x 3.00	49.00	80	Please see attached specificatio n sheet. Proposed antenna mount on West tower leg.
1	Omni/Whip	137.00	120.00	Pipe Mount	RFI Technology Solutions	CC807- 11-P	205.00 x 3.00 x 3.00	49.00	80	Please see attached specificatio n sheet. Proposed antenna mount on South tower leg.

ADDITIONAL SITE REQUIREMENTS

GROUND & INTERIOR SPACE REQUIREMENTS						
Requirement Type	Total Lease Area (L x W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	21.00 x 12.00	No	x	Yes	21.00 x 12.00	The SFPUC through its contractor (Motorola) will provide all of the designs, plans, specifications, permits and fees to install a prefabricated radio shelter.

GENERATOR REQUIREMENTS						
Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions (L x D)	Generator Manufacturer	Fuel Tank Manufacturer	Comments
New	Propane	35	7.00 x 3.00	Generac	Allied Propane Service, Inc.	The SFPUC through its contractor (Motorola) will design, plan, specify and purchase the generator and propane tanks. The generator wil be installed in one half of the proposed radio shelter.

AC POWER REQUIREMENTS		
Meter Type	Additional Details	Comments


Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

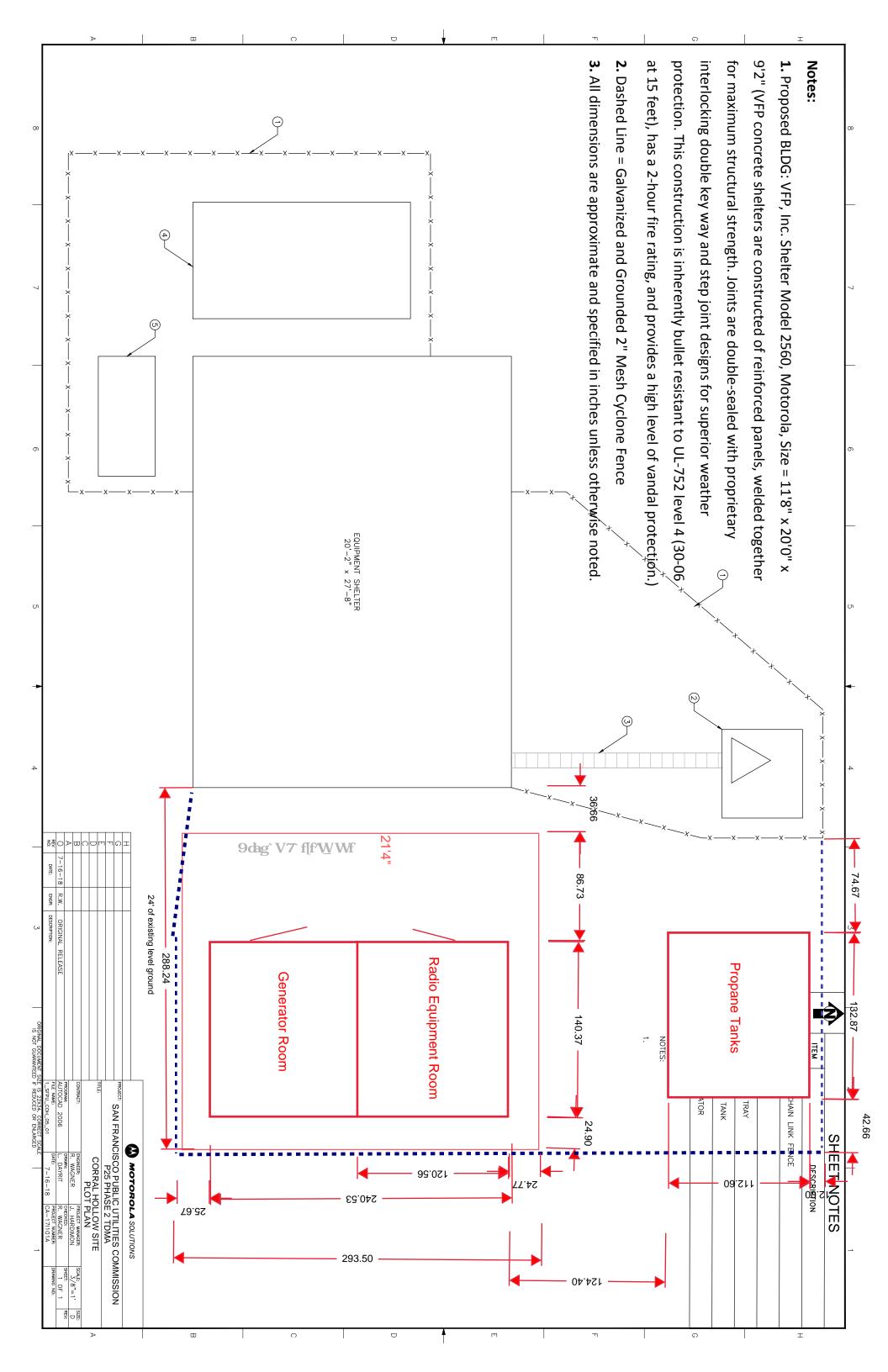

New Tenant Meter				The SFPUC will apply to the local power utility (Pacific Gas and Electric Company) for a 200 Amp 240 Volt Single Phase Service and will have a separate electric service and meter.	
BACKHAUL REQUIRI	EMENTS				
Requirement Type	Cable Type	Number Of Points Of Entry	Riser Si	ze (Inches)	Comments
Not Required					The SFPUC backhaul is integrated into their design and lease request.

EXHIBIT B-2

Installation Plans

EXHIBIT B-3

Structural Analysis

City and County of San Francisco

Structural Analysis Report

Structure : 343ft Guyed Tower

VB Site Name : MD007 KHKK-FM KATM-FM STL KHKK-FM

VB Site Number : US-CA-5177

Proposed Carrier: City and County of San Francisco

Carrier Site Name : Corral Hollow

Carrier Site Number : US-CA-5177

Site Location : 32322 Corral Hollow Road,

Tracy, CA 95377 (Pima County)

37.65252222, -121.47806667

Date : August 4, 2021

Max Member Stress Level: 92.9% (Tower)

Result : PASS

(Foundation was not analyzed due to lack of information)

B&P Job No.: 21.03.006.155

Prepared For: Vertical Bridge Engineering, LLC.

Prepared By: Bennett & Pless, Inc.

Table of Contents

Introduction	1
Existing Structural Information	1
Final Proposed Equipment Loading for City and County of San Francisco	1
Design Criteria	2
Analysis Results	2
Assumptions	2
Conclusions	3
Standard Conditions	4
Disclaimer of Warranties	4
Calculations	Attached
Collocation Application	Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the loads proposed by City and County of San Francisco. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Tower Mapping Report by Structural Components, Project No.: 210261
	dated June 30, 2021
Foundation Information	Foundation Mapping Report by Structural Components, Project No.:
	210261 dated June 30, 2021
Geotechnical Information	Geotechnical information was not provided.
Existing Equipment Information	Tower Mapping Report by Structural Components, Project No.: 210261
	dated June 30, 2021
	Vertical Bridge Colocation Application P-006561 dated May 26, 2021.
Tower Reinforcement Information	Tower has not been previously reinforced.

Final Proposed Equipment Loading for City and County of San Francisco

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

			Coax			
Mount (ft).	RAD (ft.)	Qty.	Appurtenance	Type	Qty.	Size/Type
16.0	16.0	1	RFS SC3-W100B	MW Dish		
10.0	10.0	1	Pipe Mount	Mount		
22.0	22.0	1	RFS SC3-W100B	MW Dish	3	1" Heliax
22.0	22.0	1	Pipe Mount	Mount	2	1" Rigid
100.0	100.0	1	RFI BPA-7496-180-11	Panel		
120.0	127.0	2	RFI CC80711-P	Omni/Whip		
120.0	120.0 137.0		Pipe Mount	Mount		

Note: All equipment shown above is proposed.

Design Criteria

The tower was analyzed using tnxTower (Version 8.1.1) tower analysis software using the following design criteria.

Building Code	Building Code of the County of San Joaquin
	adopted from 2019 California Building
	Code & 2018 International Building Code
TIA/EIA Standard Code	TIA-222-H
Basic Wind Speed	93 MPH V _{ult}
Basic Wind Speed w/ Ice	30 MPH/ 0.0" Ice
Steel Grade	See Tower profile for steel grade
Exposure Category	C
Topographic Category (height)	5
Risk Category	II
Ground Elevation	1077.88 ft
Ss	1.462
Seismic Design Category	D

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads. The existing tower foundation was not analyzed due to lack of information. A seismic analysis was performed and was not found to be controlling.

Assumptions

The below assumptions are true, complete and accurate.

- 1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
- 2. Foundations are considered to have been properly designed for the original design loads.
- 3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
- 4. Antenna mount loads have been estimated based on generally accepted industry standards.
- 5. The mounts for the proposed antennas have been analyzed and designed by others.
- 6. See additional assumptions contained in the report attached.
- 7. Tower is within acceptable engineering tolerance at 105%.
- 8. Foundations are within acceptable engineering tolerance at 110%.

Conclusions

The existing tower described above **does have sufficient capacity** to support the proposed loading based on the governing Building Code. The existing tower foundation was **not analyzed due to lack of information.** A seismic analysis was performed and was not found to be controlling.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 561-288-1187.

Sincerely,

Analysis by:

Reviewed by:

Kshitij Kadam Design Engineer Sweanum Soo, Ph.D. P.E. S.E. Senior Structural Engineer

Sun An

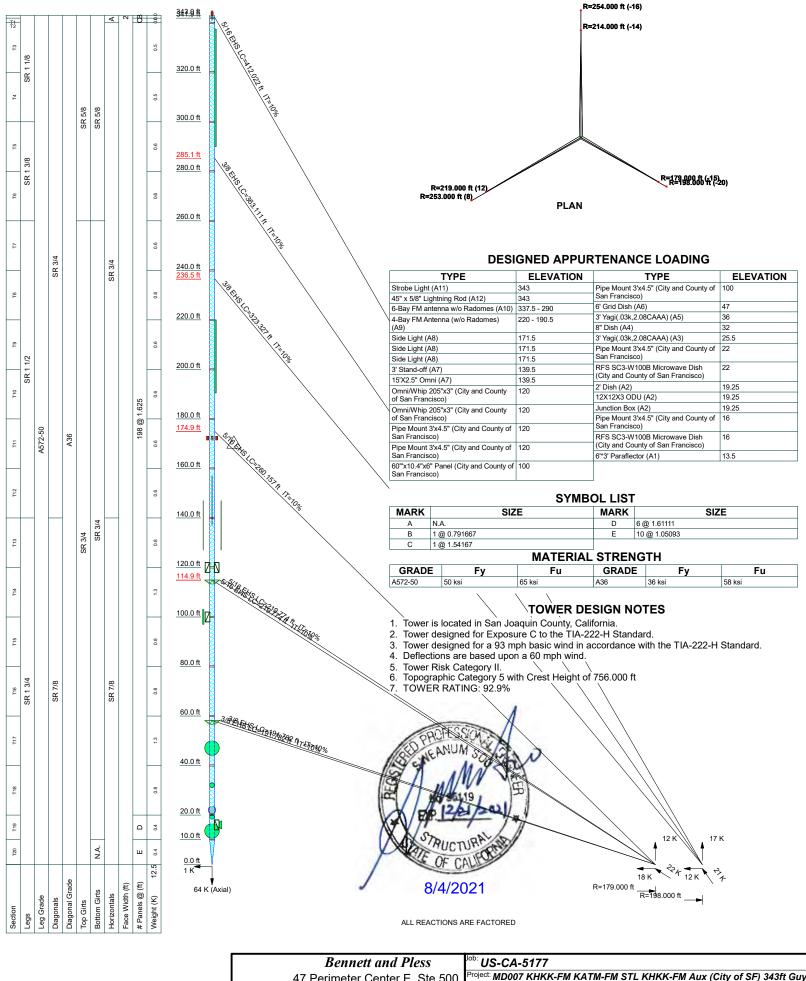
Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.
- Information from drawings in possession of Bennett & Pless, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Bennett & Pless and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a uncorroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with ANSI/TIA/EIA-222-Revision H.


All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices. Bennett & Pless is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

Bennett & Pless Inc. makes no warranties, expressed or implied, in connection with this report, and disclaims any liability arising from the ability of the existing structure to support the design loads for which it was originally designed. Bennett & Pless Inc. will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Bennett & Pless pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1: Calculations

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16

Risk Category: ||

Soil Class: D - Default (see

Section 11.4.3)

Elevation: 1077.88 ft (NAVD 88)

Latitude: 37.652522

Longitude: -121.478067

Wind

Results:

Wind Speed: 93 Vmph
10-year MRI 64 Vmph
25-year MRI 70 Vmph
50-year MRI 75 Vmph
100-year MRI 80 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Wed Jul 14 2021

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.462 N/A T_L : S₁ : 0.493 8 F_a : 1.2 PGA: 0.616 F_v : N/A PGA_M: 0.74 S_{MS} : F_{PGA} : 1.754 1.2 S_{M1} : N/A I_e : 1 S_{DS} : 1.17 C_{ν} : 1.392

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Wed Jul 14 2021

Date Source: USGS Seismic Design Maps

Ice

Results:

Ice Thickness: 0.00 in.

Concurrent Temperature: 25 F

Gust Speed: 30 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Wed Jul 14 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	1 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 343.000 ft above the ground line.

The base of the tower is set at an elevation of 0.000 ft above the ground line.

The face width of the tower is 2.000 ft at the top and tapered at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in San Joaquin County, California.

Tower base elevation above sea level: 1077.880 ft.

Basic wind speed of 93 mph.

Risk Category II. Exposure Category C. Crest Height: 756.000 ft.

Rigorous Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Feature: Continuous Ridge.

Slope Distance L: 5808.000 ft. Distance from Crest x: 0.000 ft. Horizontal Distance Downwind: No.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Safety factor used in guy design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

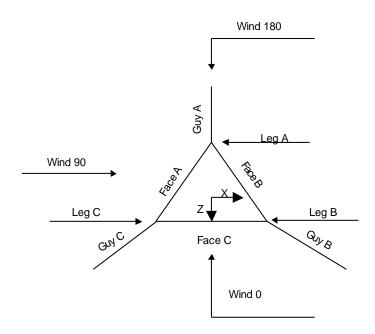
Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile

 √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

- √ Distribute Leg Loads As Uniform Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- ✓ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.
- √ Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

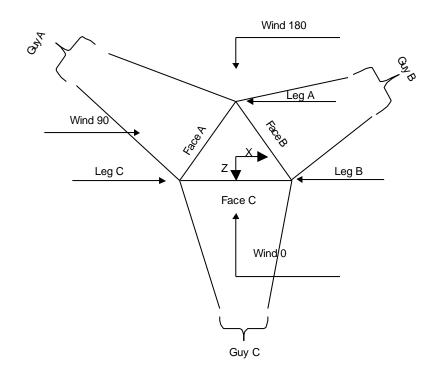

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Bennett and Pless

47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	2 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake



Corner & Starmount Guyed Tower

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	3 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Face Guyed

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	343.000-341.875			2.000	1	1.125
T2	341.875-340.000			2.000	1	1.875
T3-T4	340.000-300.000			2.000	2	20.000
T5-T6	300.000-260.000			2.000	2	20.000
T7-T12	260.000-140.000			2.000	6	20.000
T13-T18	140.000-20.000			2.000	6	20.000
T19	20.000-10.000			2.000	1	10.000
T20	10.000-0.000			2.000	1	10.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	4 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	343.000-341.875	0.792	M Brace	No	Yes	3.0000	1.0000
T2	341.875-340.000	1.542	M Brace	No	Yes	1.0000	3.0000
T3-T4	340.000-300.000	1.625	M Brace	No	Yes	3.0000	3.0000
T5-T6	300.000-260.000	1.625	M Brace	No	Yes	3.0000	3.0000
T7-T12	260.000-140.000	1.625	M Brace	No	Yes	3.0000	3.0000
T13-T18	140.000-20.000	1.625	M Brace	No	Yes	3.0000	3.0000
T19	20.000-10.000	1.611	M Brace	No	Yes	3.0000	1.0000
T20	10.000-0.000	1.051	Diag Down	No	Yes	1.0000	5.5000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagona
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1	Solid Round	1 1/8	A572-50	Solid Round	3/4	A36
343.000-341.875			(50 ksi)			(36 ksi)
T2	Solid Round	1 1/8	A572-50	Solid Round	3/4	A36
341.875-340.000			(50 ksi)			(36 ksi)
T3-T4	Solid Round	1 1/8	A572-50	Solid Round	3/4	A36
340.000-300.000			(50 ksi)			(36 ksi)
T5-T6	Solid Round	1 3/8	A572-50	Solid Round	3/4	A36
300.000-260.000			(50 ksi)			(36 ksi)
T7-T12	Solid Round	1 1/2	A572-50	Solid Round	3/4	A36
260.000-140.000			(50 ksi)			(36 ksi)
T13-T18	Solid Round	1 3/4	A572-50	Solid Round	7/8	A36
140.000-20.000			(50 ksi)			(36 ksi)
T19	Solid Round	1 3/4	A572-50	Solid Round	7/8	A36
20.000-10.000			(50 ksi)			(36 ksi)
Γ20 10.000-0.000	Solid Round	1 3/4	A572-50	Solid Round	7/8	A36
			(50 ksi)			(36 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1	Solid Round	5/8	A36	Solid Round	5/8	A36
343.000-341.875			(36 ksi)			(36 ksi)
T2	Solid Round	5/8	A36	Solid Round	5/8	A36
341.875-340.000			(36 ksi)			(36 ksi)
T3-T4	Solid Round	5/8	A36	Solid Round	5/8	A36
340.000-300.000			(36 ksi)			(36 ksi)
T5-T6	Solid Round	5/8	A36	Solid Round	5/8	A36
300.000-260.000			(36 ksi)			(36 ksi)
T7-T12	Solid Round	3/4	A36	Solid Round	3/4	A36
260.000-140.000			(36 ksi)			(36 ksi)
T13-T18	Solid Round	3/4	A36	Solid Round	3/4	A36
140.000-20.000			(36 ksi)			(36 ksi)
T19	Solid Round	3/4	A36	Solid Round	3/4	A36
20.000-10.000			(36 ksi)			(36 ksi)
Γ20 10.000-0.000	Solid Round	3/4	A36	Flat Bar	11.5x3/8	A36
			(36 ksi)			(36 ksi)

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

_		
	Job	Page
	US-CA-5177	5 of 50
	Project	Date
	MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
	Client Vertical Bridge	Designed by CBlake

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1	None	Flat Bar		A36	Solid Round	3/4	A36
343.000-341.875				(36 ksi)			(36 ksi)
T2	None	Flat Bar		A36	Solid Round	3/4	A36
341.875-340.000				(36 ksi)			(36 ksi)
T3-T4	None	Flat Bar		A36	Solid Round	3/4	A36
340.000-300.000				(36 ksi)			(36 ksi)
T5-T6	None	Flat Bar		A36	Solid Round	3/4	A36
300.000-260.000				(36 ksi)			(36 ksi)
T7-T12	None	Flat Bar		A36	Solid Round	3/4	A36
260.000-140.000				(36 ksi)			(36 ksi)
T13-T18	None	Flat Bar		A36	Solid Round	7/8	A36
140.000-20.000				(36 ksi)			(36 ksi)
T19	None	Flat Bar		A36	Solid Round	7/8	A36
20.000-10.000				(36 ksi)			(36 ksi)
Γ20 10.000-0.000	None	Flat Bar		A36	Solid Round	7/8	A36
				(36 ksi)			(36 ksi)

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	$Adjust.\ Factor \ A_f$	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
ft	ft ²	in					Diagonals :	Horizontals	Redundants
	J-						in	in	in
T1 343.000-341.8	0.000	0.0000	A36	I	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
75 T2	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
341.875-340.0	0.000	0.0000	(36 ksi)	1	1	1	30.0000	30.0000	36.0000
00			(30 KSI)						
T3-T4	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
340.000-300.0	0.000	0.000	(36 ksi)	-	-	•	20.0000	20.0000	20.000
00			,						
T5-T6	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
300.000-260.0			(36 ksi)						
00									
T7-T12	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
260.000-140.0			(36 ksi)						
00									
T13-T18	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.000-20.00			(36 ksi)						
0									
T19	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
20.000-10.000			(36 ksi)						
T20	0.000	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
10.000-0.000			(36 ksi)						

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	6 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
C.	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 343.000-341.8	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
75 T2	Yes	Yes	1	1	1	1	1	1	1	1
341.875-340.0 00				1	1	1	1	1	1	1
T3-T4 340.000-300.0	Yes	Yes	1	1 1	1 1	1 1	1 1	1	1 1	1
00 T5-T6 300.000-260.0	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
00 T7-T12 260.000-140.0	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
00 T13-T18 140.000-20.00	Yes	Yes	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
0 T19	Yes	Yes	1	1	1	1	1	1	1	1
20.000-10.000 T20 10.000-0.000	Yes	Yes	1	1 1	1 1	1	1 1	1 1	1 1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation ft	Leg		Diago	ıal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 343.000-341.8 75	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 341.875-340.0 00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3-T4 340.000-300.0 00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5-T6 300.000-260.0 00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7-T12 260.000-140.0 00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	7 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower	Leg		Diago	nal	Top G	irt	Botton	Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation ft														
J.	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T13-T18	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.000-20.00														
0														
T19	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
20.000-10.000														
T20	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
10.000-0.000														

Tower Elevation ft	Reduna Horizo		Reduna Diago		Redund Sub-Diag		Redur Sub-Hor		Redundan	t Vertical	Redundo	ant Hip	Redundo Diago	
J.	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 343.000-341.8 75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 341.875-340.0	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
00 T3-T4 340.000-300.0	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
00 T5-T6 300.000-260.0	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
00 T7-T12 260.000-140.0	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
00 T13-T18 140.000-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
0 T19 20.000-10.000	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T20 10.000-0.000	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Guy Data

Guy	Guy		Guy	Initial	%	Guy	Guy	L_u	Anchor	Anchor	Anchor	End
Elevation	Grade		Size	Tension		Modulus	Weight		Radius	Azimuth	Elevation	Fitting
										Adj.		Efficiency
ft				K		ksi	plf	ft	ft	0	ft	%
58.125	EHS	Α	3/8	1.540	10%	21000.000	0.273	224.011	214.000	0.0000	-14.000	100%
		В	3/8	1.540	10%	21000.000	0.273	191.611	179.000	0.0000	-15.000	100%
		C	3/8	1.540	10%	21000.000	0.273	221.938	219.000	0.0000	12.000	100%
114.875	EHS	A	5/16	1.120	10%	21000.000	0.205	248.136	214.000	0.0000	-14.000	100%
		В	5/16	1.120	10%	21000.000	0.205	219.584	179.000	0.0000	-15.000	100%
		C	5/16	1.120	10%	21000.000	0.205	240.210	219.000	0.0000	12.000	100%

tn.	хТои	er		Job		US-C	CA-5177				Page 8 of 50 Date 12:30:28 08/04/2		
	nett and seter Center		-	Project MD007	KHKK-FM KA		STL KHK	(K-FM Au	x (City of)4/21
Atlanta, GA 30346 Phone: (678) 990-8700 FAX:				Client	Client Vertical Bridge								
174.875	EHS	A	5/16	1.120	10% 21000.000	0.205	284.323	214.000	0.0000	-14.	000	100%	
		В	5/16	1.120	10% 21000.000	0.205	259.931	179.000	0.0000	-15.		100%	
236.5	EHS	C A	5/16 3/8	1.120 1.540	10% 21000.000 10% 21000.000	0.205 0.273	271.772 357.024	219.000 254.000	0.0000	12.0 -16.		100% 100%	
230.3	ЕПЗ	В	3/8	1.540	10% 21000.000	0.273	323.037	198.000	0.0000	-10. -20.		100%	
		C	3/8	1.540	10% 21000.000	0.273	339.762	253.000	0.0000	8.0		100%	
285.125	EHS	A	3/8	1.540	10% 21000.000	0.273	392.859	254.000	0.0000	-16.	000	100%	
		В	3/8	1.540	10% 21000.000	0.273	362.783	198.000	0.0000	-20.	000	100%	
		C	3/8	1.540	10% 21000.000	0.273	374.140	253.000	0.0000	8.0	00	100%	
341.958	EHS	A	5/16	1.120	10% 21000.000	0.205	437.883	254.000	0.0000	-16.		100%	
		В	5/16	1.120	10% 21000.000	0.205	411.661	198.000	0.0000	-20.		100%	
		C	5/16	1.120	10% 21000.000	0.205	417.924	253.000	0.0000	8.0	00	100%	

	Guy Data(cont'd)												
Guy Elevation ft	Mount Type	Torque-Arm Spread ft	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size						
58.125	Torque Arm	6.000	30.0000	Bat Ear	A36 (36 ksi)	Channel	C8x11.5						
114.875	Torque Arm	6.000	30.0000	Bat Ear	A36 (36 ksi)	Channel	C8x11.5						
174.875	Corner				` ′								
236.5	Corner												
285.125	Corner												
341.958	Corner												

				Suy Data (contic	1)		
Guy Elevation ft	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
58.125	A572-50 (50 ksi)	Solid Round				A572-50 (50 ksi)	Single Angle	
114.875	A572-50 (50 ksi)	Solid Round				A572-50 (50 ksi)	Single Angle	
174.875	A572-50 (50 ksi)	Solid Round				A572-50 (50 ksi)	Single Angle	
236.500	A572-50 (50 ksi)	Solid Round				A572-50 (50 ksi)	Single Angle	
285.125	A572-50 (50 ksi)	Solid Round				A572-50 (50 ksi)	Single Angle	
341.958	À572-50 (50 ksi)	Solid Round				À572-50 (50 ksi)	Single Angle	

Guy Data (cont'd)

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	9 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Guy Elevation	Cable Weight	Cable Weight	Cable Weight	Cable Weight	Tower	Tower	Tower	Tower
Elevation	weigni A	weigni B	weigni	weigni D	Intercept A	Intercept B	Intercept C	Intercept D
ft	K	K	K	K	ft	ft	ft	ft
58.125	0.061	0.052	0.061		4.424	3.237	4.353	
114.875	0.051	0.045	0.049		3.6 sec/pulse 5.575	3.1 sec/pulse 4.365	3.6 sec/pulse 5.237	
174.875	0.058	0.053	0.056		4.1 sec/pulse 7.280	3.6 sec/pulse 6.084	4.0 sec/pulse 6.667	
236.5	0.097	0.088	0.093		4.7 sec/pulse 11.063	4.3 sec/pulse 9.053	4.5 sec/pulse 10.040	
285.125	0.107	0.099	0.102		5.7 sec/pulse 13.339	5.2 sec/pulse 11.371	5.5 sec/pulse 12.124	
341.958	0.090	0.084	0.086		6.3 sec/pulse 17.010	5.8 sec/pulse 15.028	6.0 sec/pulse 15.528	
					7.1 sec/pulse	6.7 sec/pulse	6.8 sec/pulse	

Guy Data (cont'd)

			Torque Arm		Pull Off		Diagonal	
Guy	Calc	Calc	K_x	K_{y}	K_x	K_{y}	K_x	K_{y}
Elevation	K	K						
ft	Single	Solid						
	Angles	Rounds						
58.125	No	No	1	1	1	1	1	1
114.875	No	No	1	1	1	1	1	1
174.875	No	No			1	1	1	1
236.5	No	No			1	1	1	1
285.125	No	No			1	1	1	1
341.958	No	No			1	1	1	1

Guy Data (cont'd)

		Torq	ue-Arm		Pull Off			Diagonal				
Guy	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U
Elevation	in		Deduct		in		Deduct		in		Deduct	
ft			in				in				in	
58.125	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
114.875	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
174.875	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
236.5	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
285.125	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
341.958	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			

Guy Pressures

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	10 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Guy	Guy	z	q_z	q_z	Ice
Elevation	Location			Ice	Thicknes.
ft		ft	ksf	ksf	in
58.125	A	22.063	0.031		
	В	21.563	0.031		
	C	35.063	0.034		
114.875	A	50.438	0.037		
	В	49.938	0.037		
	C	63.438	0.038		
174.875	A	80.438	0.040		
	В	79.938	0.040		
	C	93.438	0.041		
236.5	A	110.250	0.042		
	В	108.250	0.042		
	C	122.250	0.043		
285.125	A	134.563	0.043		
	В	132.563	0.043		
	C	146.563	0.044		
341.958	A	162.979	0.044		
	В	160.979	0.044		
	C	174.979	0.045		

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Component	Placement	Total	Number	Clear	Width or	Perimeter	Weight
	or	Shield	From	Type		Number	Per Row	Spacing	Diameter		
	Leg		Torque		ft			in	in	in	klf
			Calculation								
1/2" Coax	A	No	No	Ar (CaAa)	13.500 - 6.000	1	1	0.5800	0.5800		0.000
1/4" Coax	A	No	No	Ar (CaAa)	19.250 - 6.000	1	1	0.2500	0.2500		0.000
7/8" Coax	A	No	No	Ar (CaAa)	25.600 - 6.000	1	1	1.1000	1.1000		0.000
1/4" OD	В	No	No	Ar (CaAa)	32.000 - 6.000	1	1	0.8400	0.8400		0.001
7/8" Coax	A	No	No	Ar (CaAa)	36.000 - 6.000	1	1	1.1000	1.1000		0.000
7/8" Coax	A	No	No	Ar (CaAa)	47.000 - 6.000	1	1	1.1000	1.1000		0.000
7/8" Coax	A	No	No	Ar (CaAa)	139.500 - 6.000	1	1	1.1000	1.1000		0.000
1 1/16" OD	A	No	No	Ar (CaAa)	343.000 - 6.000	1	1	1.0625	1.0625		0.000
3" Coax	В	No	No	Ar (CaAa)	220.000 - 6.000	1	1	3.0100	3.0100		0.002
3" Coax	В	No	No	Ar (CaAa)	337.500 - 6.000	1	1	3.0100	3.0100		0.002
1" Heliax	В	No	No	Ar (CaAa)	137.000 - 0.000	3	3	1.0000	1.0000		0.001
(City and County of											
San Francisco)											
1" Rigid	C	No	No	Ar (CaAa)	137.000 - 0.000	2	2	1.1630	1.0000		0.001
(City and County of											
San Francisco)											

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft ²	ft^2	ft ²	ft ²	K
T1	343.000-341.875	A	0.000	0.000	0.120	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.000
T2	341.875-340.000	A	0.000	0.000	0.199	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.000
T3	340.000-320.000	A	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	5.268	0.000	0.031

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	11 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
Section	ft		ft^2	ft^2	ft^2	ft ²	K
		С	0.000	0.000	0.000	0.000	0.000
T4	320.000-300.000	A	0.000	0.000	2.125	0.000	0.003
	320.000 300.000	В	0.000	0.000	6.020	0.000	0.036
		C	0.000	0.000	0.000	0.000	0.000
T5	300.000-280.000	A	0.000	0.000	2.125	0.000	0.003
10	300.000 200.000	В	0.000	0.000	6.020	0.000	0.036
		Č	0.000	0.000	0.000	0.000	0.000
T6	280.000-260.000	A	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	6.020	0.000	0.036
		Č	0.000	0.000	0.000	0.000	0.000
T7	260.000-240.000	A	0.000	0.000	2.125	0.000	0.003
-,	200.000 2.0.000	В	0.000	0.000	6.020	0.000	0.036
		Č	0.000	0.000	0.000	0.000	0.000
T8	240.000-220.000	A	0.000	0.000	2.125	0.000	0.003
	2.0.000 220.000	В	0.000	0.000	6.020	0.000	0.036
		C	0.000	0.000	0.000	0.000	0.000
Т9	220.000-200.000	A	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	12.040	0.000	0.071
		C	0.000	0.000	0.000	0.000	0.000
T10	200.000-180.000	A	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	12.040	0.000	0.071
		C	0.000	0.000	0.000	0.000	0.000
T11	180.000-160.000	Ā	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	12.040	0.000	0.071
		C	0.000	0.000	0.000	0.000	0.000
T12	160.000-140.000	Ā	0.000	0.000	2.125	0.000	0.003
		В	0.000	0.000	12.040	0.000	0.071
		C	0.000	0.000	0.000	0.000	0.000
T13	140.000-120.000	A	0.000	0.000	4.270	0.000	0.005
		В	0.000	0.000	17.140	0.000	0.112
		C	0.000	0.000	3.400	0.000	0.023
T14	120.000-100.000	Ā	0.000	0.000	4.325	0.000	0.005
		В	0.000	0.000	18.040	0.000	0.119
		C	0.000	0.000	4.000	0.000	0.027
T15	100.000-80.000	Α	0.000	0.000	4.325	0.000	0.005
		В	0.000	0.000	18.040	0.000	0.119
		C	0.000	0.000	4.000	0.000	0.027
T16	80.000-60.000	Α	0.000	0.000	4.325	0.000	0.005
		В	0.000	0.000	18.040	0.000	0.119
		C	0.000	0.000	4.000	0.000	0.027
T17	60.000-40.000	Α	0.000	0.000	5.095	0.000	0.006
		В	0.000	0.000	18.040	0.000	0.119
		C	0.000	0.000	4.000	0.000	0.027
T18	40.000-20.000	A	0.000	0.000	8.901	0.000	0.009
		В	0.000	0.000	19.048	0.000	0.129
		C	0.000	0.000	4.000	0.000	0.027
T19	20.000-10.000	Ā	0.000	0.000	5.897	0.000	0.007
		В	0.000	0.000	9.860	0.000	0.068
		C	0.000	0.000	2.000	0.000	0.013
T20	10.000-0.000	A	0.000	0.000	2.517	0.000	0.003
•		В	0.000	0.000	5.744	0.000	0.042
		C	0.000	0.000	2.000	0.000	0.013

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	12 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	343.000-341.875	-0.5434	-0.3137	-0.5434	-0.3137
T2	341.875-340.000	-0.6503	-0.3754	-0.6503	-0.3754
T3	340.000-320.000	0.9663	-1.1769	0.9663	-1.1769
T4	320.000-300.000	1.1472	-1.2637	1.1472	-1.2637
T5	300.000-280.000	1.0785	-1.1880	1.0785	-1.1880
T6	280.000-260.000	1.0785	-1.1880	1.0785	-1.1880
T7	260.000-240.000	1.0448	-1.1509	1.0448	-1.1509
T8	240.000-220.000	1.0448	-1.1509	1.0448	-1.1509
T9	220.000-200.000	2.1224	-1.6787	2.1224	-1.6787
T10	200.000-180.000	2.1224	-1.6787	2.1224	-1.6787
T11	180.000-160.000	2.1224	-1.6787	2.1224	-1.6787
T12	160.000-140.000	2.1224	-1.6787	2.1224	-1.6787
T13	140.000-120.000	1.8501	-1.4881	1.8501	-1.4881
T14	120.000-100.000	1.8884	-1.4629	1.8884	-1.4629
T15	100.000-80.000	1.8884	-1.4629	1.8884	-1.4629
T16	80.000-60.000	1.8884	-1.4629	1.8884	-1.4629
T17	60.000-40.000	1.7584	-1.4986	1.7584	-1.4986
T18	40.000-20.000	1.2673	-1.6976	1.2673	-1.6976
T19	20.000-10.000	0.9415	-1.8155	0.9415	-1.8155
T20	10.000-0.000	1.2882	-1.0253	1.2882	-1.0253

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	-	Segment Elev.	No Ice	Ice
T1	8	1 1/16" OD	341.88 -	0.6000	0.6000
			343.00		
T2	8	1 1/16" OD	340.00 -	0.6000	0.6000
			341.88		
T3	8	1 1/16" OD	320.00 -	0.6000	0.6000
			340.00		
T3	10	3" Coax	320.00 -	0.6000	0.6000
			337.50		
T4	8	1 1/16" OD	300.00 -	0.6000	0.6000
			320.00		
T4	10	3" Coax	300.00 -	0.6000	0.6000
			320.00		
T5	8	1 1/16" OD	280.00 -	0.6000	0.6000
			300.00		
T5	10	3" Coax	280.00 -	0.6000	0.6000
			300.00		
T6	8	1 1/16" OD	260.00 -	0.6000	0.6000
			280.00		
Т6	10	3" Coax	260.00 -	0.6000	0.6000
			280.00		
T7	8	1 1/16" OD	240.00 -	0.6000	0.6000
		 ~	260.00		0.5000
T7	10	3" Coax	240.00 -	0.6000	0.6000
T	0	1.1/1.611.070	260.00	0.6000	0.6000
T8	8	1 1/16" OD	220.00 -	0.6000	0.6000
-	• •	2	240.00	0.6000	0.6000
T8	10	3" Coax	220.00 -	0.6000	0.6000
TO	0	1.1/16#.00	240.00	0.6000	0.6000
Т9	8	1 1/16" OD	200.00 -	0.6000	0.6000
			220.00		

Bennett and Pless

47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	13 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
Т9	9	3" Coax	200.00 - 220.00	0.6000	0.6000
Т9	10	3" Coax	200.00 - 220.00	0.6000	0.6000
T10	8	1 1/16" OD	180.00 -	0.6000	0.6000
T10	9	3" Coax	200.00 180.00 -	0.6000	0.6000
T10	10	3" Coax	200.00 180.00 -	0.6000	0.6000
T11	8	1 1/16" OD	200.00 160.00 -	0.6000	0.6000
T11	9	3" Coax	180.00 160.00 -	0.6000	0.6000
T11	10	3" Coax	180.00 160.00 -	0.6000	0.6000
T12	8	1 1/16" OD	180.00 140.00 -	0.6000	0.6000
T12	9	3" Coax	160.00 140.00 -	0.6000	0.6000
T12	10	3" Coax	160.00 140.00 -	0.6000	0.6000
T13	7	7/8" Coax	160.00 120.00 -	0.6000	0.6000
T13	8	1 1/16" OD	139.50 120.00 -	0.6000	0.6000
T13	9	3" Coax	140.00 120.00 -	0.6000	0.6000
T13	10	3" Coax	140.00 120.00 -	0.6000	0.6000
T13	11	1" Heliax	140.00 120.00 -	0.6000	0.6000
T13	12	1" Rigid	137.00 120.00 -	0.6000	0.6000
T14	7	7/8" Coax	137.00 100.00 -	0.6000	0.6000
T14	8	1 1/16" OD	120.00 100.00 -	0.6000	0.6000
T14	9	3" Coax	120.00 100.00 -	0.6000	0.6000
T14	10	3" Coax	120.00 100.00 -	0.6000	0.6000
T14	11	1" Heliax	120.00 100.00 -	0.6000	0.6000
T14	12	1" Rigid	120.00 100.00 -	0.6000	0.6000
Т15	7	7/9" Cook	120.00	0.6000	0.6000
T15 T15	7 8		80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.6000
T15	9		80.00 - 100.00	0.6000	0.6000
T15	10	3" Coax	80.00 - 100.00	0.6000	0.6000
T15	11		80.00 - 100.00	0.6000	0.6000
T15	12		80.00 - 100.00	0.6000	0.6000
T16	7	7/8" Coax	60.00 - 80.00	0.6000	0.6000
T16	8	1 1/16" OD	60.00 - 80.00	0.6000	0.6000
T16 T16	9	3" Coax 3" Coax	60.00 - 80.00 60.00 - 80.00	0.6000 0.6000	0.6000 0.6000
T16	10 11	1" Heliax	60.00 - 80.00	0.6000	0.6000
T16	12	1" Rigid	60.00 - 80.00	0.6000	0.6000
T17	6	7/8" Coax	40.00 - 47.00	0.6000	0.6000
T17	7	7/8" Coax	40.00 - 60.00	0.6000	0.6000
T17	8	1 1/16" OD	40.00 - 60.00	0.6000	0.6000
T17	9	3" Coax	40.00 - 60.00	0.6000	0.6000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	14 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T17	10	3" Coax	40.00 - 60.00	0.6000	0.6000
T17	11	1" Heliax	40.00 - 60.00	0.6000	0.6000
T17	12	1" Rigid		0.6000	0.6000
T18	3	7/8" Coax	20.00 - 25.60	0.6000	0.6000
T18	4	1/4" OD	20.00 - 32.00	0.6000	0.6000
T18	5	7/8" Coax	20.00 - 36.00	0.6000	0.6000
T18	6	7/8" Coax	20.00 - 40.00	0.6000	0.6000
T18	7	7/8" Coax	20.00 - 40.00	0.6000	0.6000
T18	8	1 1/16" OD	20.00 - 40.00	0.6000	0.6000
T18	9	3" Coax	20.00 - 40.00	0.6000	0.6000
T18	10	3" Coax	20.00 - 40.00	0.6000	0.6000
T18	11	1" Heliax	20.00 - 40.00	0.6000	0.6000
T18	12	1" Rigid	20.00 - 40.00	0.6000	0.6000
T19	1	1/2" Coax	10.00 - 13.50	0.6000	0.6000
T19	2 3	1/4" Coax	10.00 - 19.25	0.6000	0.6000
T19	3	7/8" Coax	10.00 - 20.00	0.6000	0.6000
T19	4	1/4" OD	10.00 - 20.00	0.6000	0.6000
T19	5	7/8" Coax	10.00 - 20.00	0.6000	0.6000
T19	6	7/8" Coax	10.00 - 20.00	0.6000	0.6000
T19	7	7/8" Coax	10.00 - 20.00	0.6000	0.6000
T19	8	1 1/16" OD	10.00 - 20.00	0.6000	0.6000
T19	9	3" Coax	10.00 - 20.00	0.6000	0.6000
T19	10	3" Coax	10.00 - 20.00	0.6000	0.6000
T19	11	1" Heliax	10.00 - 20.00	0.6000	0.6000
T19	12	1" Rigid	10.00 - 20.00	0.6000	0.6000
T20	1	1/2" Coax	6.00 - 10.00	0.6000	0.6000
T20	2	1/4" Coax	6.00 - 10.00	0.6000	0.6000
T20	3	7/8" Coax	6.00 - 10.00	0.6000	0.6000
T20	4	1/4" OD	6.00 - 10.00	0.6000	0.6000
T20	5	7/8" Coax	6.00 - 10.00	0.6000	0.6000
T20	6	7/8" Coax	6.00 - 10.00	0.6000	0.6000
T20	7	7/8" Coax	6.00 - 10.00	0.6000	0.6000
T20	8	1 1/16" OD	6.00 - 10.00	0.6000	0.6000
T20	9	3" Coax	6.00 - 10.00	0.6000	0.6000
T20	10	3" Coax	6.00 - 10.00	0.6000	0.6000
T20	11	1" Heliax	0.00 - 10.00	0.6000	0.6000
T20	12	1" Rigid	0.00 - 10.00	0.6000	0.6000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft ²	K
3' Yagi(.03k,2.08CAAA) (A3)	A	None	·	0.0000	25.500	No Ice	2.080	2.080	0.030
12X12X3 ODU (A2)	A	None		0.0000	19.250	No Ice	1.200	0.407	0.003
Junction Box (A2)	A	None		0.0000	19.250	No Ice	0.450	0.200	0.020
3' Yagi(.03k,2.08CAAA) (A5)	A	None		0.0000	36.000	No Ice	2.080	2.080	0.030

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	15 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	٥	ft		ft^2	ft²	K
15'X2.5" Omni (A7)	A	From Leg	3.000 0.000	0.0000	139.500	No Ice	4.500	4.500	0.030
3' Stand-off (A7)	A	From Leg	7.500 1.000 0.000	0.0000	139.500	No Ice	0.500	0.500	0.010
Side Light (A8)	A	From Leg	0.000 1.000 0.000 0.000	0.0000	171.500	No Ice	0.400	0.400	0.010
Side Light (A8)	В	From Leg	1.000 0.000 0.000	0.0000	171.500	No Ice	0.400	0.400	0.010
Side Light (A8)	С	From Leg	1.000 0.000 0.000	0.0000	171.500	No Ice	0.400	0.400	0.010
4-Bay FM Antenna (w/o Radomes) (A9)	В	From Leg	0.500 0.500 0.000 0.000	0.0000	220.000 - 190.500	No Ice	15.000	15.000	0.250
6-Bay FM antenna w/o Radomes	В	From Leg	0.500 0.000	0.0000	337.500 - 290.000	No Ice	25.000	25.000	1.070
(A10) Strobe Light	C	None	0.000	0.0000	343.000	No Ice	5.600	1.400	0.050
(A11) 45" x 5/8" Lightning Rod (A12) ************************************	A	None		0.0000	343.000	No Ice	2.500	2.500	0.025
Omni/Whip 205"x3" (City and County of San Francisco)	В	From Leg	3.000 0.000 17.000	0.0000	120.000	No Ice	5.125	5.125	0.049
Omni/Whip 205"x3" (City and County of San Francisco)	С	From Leg	3.000 0.000 17.000	0.0000	120.000	No Ice	5.125	5.125	0.049
60"x10.4"x6" Panel (City and County of San Francisco)	C	From Leg	3.000 0.000 0.000	0.0000	100.000	No Ice	6.556	3.750	0.030
Pipe Mount 3'x4.5" (City and County of San	В	From Leg	1.000 0.000	0.0000	16.000	No Ice	0.879	0.879	0.032
Francisco) Pipe Mount 3'x4.5" (City and County of San	A	From Leg	0.000 1.000 0.000	0.0000	22.000	No Ice	0.866	0.866	0.032
Francisco) Pipe Mount 3'x4.5" (City and County of San	В	From Leg	0.000 1.000 0.000	0.0000	120.000	No Ice	0.808	0.808	0.032
Francisco) Pipe Mount 3'x4.5" (City and County of San	C	From Leg	0.000 1.000 0.000	0.0000	120.000	No Ice	0.808	0.808	0.032
Francisco) Pipe Mount 3'x4.5" (City and County of San Francisco)	C	From Leg	0.000 1.000 0.000 0.000	0.0000	100.000	No Ice	0.813	0.813	0.032

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	16 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	٥	ft	ft		ft ²	K
6'*3' Paraflector (A1)		Grid	None		0.0000		13.500	6.000	No Ice	28.270	0.030
2' Dish (A2)		Paraboloid w/Shroud (HP)	None		0.0000		19.250	2.000	No Ice	6.250	0.030
8" Dish (A4)		Paraboloid w/o Radome	None		0.0000		32.000	2.000	No Ice	3.140	0.030
6' Grid Dish (A6) *******		Grid	None		0.0000		47.000	6.000	No Ice	11.480	0.250
RFS SC3-W100B Microwave Dish (City and County of San Francisco)	A	Grid	From Leg	2.000 0.000 0.000	0.0000		22.000	3.280	No Ice	8.450	0.040
RFS SC3-W100B Microwave Dish (City and County of San Francisco)	В	Grid	From Leg	2.000 0.000 0.000	0.0000		16.000	3.280	No Ice	8.450	0.040

Force Totals (Does not include forces on guys)

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	v -
		X	Z	
	K	K	K	kip-ft
Leg Weight	6.647			
Bracing Weight	5.860			
Total Member Self-Weight	12.507			
Guy Weight	1.652			
Total Weight	17.995			
Wind 0 deg - No Ice		0.029	-19.604	3.858
Wind 30 deg - No Ice		9.905	-17.077	3.310
Wind 60 deg - No Ice		17.097	-9.872	1.967
Wind 90 deg - No Ice		19.541	-0.041	-0.006
Wind 120 deg - No Ice		16.972	9.766	-1.891
Wind 150 deg - No Ice		9.638	16.682	-3.192
Wind 180 deg - No Ice		-0.023	19.593	-3.854
Wind 210 deg - No Ice		-9.892	17.084	-3.289
Wind 240 deg - No Ice		-17.092	9.869	-1.967
Wind 270 deg - No Ice		-19.541	0.025	-0.013
Wind 300 deg - No Ice		-16.961	-9.767	1.887
Wind 330 deg - No Ice		-9.627	-16.689	3.191
Total Weight	17.995			
Wind 0 deg - Service		0.012	-8.166	1.604
Wind 30 deg - Service		4.126	-7.113	1.378
Wind 60 deg - Service		7.122	-4.112	0.822
Wind 90 deg - Service		8.140	-0.017	0.002
Wind 120 deg - Service		7.070	4.068	-0.782
Wind 150 deg - Service		4.015	6.949	-1.324
Wind 180 deg - Service		-0.010	8.162	-1.602
Wind 210 deg - Service		-4.121	7.116	-1.370
Wind 240 deg - Service		-7.120	4.111	-0.822
Wind 270 deg - Service		-8.140	0.010	-0.010
Wind 300 deg - Service		-7.065	-4.068	0.780

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	17 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client Vertical Bridge	Designed by CBlake

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	
		X	Z	
	K	K	K	kip-ft
Wind 330 deg - Service		-4.010	-6.952	1.324

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy
4	1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy
5	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy
6	1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy
7	1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy
8	1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy
10	1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy
14	Dead+Wind 0 deg - Service+Guy
15	Dead+Wind 30 deg - Service+Guy
16	Dead+Wind 60 deg - Service+Guy
17	Dead+Wind 90 deg - Service+Guy
18	Dead+Wind 120 deg - Service+Guy
19	Dead+Wind 150 deg - Service+Guy
20	Dead+Wind 180 deg - Service+Guy
21	Dead+Wind 210 deg - Service+Guy
22	Dead+Wind 240 deg - Service+Guy
23	Dead+Wind 270 deg - Service+Guy
24	Dead+Wind 300 deg - Service+Guy
25	Dead+Wind 330 deg - Service+Guy

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	343 - 341.875	Leg	Max Tension	3	0.071	-0.014	0.024
			Max. Compression	12	-5.444	0.000	-0.011
			Max. Mx	11	0.061	0.064	0.021
			Max. My	7	-4.237	-0.016	-0.073
			Max. Vy	11	0.809	0.064	0.021
			Max. Vx	8	-0.929	-0.022	-0.073
		Diagonal	Max Tension	9	0.320	0.000	0.000
			Max. Compression	3	-0.289	0.000	0.000
			Max. Mx	13	0.293	0.001	0.000
			Max. My	9	-0.095	0.000	0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	9	-0.000	0.000	0.000
		Top Girt	Max Tension	4	0.202	0.000	0.000
		-	Max. Compression	10	-0.173	0.000	0.000

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:
 Job
 Page

 US-CA-5177
 18 of 50

 Project
 Date

 MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)
 12:30:28 08/04/21

 343ft Guyed
 Designed by

 Client
 CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment	Minor Axis Moment
			Max. Mx		0.125	kip-ft	kip-ft
				6 2	-0.160	0.001 0.000	0.000
			Max. My		-0.100	0.000	0.000
			Max. Vy Max. Vx	6 2	-0.001	0.000	0.000 0.000
		Bottom Girt	Max Tension	6	1.332	0.000	0.000
		Bottom Girt					
			Max. Compression	1	0.000	0.000	0.000
			Max. Mx	6	1.332	0.001	0.000
			Max. My	2	0.668	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
		C 4	Max. Vx	2	-0.000	0.000	0.000
		Guy A	Bottom Tension	8	5.189		
			Top Tension	8	5.261		
			Top Cable Vert	8	4.395		
			Top Cable Norm	8	2.891		
			Top Cable Tan	8	0.002		
			Bot Cable Vert	8	-4.107		
			Bot Cable Norm	8	3.172		
			Bot Cable Tan	8	0.002		
		Guy B	Bottom Tension	12	6.171		
			Top Tension	12	6.242		
			Top Cable Vert	12	5.559		
			Top Cable Norm	12	2.839		
			Top Cable Tan	12	0.002		
			Bot Cable Vert	12	-5.296		
			Bot Cable Norm	12	3.167		
			Bot Cable Tan	12	0.002		
		Guy C	Bottom Tension	4	5.058		
		·	Top Tension	4	5.125		
			Top Cable Vert	4	4.188		
			Top Cable Norm	4	2.954		
			Top Cable Tan	4	0.004		
			Bot Cable Vert	4	-3.912		
			Bot Cable Norm	4	3.206		
			Bot Cable Tan	4	0.004		
T2	341.875 - 340	Leg	Max Tension	10	0.373	0.087	-0.030
		8	Max. Compression	12	-6.544	0.008	0.004
			Max. Mx	4	-4.456	-0.107	0.033
			Max. My	2	-4.236	-0.012	0.117
			Max. Vy	11	0.808	-0.003	0.000
			Max. Vx	8	-0.928	-0.004	0.004
		Diagonal	Max Tension	7	1.416	0.000	0.000
		Diagonar	Max. Compression	13	-1.357	0.000	0.000
			Max. Mx	13	-1.355	0.001	0.000
			Max. My	3	-1.085	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	3	0.002	0.000	0.000
		Top Girt	Max Tension	13	0.593	0.000	0.000
		Top Gift					
			Max. Compression	8	-0.202	0.000	0.000
			Max. Mx	6	0.168	0.001	0.000
			Max. My	2	0.578	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
		D # 61.	Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	4	0.611	0.000	0.000
			Max. Compression	7	-0.599	0.000	0.000
			Max. Mx	6	0.132	0.001	0.000
			Max. My	2	0.380	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
	340 - 320	Leg	Max Tension	2	5.895	0.006	0.001
T3					10.504	0.000	0.000
T3			Max. Compression	12 5	-12.524	-0.009	-0.008

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	19 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

No	ft	Type Diagonal Horizontal Top Girt Bottom Girt	Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Ny Max. Ny Max. Oy Max. Ny	Load Comb. 8 5 2 7 13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 3 10	K -1.436 -0.396 0.447 1.324 -1.241 0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	Moment kip-ft -0.012 -0.008 0.002 0.000	Moment kip-ft 0.106 0.004 0.006 0.000
T4 32		Horizontal Top Girt	Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Ax Max. My Max. Vy Max. Vy Max. Vy Max Tension Max. Compression Max. Vx Max Tension Max. Compression Max. Xx Max My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	8 5 2 7 13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 2 3	-1.436 -0.396 0.447 1.324 -1.241 0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	-0.012 -0.008 0.002 0.000 0.000 0.001 0.000	0.106 0.004 0.006 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
T4 32		Horizontal Top Girt	Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Ax Max. My Max. Vy Max. Vy Max. Vy Max Tension Max. Compression Max. Vx Max Tension Max. Compression Max. Xx Max My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	5 2 7 13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 2 3	-0.396 0.447 1.324 -1.241 0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	-0.008 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Horizontal Top Girt	Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Vy Max. Vy Max. Vy Max. Vy Max. My Max. Vy Max. Ny Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	2 7 13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 2 3	0.447 1.324 -1.241 0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Horizontal Top Girt	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Wx Max Tension Max. Wx Max My Max. Vy Max. Compression Max. Compression	7 13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 2 3	1.324 -1.241 0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Horizontal Top Girt	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Wx Max Tension Max. Mx Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Compression Max. Compression	13 11 9 11 9 4 7 6 2 6 2 2 8 6 2 2 3	0.139 -0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Top Girt	Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. Wy Max. Vy Max. Vx Max Tension Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	9 11 9 4 7 6 2 6 2 2 8 6 2 2 8 6 2 3	-0.017 -0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Top Girt	Max. Vy Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. Wx Max Tension Max. Mx Max. Wy Max. Vy Max. Vy Max. Compression Max. Compression Max. Compression	11 9 4 7 6 2 6 2 2 8 6 2 2 8 6 2 3	-0.002 -0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Top Girt	Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	11 9 4 7 6 2 6 2 2 8 6 2 2 8 6 2 3	-0.000 0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Top Girt	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression Max. Compression	4 7 6 2 6 2 2 8 6 2 2 8 6 2 2 8 6 2 3	0.850 -0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		Top Girt	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression	7 6 2 6 2 2 8 6 2 2 8 6 2 2 3	-0.902 0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	6 2 6 2 2 8 6 2 6 2 3	0.061 0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max. My Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression	2 6 2 2 8 6 2 6 2 3	0.042 -0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max. Vy Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max Tension Max. Compression	6 2 2 8 6 2 6 2 3	-0.002 -0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.000 0.001 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max. Vx Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	2 2 8 6 2 6 2 3	-0.000 0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	2 8 6 2 6 2 3	0.569 -0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
T4 32		•	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	8 6 2 6 2 3	-0.583 -0.239 0.569 -0.001 -0.000 0.083	0.000 0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
T4 32		Bottom Girt	Max. Mx Max. My Max. Vy Max. Vx Max Tension Max. Compression	6 2 6 2 3	-0.239 0.569 -0.001 -0.000 0.083	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000
T4 32		Bottom Girt	Max. My Max. Vy Max. Vx Max Tension Max. Compression	2 6 2 3	0.569 -0.001 -0.000 0.083	0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000$
T4 32		Bottom Girt	Max. Vy Max. Vx Max Tension Max. Compression	6 2 3	-0.001 -0.000 0.083	0.000 0.000	$0.000 \\ 0.000$
T4 32		Bottom Girt	Max. Vx Max Tension Max. Compression	2 3	-0.000 0.083	0.000	0.000
T4 32		Bottom Girt	Max Tension Max. Compression	3	0.083		
T4 32		Bottom Girt	Max. Compression			0.000	_
T4 32				10	0.001	0.000	0.000
T4 32				10	-0.081	0.000	0.000
T4 32			Max. Mx	6	0.035	0.001	0.000
T4 32			Max. My	2	0.037	0.000	0.000
T4 32			Max. Vy	6	-0.001	0.000	0.000
T4 32			Max. Vx	2	-0.000	0.000	0.000
	20 - 300	Leg	Max Tension	10	5.961	-0.003	-0.002
			Max. Compression	12	-12.495	0.012	-0.005
			Max. Mx	10	-4.732	-0.089	0.052
			Max. My	2	-4.620	0.020	-0.100
			Max. Vy	10	-0.539	0.045	-0.032
			Max. Vx	2	-0.563	-0.005	0.040
		Diagonal	Max Tension	8	1.599	0.000	0.000
		_	Max. Compression	2	-1.634	0.000	0.000
			Max. Mx	11	1.473	0.001	0.000
			Max. My	9	0.702	0.000	0.000
			Max. Vy	11	-0.002	0.000	0.000
			Max. Vx	9	-0.000	0.000	0.000
		Horizontal	Max Tension	2	1.100	0.000	0.000
			Max. Compression	10	-1.137	0.000	0.000
			Max. Mx	6	0.026	0.001	0.000
			Max. My	2	1.100	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	10	0.117	0.000	0.000
		•	Max. Compression	3	-0.110	0.000	0.000
			Max. Mx	6	-0.003	0.001	0.000
			Max. My	2	-0.100	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	0.681	0.000	0.000
			Max. Compression	8	-0.661	0.000	0.000
			Max. Mx	6	-0.212	0.001	0.000
			Max. My	2	0.681	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T5 30		Leg	Max Tension	4	7.003	0.002	0.006
. 50	00 - 280	8	Max. Compression	6	-15.977	-0.012	-0.003
	00 - 280		Max. Mx	10	-4.752	0.180	-0.116
	00 - 280		Max. My	2	-4.639	-0.031	0.182

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	20 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	10	-0.542	0.180	-0.116
			Max. Vx	2	-0.569	-0.031	0.182
		Diagonal	Max Tension	8	2.244	0.000	0.000
			Max. Compression	2	-2.211	0.000	0.000
			Max. Mx	13	1.720	0.001	0.000
			Max. My	2	0.797	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.000	0.000	0.000
		Horizontal	Max Tension	3	2.901	0.000	0.000
			Max. Compression	8	-1.716	0.000	0.000
			Max. Mx	6	2.242	0.001	0.000
			Max. My	2	-1.353	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
		т. С: 1	Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	8	0.803	0.000	0.000
			Max. Compression	2	-0.814	0.000	0.000
			Max. Mx	6	0.267	0.001	0.000
			Max. My	2 6	-0.814 -0.001	$0.000 \\ 0.000$	0.000 0.000
			Max. Vy Max. Vx	2	-0.001	0.000	0.000
		Bottom Girt	Max. vx Max Tension	3	0.411	0.000	0.000
		Donolli Olli	Max. Compression	9	-0.365	0.000	0.000
			Max. Mx	6	0.111	0.000	0.000
			Max. My	2	0.092	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Guy A	Bottom Tension	8	6.554	0.000	0.000
		Guy 11	Top Tension	8	6.634		
			Top Cable Vert	8	5.188		
			Top Cable Norm	8	4.135		
			Top Cable Tan	8	0.003		
			Bot Cable Vert	8	-4.877		
			Bot Cable Norm	8	4.378		
			Bot Cable Tan	8	0.003		
		Guy B	Bottom Tension	12	7.878		
		·	Top Tension	12	7.959		
			Top Cable Vert	12	6.771		
			Top Cable Norm	12	4.183		
			Top Cable Tan	12	0.002		
			Bot Cable Vert	12	-6.482		
			Bot Cable Norm	12	4.478		
		-	Bot Cable Tan	12	0.002		
		Guy C	Bottom Tension	4	6.357		
			Top Tension	4	6.431		
			Top Cable Vert	4	4.863		
			Top Cable Norm	4	4.208		
			Top Cable Tan	4	0.004		
			Bot Cable Vert	4	-4.569 4.410		
			Bot Cable Norm	4	4.419		
Т6	280 260	Lac	Bot Cable Tan	4	0.004	-0.050	0.019
10	280 - 260	Leg	Max Tension	8 10	1.165		-0.019
			Max. Compression Max. Mx	2	-15.120 -14.402	-0.024 -0.073	-0.016
			Max. My	9	-14.402 -11.969	0.018	0.021
			Max. Vy	4	-0.319	-0.019	0.090
			Max. Vx	9	-0.319	0.019	0.000
		Diagonal	Max Tension	3	1.045	0.000	0.007
		Diagonai	Max. Compression	9	-1.043	0.000	0.000
			-				
			Max. Mx Max. My	13 2	0.043 0.478	0.001 0.000	0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	21 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	y .	JI ·		Comb.	K	kip-ft	kip-ft
			Max. Vx	2	0.000	0.000	0.000
		Horizontal	Max Tension	9	0.722	0.000	0.000
			Max. Compression	3	-0.722	0.000	0.000
			Max. Mx	6	-0.012	0.001	0.000
			Max. My	2	-0.306	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	9	0.358	0.000	0.000
			Max. Compression	3	-0.379	0.000	0.000
			Max. Mx	6	-0.083	0.001	0.000
			Max. My	2	-0.101	0.000	0.000
			Max. Vy	6	-0.001	0.000	0.000
		D G' .	Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	3	0.358	0.000	0.000
			Max. Compression	9	-0.317	0.000	0.000
			Max. Mx	6	-0.039	0.001	0.000
			Max. My Max. Vy	2 6	0.350	0.000	0.000
			Max. Vy Max. Vx	2	-0.001 -0.000	$0.000 \\ 0.000$	0.000 0.000
T7	260 - 240	Laa	Max Tension	12	7.381	-0.059	-0.047
1 /	200 - 240	Leg	Max. Compression	10	-22.621	0.024	0.047
			Max. Mx	13	-19.861	-0.106	-0.066
			Max. My	2	-0.090	0.023	-0.118
			Max. Vy	10	-0.443	0.026	-0.116
			Max. Vx	2	-0.472	0.003	-0.013
		Diagonal	Max Tension	8	1.426	0.000	0.000
		Diagonai	Max. Compression	2	-1.554	0.000	0.000
			Max. Mx	13	0.777	0.001	0.000
			Max. My	2	0.579	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.000	0.000	0.000
		Horizontal	Max Tension	2	1.037	0.000	0.000
			Max. Compression	10	-0.990	0.000	0.000
			Max. Mx	6	0.029	0.001	0.000
			Max. My	2	-0.714	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	9	0.369	0.000	0.000
			Max. Compression	3	-0.378	0.000	0.000
			Max. Mx	6	0.071	0.001	0.000
			Max. My	2	-0.375	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	0.639	0.000	0.000
			Max. Compression	8	-0.567	0.000	0.000
			Max. Mx	6	-0.185	0.001	0.000
			Max. My	2	0.639	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
TT 0	240 220		Max. Vx	2	-0.000	0.000	0.000
T8	240 - 220	Leg	Max Tension	12	8.818	-0.018	-0.005
			Max. Compression	2	-24.525	0.005	0.036
			Max. Mx	10	-0.038	0.137	-0.076
			Max. My	2	-10.499	0.009	0.158
			Max. Vy	5	-0.459	-0.105	-0.032
		D: 1	Max. Vx	2	0.550	0.009	0.158
		Diagonal	Max Tension	3	1.750	0.000	0.000
			Max. Compression	9	-1.756 1.450	0.000	0.000
			Max. Mx	13	1.459	0.001	0.000
			Max. My	2	0.641	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.000	0.000	0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	22 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
		Horizontal	Max Tension	10	2.424	0.000	0.000
			Max. Compression	3	-1.348	0.000	0.000
			Max. Mx	9	-0.370	0.001	0.000
			Max. My	2	-1.081	0.000	0.000
			Max. Vy	9	-0.002	0.000	0.000
		m	Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	8	0.609	0.000	0.000
			Max. Compression	2	-0.644	0.000	0.000
			Max. Mx	6	0.214	0.001	0.000
			Max. My	2	-0.644	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
		Bottom Girt	Max. Vx Max Tension	2 3	-0.000	$0.000 \\ 0.000$	0.000
		Bottom Girt		10	0.600	0.000	0.000
			Max. Compression Max. Mx	6	-0.584 0.257	0.000	0.000 0.000
			Max. My	2	-0.370	0.001	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.002	0.000	0.000
		Guy A	Bottom Tension	8	6.165	0.000	0.000
		Guy A	Top Tension	8	6.233		
			Top Cable Vert	8	4.499		
			Top Cable Norm	8	4.313		
			Top Cable Ton	8	0.002		
			Bot Cable Vert	8	-4.233		
			Bot Cable Norm	8	4.481		
			Bot Cable Tan	8	0.002		
		Guy B	Bottom Tension	12	7.291		
		Guy D	Top Tension	12	7.360		
			Top Cable Vert	12	5.916		
			Top Cable Norm	12	4.378		
			Top Cable Tan	12	0.002		
			Bot Cable Vert	12	-5.663		
			Bot Cable Norm	12	4.593		
			Bot Cable Tan	12	0.002		
		Guy C	Bottom Tension	4	5.908		
		·	Top Tension	4	5.970		
			Top Cable Vert	4	4.102		
			Top Cable Norm	4	4.337		
			Top Cable Tan	4	0.003		
			Bot Cable Vert	4	-3.855		
			Bot Cable Norm	4	4.477		
		_	Bot Cable Tan	4	0.003		
T9	220 - 200	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	9	-18.370	0.057	0.020
			Max. Mx	5	-7.960	0.123	-0.002
			Max. My	9	-9.854	-0.041	0.151
			Max. Vy	5	-0.456	0.010	-0.017
		D: 1	Max. Vx	2	0.549	0.013	0.021
		Diagonal	Max Tension	3	1.572	0.000	0.000
			Max. Compression	9	-1.654	0.000	0.000
			Max. Mx	11	0.279	0.001	0.000
			Max. My	2 11	0.225	0.000	-0.000
			Max. Vy		-0.002	0.000	0.000
		Horizontal	Max. Vx Max Tension	2	0.000	0.000	0.000
		nonzoniai	Max Tension	9	1.128	$0.000 \\ 0.000$	0.000 0.000
			Max. Compression Max. Mx	3 9	-1.098 -0.289	0.000	0.000
			Max. My	2	0.607	0.001	0.000
			Max. Wy	3	-0.002	0.000	0.000
			Max. Vy Max. Vx	2	-0.002	0.000	0.000
		Top Girt	Max Tension	10	0.582	0.000	0.000
		I On I start					

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	23 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
				Comb.	K	kip-ft	kip-ft
			Max. Compression	3	-0.551	0.000	0.000
			Max. Mx	6	-0.207	0.001	0.000
			Max. My	2	0.349	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
		D G' .	Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	3	0.390	0.000	0.000
			Max. Compression	9	-0.355	0.000	0.000
			Max. Mx	6	-0.042	0.001	0.000
			Max. My	2	0.346	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
T10	200 100	τ	Max. Vx	2	-0.000	0.000	0.000
T10	200 - 180	Leg	Max Tension	1 9	0.000	0.000	0.000
			Max. Compression		-17.764	-0.114	-0.018
			Max. Mx Max. My	13 2	-10.786 -10.493	-0.161 0.072	-0.100 -0.194
			Max. Vy	10	-0.575	0.014	-0.194
			Max. Vx	2	-0.702	0.014	-0.020
		Diagonal	Max Tension	8	2.299	0.000	0.000
		Diagonai	Max. Compression	2	-2.323	0.000	0.000
			Max. Mx	11	1.431	0.000	0.000
			Max. My	2	0.946	0.001	-0.000
			Max. Vy	11	-0.002	0.000	0.000
			Max. Vx	2	0.002	0.000	0.000
		Horizontal	Max Tension	2	1.557	0.000	0.000
		Horizontai	Max. Compression	8	-1.577	0.000	0.000
			Max. Mx	6	0.176	0.001	0.000
			Max. My	2	-0.835	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.002	0.000	0.000
		Top Girt	Max Tension	9	0.445	0.000	0.000
		Top Gift	Max. Compression	3	-0.420	0.000	0.000
			Max. Mx	6	0.103	0.001	0.000
			Max. My	2	-0.395	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	0.926	0.000	0.000
			Max. Compression	8	-0.912	0.000	0.000
			Max. Mx	6	-0.312	0.001	0.000
			Max. My	2	0.926	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T11	180 - 160	Leg	Max Tension	1	0.000	0.000	0.000
		Č	Max. Compression	9	-18.559	0.085	-0.023
			Max. Mx	10	-10.159	0.158	-0.122
			Max. My	8	-9.848	0.082	-0.192
			Max. Vy	4	0.577	-0.136	0.094
			Max. Vx	2	-0.707	-0.050	0.157
		Diagonal	Max Tension	2	2.329	0.000	0.000
		_	Max. Compression	8	-2.428	0.000	0.000
			Max. Mx	13	2.162	0.001	0.000
			Max. My	2	1.342	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.000	0.000	0.000
		Horizontal	Max Tension	9	2.494	0.000	0.000
			Max. Compression	2	-1.663	0.000	0.000
			Max. Mx	6	0.243	0.001	0.000
			Max. My	2	-1.663	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	8	0.970	0.000	0.000
							0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	24 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	6	0.361	0.001	0.000
			Max. My	2	-0.936	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	3	0.699	0.000	0.000
			Max. Compression	9	-0.600	0.000	0.000
			Max. Mx	6	-0.017	0.001	0.000
			Max. My	2	0.297	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
		G .	Max. Vx	2	-0.000	0.000	0.000
		Guy A	Bottom Tension	8	4.833		
			Top Tension	8	4.871		
			Top Cable Vert	8	3.289		
			Top Cable Norm	8 8	3.594 0.002		
			Top Cable Tan Bot Cable Vert	8	-3.131		
			Bot Cable Norm	8	3.682		
			Bot Cable Tan	8	0.002		
		Guy B	Bottom Tension	12	5.335		
		Guy D	Top Tension	12	5.373		
			Top Cable Vert	12	3.970		
			Top Cable Norm	12	3.621		
			Top Cable Tan	12	0.000		
			Bot Cable Vert	12	-3.817		
			Bot Cable Norm	12	3.728		
			Bot Cable Tan	12	0.000		
		Guy C	Bottom Tension	4	4.670		
		,	Top Tension	4	4.703		
			Top Cable Vert	4	2.868		
			Top Cable Norm	4	3.727		
			Top Cable Tan	4	0.002		
			Bot Cable Vert	4	-2.727		
			Bot Cable Norm	4	3.791		
			Bot Cable Tan	4	0.002		
T12	160 - 140	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	9	-20.272	0.001	0.003
			Max. Mx	9	-17.372	-0.147	0.025
			Max. My	8	-9.022	0.043	0.171
			Max. Vy	3	-0.522	-0.024	-0.000
		D : 1	Max. Vx	8	-0.580	0.010	0.026
		Diagonal	Max Tension	3	1.740	0.000	0.000
			Max. Compression	2	-1.741	0.000	0.000
			Max. Mx	11	0.431	0.001	0.000
			Max. My	2	1.172	0.000	-0.000
			Max. Vy	11	-0.002	0.000	0.000
		Horizontal	Max. Vx Max Tension	2 2	0.000 1.192	$0.000 \\ 0.000$	$0.000 \\ 0.000$
		Honzontai	Max. Compression	3	-1.212	0.000	0.000
			Max. Mx	8	-0.956	0.000	0.000
			Max. My	2	-0.728	0.000	0.000
			Max. Vy	8	-0.002	0.000	0.000
			Max. Vx	2	-0.002	0.000	0.000
		Top Girt	Max Tension	9	0.600	0.000	0.000
		100 0111	Max. Compression	3	-0.641	0.000	0.000
			Max. Mx	6	0.071	0.001	0.000
			Max. My	2	-0.307	0.000	0.000
			Max. Vy	6	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	0.624	0.000	0.000
		Domain Oilt	Max. Compression	8	-0.557	0.000	0.000

Bennett and Pless

47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	25 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. My	2	0.624	0.000	0.000
			Max. Vy	8	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T13	140 - 120	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	10	-25.672	0.001	0.020
			Max. Mx	13	-24.707	-0.245	-0.177
			Max. My	2	-6.393	0.090	-0.240
			Max. Vy	6	0.902	-0.063	-0.006
		Di1	Max. Vx	2	-0.822	0.013	-0.035
		Diagonal	Max Tension	7	3.096	0.000	0.000
			Max. Compression	13 13	-3.252	0.000	0.000
			Max. Mx	2	2.056 1.378	0.002 0.000	0.000 -0.000
			Max. My Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.002	0.000	0.000
		Horizontal	Max Tension	13	2.249	0.000	0.000
		Horizontai	Max. Compression	7	-2.201	0.000	0.000
			Max. Mx	12	0.849	0.001	0.000
			Max. My	2	-1.468	0.000	0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Top Girt	Max Tension	8	0.751	0.000	0.000
		1	Max. Compression	2	-0.741	0.000	0.000
			Max. Mx	8	0.415	0.001	0.000
			Max. My	2	-0.741	0.000	0.000
			Max. Vy	8	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	1.130	0.000	0.000
			Max. Compression	8	-1.016	0.000	0.000
			Max. Mx	12	0.700	0.001	0.000
			Max. My	2	1.130	0.000	0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T14	120 - 100	Leg	Max Tension	12	5.037	0.068	0.103
			Max. Compression	2	-35.407	0.076	0.082
			Max. Mx	6	-5.454	-0.261	-0.155
			Max. My	8	-18.211	0.108	-0.255
			Max. Vy	10	-0.919	0.237	-0.118
		D:1	Max. Vx	2	-0.956	0.115	0.232
		Diagonal	Max Tension	2	3.355	0.000	0.000
			Max. Compression	8 13	-3.401	0.000	0.000
			Max. Mx Max. My	2	3.264 1.470	0.002 0.000	0.000 -0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.002	0.000	0.000
		Horizontal	Max Tension	8	3.813	0.000	0.000
		Horizontai	Max. Compression	2	-2.481	0.000	0.000
			Max. Mx	12	0.288	0.001	0.000
			Max. My	9	-0.573	0.000	-0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	9	0.000	0.000	0.000
		Top Girt	Max Tension	8	1.280	0.000	0.000
		1	Max. Compression	2	-1.252	0.000	0.000
			Max. Mx	12	-0.550	0.001	0.000
			Max. My	2	-1.252	0.000	0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	3	0.534	0.000	0.000
			Max. Compression	9	-0.381	0.000	0.000
			Max. Mx	12	0.023	0.001	0.000

Bennett and Pless

47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	26 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Guy A	Bottom Tension	8	4.091		
			Top Tension	8	4.117		
			Top Cable Vert	8	2.178		
			Top Cable Norm	8	3.494		
			Top Cable Tan	8	0.001		
			Bot Cable Vert	8	-2.071		
			Bot Cable Norm	8	3.528		
			Bot Cable Tan	8	0.002		
		Guy B	Bottom Tension	12	4.288		
			Top Tension	12	4.314		
			Top Cable Vert	12	2.587		
			Top Cable Norm	12	3.452		
			Top Cable Tan	12	0.001		
			Bot Cable Vert	12	-2.482		
			Bot Cable Norm	12	3.496		
			Bot Cable Tan	12	0.002		
		Guy C	Bottom Tension	4	3.876		
			Top Tension	4	3.897		
			Top Cable Vert	4	1.704		
			Top Cable Norm	4	3.505		
			Top Cable Tan	4	0.000		
			Bot Cable Vert	4	-1.614		
			Bot Cable Norm	4	3.524		
			Bot Cable Tan	4	0.002		
		Torque Arm Top	Max Tension	3	5.875	0.000	0.000
			Max. Compression	1	0.000	0.000	0.000
			Max. Mx	3	3.392	0.016	0.000
			Max. My	9	5.022	0.000	0.000
			Max. Vy	3	-0.021	0.000	0.000
			Max. Vx	9	-0.000	0.000	0.000
		Torque Arm Bottom	Max Tension	3	1.230	0.000	0.000
			Max. Compression	12	-6.919	0.000	0.000
			Max. Mx	13	-2.496	0.018	0.000
			Max. My	9	-0.121	0.000	0.000
			Max. Vy	13	-0.021	0.000	0.000
			Max. Vx	9	-0.000	0.000	0.000
T15	100 - 80	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	13	-26.210	-0.028	0.008
			Max. Mx	2	-25.498	-0.091	-0.033
			Max. My	9	-22.672	0.011	0.131
			Max. Vy	12	0.370	0.007	-0.014
			Max. Vx	2	0.486	0.009	0.024
		Diagonal	Max Tension	3	0.893	0.000	0.000
			Max. Compression	9	-0.840	0.000	0.000
			Max. Mx	13	-0.426	0.002	0.000
			Max. My	2	0.181	0.000	-0.000
			Max. Vy	13	-0.002	0.000	0.000
			Max. Vx	2	0.000	0.000	0.000
		Horizontal	Max Tension	9	0.518	0.000	0.000
			Max. Compression	3	-0.624	0.000	0.000
			Max. Mx	12	-0.018	0.001	0.000
			Max. My	9	0.116	0.000	-0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	9	0.000	0.000	0.000
		Top Girt	Max Tension	10	0.271	0.000	0.000
			Max. Compression	4	-0.310	0.000	0.000
			Max. Mx	12	0.112	0.001	0.000
			Max. My	2	0.114	0.000	0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	27 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	<u> </u>			Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	3	0.297	0.000	0.000
			Max. Compression	9	-0.178	0.000	0.000
			Max. Mx	12	0.125	0.001	0.000
			Max. My	2	0.274	0.000	0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T16	80 - 60	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	6	-35.742	0.007	-0.058
			Max. Mx	5	-30.722	0.160	-0.052
			Max. My	2	-8.044	0.046	-0.147
			Max. Vy	5	0.608	0.008	-0.057
		D: 1	Max. Vx	2	-0.559	-0.056	0.023
		Diagonal	Max Tension	8	1.415	0.000	0.000
			Max. Compression	2 9	-1.647	0.000	0.000
			Max. Mx		0.140	0.002	0.000
			Max. My	9 9	0.560	0.000	0.000
			Max. Vy Max. Vx	9	-0.002 -0.000	$0.000 \\ 0.000$	$0.000 \\ 0.000$
		Horizontal	Max Tension	4	1.091	0.000	0.000
		попиона	Max. Compression	8	-0.977	0.000	0.000
			Max. Mx	10	-0.977	0.000	0.000
			Max. My	9	0.115	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	9	0.002	0.000	0.000
		Top Girt	Max Tension	9	0.268	0.000	0.000
		rop Giit	Max. Compression	3	-0.274	0.000	0.000
			Max. Mx	12	-0.088	0.001	0.000
			Max. My	2	-0.253	0.000	0.000
			Max. Vy	12	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Bottom Girt	Max Tension	2	0.602	0.000	0.000
			Max. Compression	8	-0.524	0.000	0.000
			Max. Mx	10	-0.221	0.001	0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
T17	60 - 40	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	6	-36.348	-0.053	0.017
			Max. Mx	6	-20.252	-0.203	-0.102
			Max. My	3	-25.343	-0.039	0.181
			Max. Vy	5	0.612	-0.144	-0.061
			Max. Vx	2	0.603	-0.010	0.147
		Diagonal	Max Tension	7	2.516	0.000	0.000
			Max. Compression	13	-2.923	0.000	0.000
			Max. Mx	9	0.769	0.002	0.000
			Max. My	8	0.252	0.000	0.000
			Max. Vy	9	-0.002	0.000	0.000
		TT 1	Max. Vx	8	-0.000	0.000	0.000
		Horizontal	Max Tension	8	3.132	0.000	0.000
			Max. Compression	7	-1.931	0.000	0.000
			Max. Mx	10	-0.003	0.001	0.000
			Max. My	8 10	0.115	0.000	-0.000
			Max. Vy		-0.002	0.000	0.000
			Max. Vx	8 8	0.000	0.000	0.000
		Ton Cint		Ö	0.558	0.000	0.000
		Top Girt	Max Tension		0.452	0.000	0.000
		Top Girt	Max. Compression	2	-0.453 0.276	0.000	0.000
		Top Girt	Max. Compression Max. Mx	2 10	0.276	0.001	0.000
		Top Girt	Max. Compression Max. Mx Max. Vy	2 10 10	0.276 -0.002	0.001 0.000	$0.000 \\ 0.000$
		Top Girt Bottom Girt	Max. Compression Max. Mx	2 10	0.276	0.001	0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	28 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	10	0.286	0.001	0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	12	0.000	0.000	0.000
		Guy A	Bottom Tension	8	3.906		
			Top Tension	8	3.926		
			Top Cable Vert	8	1.299		
			Top Cable Norm	8	3.705		
			Top Cable Tan	8	0.000		
			Bot Cable Vert	8	-1.216		
			Bot Cable Norm	8	3.712		
			Bot Cable Tan	8	0.001		
		Guy B	Bottom Tension	12	4.105		
			Top Tension	12	4.124		
			Top Cable Vert	12	1.605		
			Top Cable Norm	12	3.799		
			Top Cable Tan	12	0.000		
			Bot Cable Vert	12	-1.527		
			Bot Cable Norm	12	3.810		
			Bot Cable Tan	12	0.001		
		Guy C	Bottom Tension	4	3.715		
		•	Top Tension	4	3.727		
			Top Cable Vert	4	0.807		
			Top Cable Norm	4	3.639		
			Top Cable Tan	4	0.000		
			Bot Cable Vert	4	-0.736		
			Bot Cable Norm	4	3.641		
			Bot Cable Tan	4	0.001		
		Torque Arm Top	Max Tension	12	4.666	0.000	0.000
			Max. Compression	6	-0.032	0.000	0.000
			Max. Mx	4	1.672	0.016	0.000
			Max. My	9	3.497	0.000	0.000
			Max. Vy	4	-0.021	0.000	0.000
			Max. Vx	9	-0.000	0.000	0.000
		Torque Arm Bottom	Max Tension	3	1.689	0.000	0.000
		rorque rum Bottom	Max. Compression	12	-5.291	0.000	0.000
			Max. Mx	9	-2.633	0.018	0.000
			Max. My	8	-4.947	0.000	0.000
			Max. Vy	9	-0.021	0.000	0.000
			Max. Vx	8	-0.021	0.000	0.000
T18	40 - 20	Lea	Max Tension	1	0.000	0.000	0.000
110	40 - 20	Leg		12	-35.470	-0.013	-0.009
			Max. Compression	12			
			Max. Mx	9	-16.633 -15.276	-0.182 -0.063	-0.101 0.167
			Max. My			-0.063	
			Max. Vy	6	-0.606		0.002
		D: 1	Max. Vx	2	0.599	-0.053	-0.003
		Diagonal	Max Tension	7	1.893	0.000	0.000
			Max. Compression	13	-1.869	0.000	0.000
			Max. Mx	3	0.079	0.002	0.000
			Max. My	8	0.178	0.000	0.000
			Max. Vy	3	-0.002	0.000	0.000
			Max. Vx	8	-0.000	0.000	0.000
		Horizontal	Max Tension	13	1.241	0.000	0.000
			Max. Compression	7	-1.357	0.000	0.000
			Max. Mx	10	0.058	0.001	0.000
			Max. My	8	0.023	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000
		Top Girt	Max Tension	2	0.611	0.000	0.000
			Max. Compression	7	-0.564	0.000	0.000
			Max. Mx	10	-0.198	0.001	0.000

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	29 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	y .	JI ·		Comb.	K	kip-ft	kip-ft
			Max. Vx	12	0.000	0.000	0.000
		Bottom Girt	Max Tension	7	0.189	0.000	0.000
			Max. Compression	2	-0.043	0.000	0.000
			Max. Mx	10	0.149	0.001	0.000
			Max. My	8	0.178	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000
T19	20 - 10	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	12	-35.310	0.037	-0.055
			Max. Mx	12	-30.696	0.182	0.017
			Max. My	8	-29.236	0.042	-0.160
			Max. Vy	12	-1.801	0.182	0.017
		D:1	Max. Vx	8 7	2.041	0.042	-0.160
		Diagonal	Max Tension Max. Compression	13	1.180	$0.000 \\ 0.000$	$0.000 \\ 0.000$
			Max. Mx	3	-1.365 0.980	0.000	0.000
			Max. My	8	0.980	0.002	0.000
			Max. Vy	3	-0.002	0.000	0.000
			Max. Vx	8	-0.002	0.000	0.000
		Horizontal	Max Tension	13	0.963	0.000	0.000
		Honzontai	Max. Compression	7	-0.858	0.000	0.000
			Max. Mx	10	-0.187	0.001	0.000
			Max. My	8	0.143	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000
		Top Girt	Max Tension	4	0.220	0.000	0.000
		•	Max. Compression	10	-0.173	0.000	0.000
			Max. Mx	10	-0.017	0.001	0.000
			Max. My	8	-0.171	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000
		Bottom Girt	Max Tension	12	1.081	0.000	0.000
			Max. Compression	1	0.000	0.000	0.000
			Max. Mx	10	0.870	0.001	0.000
			Max. My	8	0.989	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
TTO 0	10.0	*	Max. Vx	8	0.000	0.000	0.000
T20	10 - 0	Leg	Max Tension	1	0.000	0.000	0.000
			Max. Compression	12	-31.552	-0.036	-0.002
			Max. Mx	12	-30.724	0.166	-0.076
			Max. My	13 13	-14.031	-0.003	0.453
			Max. Vy Max. Vx	2	1.546 -0.515	0.157 -0.004	-0.078 0.443
		Diagonal	Max Tension	13	0.187	0.000	0.443
		Diagonal	Max. Compression	13	-3.223	0.000	0.000
			Max. Mx	3	-0.010	0.001	0.000
			Max. My	12	0.094	0.000	-0.000
			Max. Vy	3	-0.002	0.000	0.000
			Max. Vx	12	0.000	0.000	0.000
		Horizontal	Max Tension	2	0.723	0.000	0.000
			Max. Compression	13	-0.092	0.000	0.000
			Max. Mx	10	0.070	0.001	0.000
			Max. My	8	0.003	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000
		Top Girt	Max Tension	11	0.921	0.000	0.000
		•	Max. Compression	1	0.000	0.000	0.000
			Max. Mx	10	0.881	0.001	0.000
			Max. My	8	0.896	0.000	-0.000
			Max. Vy	10	-0.002	0.000	0.000
			Max. Vx	8	0.000	0.000	0.000

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	30 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (Ci 343ft Guyed	ty of SF) 12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	Ji	Туре		Comb.	K	kip-ft	kip-ft

Maximum Reactions

Mast		Load	K	K	
Mast			Λ	Λ	K
Mast		Comb.			
	Max. Vert	11	64.113	1.159	0.081
	Max. H_x	11	64.113	1.159	0.081
	Max. H _z	2	62.565	-0.000	1.171
	$Max. M_x$	1	0.000	0.007	-0.005
	$Max. M_z$	1	0.000	0.007	-0.005
	Max. Torsion	8	-0.039	-0.041	-1.298
	Min. Vert	1	35.824	0.007	-0.005
	Min. H _x	5	57.686	-1.220	0.079
	Min. H _z	8	58.210	-0.041	-1.298
	Min. M _x	1	0.000	0.007	-0.005
	Min. M _z	1	0.000	0.007	-0.005
	Min. Torsion	13	-0.181	0.644	0.986
Guy C @ 219 ft	Max. Vert	10	-0.229	-0.709	0.410
Elev 12 ft					
Azimuth 240 deg					
J	Max. H _x	10	-0.229	-0.709	0.410
	Max. H _z	4	-7.372	-15.577	8.997
	Min. Vert	4	-7.372	-15.577	8.997
	Min. H _x	4	-7.372	-15.577	8.997
	Min. H _z	10	-0.229	-0.709	0.410
Guy B @ 179 ft	Max. Vert	6	-0.642	0.677	0.390
Elev -15 ft	William. Voit	Ü	0.012	0.077	0.570
Azimuth 120 deg					
Azimam 120 deg	Max. H _x	12	-11.724	15.697	9.066
	Max. H _z	12	-11.724	15.697	9.066
	Min. Vert	12	-11.724	15.697	9.066
	Min. H _x	6	-0.642	0.677	0.390
		6	-0.642	0.677	0.390
C A @ 214 A	Min. H _z	2			
Guy A @ 214 ft	Max. Vert	2	-0.499	0.001	-0.914
Elev -14 ft					
Azimuth 0 deg	M II	1.1	4.055	0.646	0.227
	Max. H _x	11	-4.955	0.646	-9.327
	Max. H _z	2	-0.499	0.001	-0.914
	Min. Vert	8	-9.519	0.000	-17.782
	Min. H _x	5	-4.977	-0.642	-9.271
	Min. H _z	8	-9.519	0.000	-17.782
Guy C @ 253 ft	Max. Vert	22	-1.061	-0.728	0.421
Elev 8 ft					
Azimuth 240 deg					
	Max. H_x	22	-1.061	-0.728	0.421
	Max. H _z	3	-11.867	-9.893	6.150
	Min. Vert	4	-12.336	-10.476	6.061
	Min. H _x	4	-12.336	-10.476	6.061
	Min. Hz	22	-1.061	-0.728	0.421
Guy B @ 198 ft Elev -20 ft	Max. Vert	18	-2.165	1.069	0.617
Azimuth 120 deg					
	Max. H _x	12	-17.441	10.596	6.124
	Max. H _z	13	-17.038	10.113	6.312
	Min. Vert	12	-17.441	10.596	6.124
	Min. H _x	6	-2.577	0.973	0.561

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	31 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
	Min. H _z	7	-3.142	1.498	0.498
Guy A @ 254 ft Elev -16 ft	Max. Vert	14	-1.298	0.001	-0.952
Azimuth 0 deg					
_	Max. H _x	11	-7.480	0.838	-6.483
	Max. H _z	14	-1.298	0.001	-0.952
	Min. Vert	8	-13.217	0.007	-12.031
	Min. H _x	5	-7.935	-0.818	-6.867
	Min. H _z	8	-13.217	0.007	-12.031

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	35.824	-0.007	0.005	0.000	0.000	0.065
1.2 Dead+1.0 Wind 0 deg - No	62.565	0.000	-1.171	0.000	0.000	0.177
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg - No	59.748	0.692	-1.007	0.000	0.000	0.146
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 60 deg - No	56.672	1.160	-0.636	0.000	0.000	0.106
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg - No	57.686	1.220	-0.079	0.000	0.000	0.067
Ice+1.0 Guy						
1.2 Dead+1.0 Wind 120 deg -	59.330	1.003	0.579	0.000	0.000	0.045
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 150 deg -	58.765	0.538	1.073	0.000	0.000	0.040
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 180 deg -	58.210	0.041	1.298	0.000	0.000	0.039
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 210 deg -	61.516	-0.493	1.075	0.000	0.000	0.076
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 240 deg -	64.055	-0.985	0.574	0.000	0.000	0.113
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 270 deg -	64.113	-1.159	-0.081	0.000	0.000	0.151
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 300 deg -	62.908	-1.088	-0.636	0.000	0.000	0.176
No Ice+1.0 Guy						
1.2 Dead+1.0 Wind 330 deg -	63.462	-0.644	-0.986	0.000	0.000	0.181
No Ice+1.0 Guy						
Dead+Wind 0 deg -	39.611	-0.006	-0.635	0.000	0.000	0.095
Service+Guy						
Dead+Wind 30 deg -	39.978	0.297	-0.530	0.000	0.000	0.086
Service+Guy						
Dead+Wind 60 deg -	40.351	0.518	-0.293	0.000	0.000	0.074
Service+Guy		0.504				
Dead+Wind 90 deg -	39.781	0.601	0.014	0.000	0.000	0.058
Service+Guy	20.204	0.547	0.227	0.000	0.000	0.040
Dead+Wind 120 deg -	39.204	0.547	0.327	0.000	0.000	0.048
Service+Guy	40.002	0.207	0.521	0.000	0.000	0.047
Dead+Wind 150 deg -	40.082	0.307	0.521	0.000	0.000	0.047
Service+Guy Dead+Wind 180 deg -	40.823	0.003	0.603	0.000	0.000	0.048
Service+Guy	40.623	0.003	0.003	0.000	0.000	0.048
Dead+Wind 210 deg -	40.441	-0.313	0.532	0.000	0.000	0.059
Service+Guy	40.441	-0.313	0.332	0.000	0.000	0.039
Dead+Wind 240 deg -	39.832	-0.549	0.323	0.000	0.000	0.071
Deau williu 240 deg -	39.832	-0.349	0.323	0.000	0.000	0.071

Bennett and Pless47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Jo	ob	Page
	US-CA-5177	32 of 50
Р	Project	Date
	MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
C	Client Vertical Bridge	Designed by CBlake

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, Mx	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Service+Guy						
Dead+Wind 270 deg -	41.613	-0.604	0.017	0.000	0.000	0.088
Service+Guy						
Dead+Wind 300 deg -	42.556	-0.515	-0.292	0.000	0.000	0.101
Service+Guy						
Dead+Wind 330 deg -	41.450	-0.293	-0.521	0.000	0.000	0.100
Service+Guy						

Solution Summary

	Sur	n of Applied Force.	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.000	-17.995	0.000	-0.000	17.995	0.001	0.006%
2	-0.186	-21.497	-24.679	0.185	21.497	24.671	0.022%
3	12.304	-21.182	-21.278	-12.306	21.182	21.272	0.019%
4	21.503	-20.882	-12.234	-21.505	20.882	12.230	0.013%
5	24.759	-21.232	0.092	-24.755	21.232	-0.088	0.018%
6	21.613	-21.573	12.512	-21.607	21.572	-12.508	0.020%
7	12.408	-21.314	21.257	-12.402	21.313	-21.255	0.019%
8	0.192	-21.031	24.668	-0.198	21.031	-24.668	0.016%
9	-12.292	-21.345	21.285	12.286	21.345	-21.283	0.020%
10	-21.498	-21.645	12.231	21.491	21.645	-12.228	0.023%
11	-24.759	-21.295	-0.108	24.754	21.295	0.113	0.022%
12	-21.601	-20.955	-12.513	21.602	20.955	12.521	0.025%
13	-12.396	-21.214	-21.264	12.396	21.214	21.256	0.023%
14	-0.078	-18.092	-10.278	0.077	18.092	10.277	0.008%
15	5.125	-17.961	-8.862	-5.125	17.961	8.861	0.008%
16	8.956	-17.836	-5.095	-8.956	17.836	5.094	0.007%
17	10.312	-17.982	0.038	-10.311	17.982	-0.037	0.007%
18	9.001	-18.124	5.211	-9.000	18.124	-5.210	0.007%
19	5.168	-18.016	8.853	-5.166	18.016	-8.853	0.008%
20	0.080	-17.898	10.274	-0.082	17.898	-10.274	0.009%
21	-5.120	-18.029	8.865	5.118	18.029	-8.865	0.008%
22	-8.954	-18.154	5.094	8.952	18.154	-5.093	0.007%
23	-10.312	-18.008	-0.045	10.310	18.008	0.047	0.010%
24	-8.996	-17.867	-5.211	8.995	17.867	5.215	0.017%
25	-5.163	-17.974	-8.856	5.163	17.974	8.854	0.012%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	17	0.00000001	0.00004039
2	Yes	68	0.00013968	0.00009944
3	Yes	68	0.00014337	0.00008464
4	Yes	59	0.00013997	0.00005177
5	Yes	59	0.00014562	0.00006468
6	Yes	57	0.00013662	0.00007531
7	Yes	58	0.00013674	0.00006472
8	Yes	62	0.00014207	0.00005340
9	Yes	73	0.00014021	0.00008392
10	Yes	73	0.00014391	0.00010108

tnxTower	Job
Bennett and Pless 47 Perimeter Center E, Ste 500	Proj M[
Atlanta, GA 30346 Phone: (678) 990-8700	Clie

FAX:

Job	Page
US-CA-5177	33 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

11	Yes	76	0.00014071	0.00009049
12	Yes	39	0.00014013	0.00009230
13	Yes	69	0.00014588	0.00009755
14	Yes	48	0.00013850	0.00004040
15	Yes	48	0.00014068	0.00003505
16	Yes	40	0.00013468	0.00003064
17	Yes	40	0.00014840	0.00003194
18	Yes	43	0.00014256	0.00003394
19	Yes	39	0.00013951	0.00003399
20	Yes	41	0.00013333	0.00003322
21	Yes	49	0.00013881	0.00003507
22	Yes	48	0.00014304	0.00004046
23	Yes	48	0.00013758	0.00004218
24	Yes	25	0.00014077	0.00004226
25	Yes	46	0.00014916	0.00004832

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	343 - 341.875	15.050	24	0.1882	2.4134
T2	341.875 - 340	15.004	24	0.1883	2.4070
T3	340 - 320	14.935	24	0.1928	2.4217
T4	320 - 300	13.941	24	0.3003	2.4220
T5	300 - 280	12.424	24	0.3996	2.2982
T6	280 - 260	10.780	24	0.3568	2.0905
T7	260 - 240	9.398	24	0.3026	1.9142
T8	240 - 220	8.257	24	0.2242	1.7390
Т9	220 - 200	7.515	24	0.1616	1.6195
T10	200 - 180	6.800	24	0.1925	1.4363
T11	180 - 160	5.915	24	0.2114	1.1543
T12	160 - 140	5.084	24	0.1992	0.8704
T13	140 - 120	4.192	24	0.2294	0.5588
T14	120 - 100	3.220	24	0.2151	0.3234
T15	100 - 80	2.492	24	0.1489	0.2327
T16	80 - 60	1.913	24	0.1296	0.1636
T17	60 - 40	1.461	20	0.0841	0.0914
T18	40 - 20	1.215	20	0.0696	0.1435
T19	20 - 10	0.792	20	0.1438	0.1730
T20	10 - 0	0.442	20	0.1816	0.1638

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
343.000	Strobe Light	24	15.050	0.1882	2.4134	15213
341.958	Guy	24	15.008	0.1883	2.4071	15213
337.500	6-Bay FM antenna w/o Radomes	24	14.839	0.2018	2.4446	12769
332.222	6-Bay FM antenna w/o Radomes	24	14.612	0.2261	2.4641	9169
326.944	6-Bay FM antenna w/o Radomes	24	14.349	0.2559	2.4552	8351
321.667	6-Bay FM antenna w/o Radomes	24	14.046	0.2893	2.4308	7775
316.389	6-Bay FM antenna w/o Radomes	24	13.700	0.3243	2.4031	8747
311.111	6-Bay FM antenna w/o Radomes	24	13.316	0.3571	2.3747	11607
305.833	6-Bay FM antenna w/o Radomes	24	12.903	0.3835	2.3424	17282

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	34 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft			in	•	۰	Curvature ft
300.556	6-Bay FM antenna w/o Radomes	<u>Comb.</u> 24	12.470	0.3988	2.3029	33866
295.278	6-Bay FM antenna w/o Radomes	24	12.028	0.3997	2.2539	80741
290.000	6-Bay FM antenna w/o Radomes	24	11.585	0.3892	2.1982	23499
285.125	Guy	24	11.184	0.3740	2.1448	14200
236.500	Guy	24	8.103	0.2091	1.7121	9094
220.000	4-Bay FM Antenna (w/o Radomes)	24	7.515	0.1616	1.6195	54417
214.100	4-Bay FM Antenna (w/o Radomes)	24	7.319	0.1636	1.5773	31869
208.200	4-Bay FM Antenna (w/o Radomes)	24	7.113	0.1738	1.5256	20437
202.300	4-Bay FM Antenna (w/o Radomes)	24	6.892	0.1874	1.4636	15271
196.400	4-Bay FM Antenna (w/o Radomes)	24	6.649	0.1994	1.3903	17712
190.500	4-Bay FM Antenna (w/o Radomes)	24	6.388	0.2077	1.3080	33532
174.875	Guy	24	5.696	0.2078	1.0816	30857
171.500	Side Light	24	5.556	0.2045	1.0345	47937
139.500	15'X2.5" Omni	24	4.168	0.2299	0.5513	19466
120.000	Omni/Whip 205"x3"	24	3.220	0.2151	0.3234	13814
114.875	Guy	24	3.007	0.1986	0.2932	15156
100.000	60"'x10.4"x6" Panel	24	2.492	0.1489	0.2327	33612
58.125	Guy	20	1.432	0.0798	0.0917	14182
47.000	6' Grid Dish	20	1.298	0.0646	0.1201	63495
36.000	3' Yagi(.03k,2.08CAAA)	20	1.155	0.0786	0.1512	15036
32.000	8" Dish	20	1.084	0.0915	0.1565	14156
25.500	3' Yagi(.03k,2.08CAAA)	20	0.942	0.1183	0.1639	12935
22.000	RFS SC3-W100B Microwave Dish	20	0.850	0.1344	0.1691	12269
19.250	2' Dish	20	0.769	0.1474	0.1747	11766
16.000	RFS SC3-W100B Microwave Dish	20	0.665	0.1621	0.1810	11174
13.500	6'*3' Paraflector	20	0.577	0.1719	0.1806	10714

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
NO.	ft	in	Comb.	0	0
T1	343 - 341.875	48.631	10	0.7045	4.3494
T2	341.875 - 340	48.467	10	0.7047	4.3380
Т3	340 - 320	48.208	10	0.7133	4.3787
T4	320 - 300	44.870	10	0.9603	4.4387
T5	300 - 280	40.301	10	1.1955	4.1975
T6	280 - 260	35.454	10	1.0827	3.7928
T7	260 - 240	31.309	10	0.9328	3.5230
T8	240 - 220	27.831	10	0.7304	3.2366
Т9	220 - 200	25.374	10	0.5715	3.0348
T10	200 - 180	22.983	10	0.6559	2.7527
T11	180 - 160	20.073	10	0.7253	2.2325
T12	160 - 140	17.116	10	0.7245	1.6673
T13	140 - 120	13.907	10	0.8077	1.1147
T14	120 - 100	10.509	10	0.7608	0.6774
T15	100 - 80	7.816	10	0.5590	0.4934
T16	80 - 60	5.757	9	0.4635	0.3769
T17	60 - 40	4.177	8	0.3032	0.2458
T18	40 - 20	3.384	8	0.2224	0.3487
T19	20 - 10	2.152	8	0.4011	0.4289
T20	10 - 0	1.192	8	0.4948	0.4159

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	35 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
343.000	Strobe Light	10	48.631	0.7045	4.3494	6277
341.958	Guy	10	48.479	0.7046	4.3379	6277
337.500	6-Bay FM antenna w/o Radomes	10	47.858	0.7319	4.4406	5244
332.222	6-Bay FM antenna w/o Radomes	10	47.061	0.7855	4.5028	3770
326.944	6-Bay FM antenna w/o Radomes	10	46.177	0.8540	4.4974	3458
321.667	6-Bay FM antenna w/o Radomes	10	45.199	0.9339	4.4549	3238
316.389	6-Bay FM antenna w/o Radomes	10	44.121	1.0177	4.4038	3664
311.111	6-Bay FM antenna w/o Radomes	10	42.954	1.0961	4.3505	4894
305.833	6-Bay FM antenna w/o Radomes	10	41.718	1.1583	4.2875	7325
300.556	6-Bay FM antenna w/o Radomes	10	40.438	1.1937	4.2072	14496
295.278	6-Bay FM antenna w/o Radomes	10	39.134	1.1943	4.1045	54957
290.000	6-Bay FM antenna w/o Radomes	10	37.832	1.1670	3.9871	10815
285.125	Guy	10	36.651	1.1277	3.8872	6209
236.500	Guy	10	27.339	0.6919	3.1956	4057
220.000	4-Bay FM Antenna (w/o Radomes)	10	25.374	0.5715	3.0348	29588
214.100	4-Bay FM Antenna (w/o Radomes)	10	24.708	0.5772	2.9717	11458
208.200	4-Bay FM Antenna (w/o Radomes)	10	24.019	0.6046	2.8949	7402
202.300	4-Bay FM Antenna (w/o Radomes)	10	23.285	0.6415	2.7976	5511
196.400	4-Bay FM Antenna (w/o Radomes)	10	22.489	0.6763	2.6737	6080
190.500	4-Bay FM Antenna (w/o Radomes)	10	21.639	0.7030	2.5258	9775
174.875	Guy	10	19.316	0.7234	2.0872	19924
171.500	Side Light	10	18.821	0.7197	1.9921	24674
139.500	15'X2.5" Omni	10	13.822	0.8091	1.1012	8386
120.000	Omni/Whip 205"x3"	10	10.509	0.7608	0.6774	4946
114.875	Guy	10	9.740	0.7124	0.6198	5150
100.000	60"'x10.4"x6" Panel	10	7.816	0.5590	0.4934	8021
58.125	Guy	8	4.088	0.2890	0.2469	4151
47.000	6' Grid Dish	8	3.655	0.2305	0.3055	18044
36.000	3' Yagi(.03k,2.08CAAA)	8	3.199	0.2319	0.3624	6784
32.000	8" Dish	8	2.986	0.2570	0.3758	6210
25.500	3' Yagi(.03k,2.08CAAA)	8	2.573	0.3210	0.3995	5464
22.000	RFS SC3-W100B Microwave Dish	8	2.313	0.3691	0.4165	5130
19.250	2' Dish	8	2.089	0.4140	0.4342	4884
16.000	RFS SC3-W100B Microwave Dish	8	1.799	0.4683	0.4543	4607
13.500	6'*3' Paraflector	8	1.558	0.4970	0.4559	4423

Guy Design Data

Section No.	Elevation ft	Size	Initial Tension K	Breaking Load K	Actual T _u K	$Allowable \ \phi T_n \ K$	Required S.F.	Actual S.F.
T1	341.958 (A) (1416)	5/16 EHS	1.120	11.200	5.261	6.720	1.000	1.277
	341.958 (B) (1415)	5/16 EHS	1.120	11.200	6.242	6.720	1.000	1.077
	341.958 (C) (1414)	5/16 EHS	1.120	11.200	5.125	6.720	1.000	1.311
T5	285.125 (A) (1413)	3/8 EHS	1.540	15.400	6.634	9.240	1.000	1.393
	285.125 (B) (1412)	3/8 EHS	1.540	15.400	7.959	9.240	1.000	1.161 🖊
	285.125 (C) (1411)	3/8 EHS	1.540	15.400	6.431	9.240	1.000	1.437

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	36 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section	Elevation	Size	Initial	Breaking	Actual	Allowable	Required	Actual
No.	ft		Tension K	Load K	T_u K	$\phi T_n \ K$	S.F.	S.F.
T8	236.500 (A)	3/8 EHS	1.540	15.400	6.233	9.240	1.000	
10	(1410)	5, 0 E115	1.0.10	101.00	0.255	J.2.0	1.000	1.483
	236.500 (B)	3/8 EHS	1.540	15.400	7.360	9.240	1.000	1.255
	(1409)							1.233
	236.500 (C)	3/8 EHS	1.540	15.400	5.970	9.240	1.000	1.548
TD 1.1	(1408)	5/1 / FIIG	1 120	11.200	4.071	(720	1.000	
T11	174.875 (A)	5/16 EHS	1.120	11.200	4.871	6.720	1.000	1.379
	(1407) 174.875 (B)	5/16 EHS	1.120	11.200	5.373	6.720	1.000	
	(1406)	3/10 E113	1.120	11.200	3.373	0.720	1.000	1.251
	174.875 (C)	5/16 EHS	1.120	11.200	4.703	6.720	1.000	1.429 🖊
	(1405)							1.429
T14	114.875 (A)	5/16 EHS	1.120	11.200	4.117	6.720	1.000	1.632
	(1399)							
	114.875 (A)	5/16 EHS	1.120	11.200	3.860	6.720	1.000	1.741
	(1400)	5/17 EUC	1.120	11.200	4 210	(720	1 000	
	114.875 (B) (1393)	5/16 EHS	1.120	11.200	4.218	6.720	1.000	1.593
	114.875 (B)	5/16 EHS	1.120	11.200	4.314	6.720	1.000	
	(1394)	U, 10 E115	11120	11.200		0.720	1.000	1.558
	114.875 (C)	5/16 EHS	1.120	11.200	3.778	6.720	1.000	1.779 🗸
	(1387)							1.//9
	114.875 (C)	5/16 EHS	1.120	11.200	3.897	6.720	1.000	1.724
T	(1388)	2/0 5119	1.710	15.400	2.026	0.040	1.000	
T17	58.125 (A)	3/8 EHS	1.540	15.400	3.926	9.240	1.000	2.354
	(1381) 58.125 (A)	3/8 EHS	1.540	15.400	3.759	9.240	1.000	
	(1382)	5/6 E115	1.540	13.400	3.139	9.240	1.000	2.458
	58.125 (B)	3/8 EHS	1.540	15.400	3.980	9.240	1.000	/
	(1375)							2.321
	58.125 (B)	3/8 EHS	1.540	15.400	4.124	9.240	1.000	2.240
	(1376)							
	58.125 (C)	3/8 EHS	1.540	15.400	3.704	9.240	1.000	2.494
	(1369)	2/0 EHG	1.540	15 400	2 727	0.240	1 000	
	58.125 (C) (1370)	3/8 EHS	1.540	15.400	3.727	9.240	1.000	2.479
	(1370)							

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	Α	Mast Stability	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Index	K	K	ϕP_n
T1	343 - 341.875	1 1/8	1.125	0.083	3.6 K=1.00	0.9940	1.00	-5.444	44.690	0.122 1
T2	341.875 - 340	1 1/8	1.875	1.542	65.8 K=1.00	0.9940	0.99	-5.956	32.151	0.185 1
Т3	340 - 320	1 1/8	20.000	1.625	69.3 K=1.00	0.9940	1.00	-12.524	31.374	0.399 1
T4	320 - 300	1 1/8	20.000	1.625	69.3 K=1.00	0.9940	1.00	-12.453	31.370	0.397 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	37 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	Mast Stability	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	Index	K	K	ϕP_n
T5	300 - 280	1 3/8	20.000	1.625	56.7 K=1.00	1.4849	0.99	-15.977	52.247	0.306 1
Т6	280 - 260	1 3/8	20.000	1.625	56.7 K=1.00	1.4849	0.99	-15.120	52.289	0.289 1
T7	260 - 240	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.95	-22.440	61.934	0.362 1
Т8	240 - 220	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.94	-24.388	61.293	0.398 1
Т9	220 - 200	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.91	-18.370	59.571	0.308 1
T10	200 - 180	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.91	-17.656	59.366	0.297 1
T11	180 - 160	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.89	-18.559	58.325	0.318 1
T12	160 - 140	1 1/2	20.000	1.625	52.0 K=1.00	1.7672	0.90	-20.272	58.701	0.345 1
T13	140 - 120	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.92	-24.823	85.923	0.289 1
T14	120 - 100	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.94	-35.407	88.018	0.402 1
T15	100 - 80	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.90	-25.927	84.647	0.306 1
T16	80 - 60	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.93	-34.961	86.622	0.404 1
T17	60 - 40	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.93	-36.348	86.825	0.419 1
T18	40 - 20	1 3/4	20.000	1.625	44.6 K=1.00	2.4053	0.91	-35.470	85.209	0.416 1
T19	20 - 10	1 3/4	10.000	1.611	44.2 K=1.00	2.4053	0.90	-35.155	84.517	0.416 ¹
T20	10 - 0	1 3/4	10.066	1.519	41.7 K=1.00	2.4053	0.88	-30.903	83.593	0.370 1

¹ P_u / ϕP_n controls

Diagonal Design Data (Compre	ession))
------------------------------	---------	---

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ΦP_n
T1	343 - 341.875	3/4	2.151	2.050	91.8 K=0.70	0.4418	-0.289	9.181	0.031 1
T2	341.875 - 340	3/4	2.525	2.407	107.8 K=0.70	0.4418	-1.357	7.761	0.175 1
Т3	340 - 320	3/4	2.577	2.456	110.0 K=0.70	0.4418	-1.241	7.567	0.164 ¹
T4	320 - 300	3/4	2.577	2.456	110.0 K=0.70	0.4418	-1.634	7.567	0.216 1
T5	300 - 280	3/4	2.577	2.429	108.8 K=0.70	0.4418	-2.211	7.673	0.288 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	38 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
									~
Т6	280 - 260	3/4	2.577	2.429	108.8 K=0.70	0.4418	-1.061	7.673	0.138 1
T7	260 - 240	3/4	2.577	2.416	108.2 K=0.70	0.4418	-1.554	7.726	0.201 1
T8	240 - 220	3/4	2.577	2.416	108.2 K=0.70	0.4418	-1.756	7.726	0.227^{-1}
Т9	220 - 200	3/4	2.577	2.416	108.2 K=0.70	0.4418	-1.654	7.726	0.214 1
T10	200 - 180	3/4	2.577	2.416	108.2 K=0.70	0.4418	-2.323	7.726	0.301 1
T11	180 - 160	3/4	2.577	2.416	108.2 K=0.70	0.4418	-2.428	7.726	0.314 1
T12	160 - 140	3/4	2.577	2.416	108.2 K=0.70	0.4418	-1.741	7.726	0.225 1
T13	140 - 120	7/8	2.577	2.389	91.7 K=0.70	0.6013	-3.252	12.509	0.260 1
T14	120 - 100	7/8	2.577	2.389	91.7 K=0.70	0.6013	-3.401	12.509	0.272 1
T15	100 - 80	7/8	2.577	2.389	91.7 K=0.70	0.6013	-0.840	12.509	0.067 1
T16	80 - 60	7/8	2.577	2.389	91.7 K=0.70	0.6013	-1.647	12.509	0.132 1
T17	60 - 40	7/8	2.577	2.389	91.7 K=0.70	0.6013	-2.923	12.509	0.234 1
T18	40 - 20	7/8	2.577	2.389	91.7 K=0.70	0.6013	-1.869	12.509	0.149 ¹
T19	20 - 10	7/8	2.568	2.381	91.4 K=0.70	0.6013	-1.365	12.547	0.109 1
T20	10 - 0	7/8	1.129	0.729	40.0 K=1.00	0.6013	-3.223	17.911	0.180 1

¹ P_u / ϕP_n controls

Horizontal Design Data	(Compression)
------------------------	---------------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
Т3	340 - 320	3/4	2.000	1.906	85.4 K=0.70	0.4418	-0.902	9.750	0.092 1
T4	320 - 300	3/4	2.000	1.906	85.4 K=0.70	0.4418	-1.137	9.750	0.117 1
T5	300 - 280	3/4	2.000	1.885	84.5 K=0.70	0.4418	-1.716	9.832	0.175 1
T6	280 - 260	3/4	2.000	1.885	84.5 K=0.70	0.4418	-0.722	9.832	0.073 1
T7	260 - 240	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.990	9.873	0.100 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	39 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
Т8	240 - 220	3/4	2.000	1.875	84.0 K=0.70	0.4418	-1.348	9.873	0.137 1
Т9	220 - 200	3/4	2.000	1.875	84.0 K=0.70	0.4418	-1.098	9.873	0.111 1
T10	200 - 180	3/4	2.000	1.875	84.0 K=0.70	0.4418	-1.577	9.873	0.160 1
T11	180 - 160	3/4	2.000	1.875	84.0 K=0.70	0.4418	-1.663	9.873	0.168 1
T12	160 - 140	3/4	2.000	1.875	84.0 K=0.70	0.4418	-1.212	9.873	0.123 1
T13	140 - 120	7/8	2.000	1.854	85.1 K=0.84	0.6013	-2.201	13.301	0.165 1
T14	120 - 100	7/8	2.000	1.854	85.1 K=0.84	0.6013	-2.481	13.301	0.187 1
T15	100 - 80	7/8	2.000	1.854	85.1 K=0.84	0.6013	-0.624	13.301	0.047 1
T16	80 - 60	7/8	2.000	1.854	85.1 K=0.84	0.6013	-0.977	13.301	0.073 1
T17	60 - 40	7/8	2.000	1.854	85.1 K=0.84	0.6013	-1.931	13.301	0.145 1
T18	40 - 20	7/8	2.000	1.854	85.1 K=0.84	0.6013	-1.357	13.301	0.102 1
T19	20 - 10	7/8	2.000	1.854	85.1 K=0.84	0.6013	-0.858	13.301	0.065 1
T20	10 - 0	7/8	1.773	1.627	83.1 K=0.93	0.6013	-0.549	13.549	0.041 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	343 - 341.875	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.173	5.718	0.030 1
T2	341.875 - 340	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.202	5.718	0.035 1
Т3	340 - 320	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.583	5.718	0.102 1
T4	320 - 300	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.239	5.718	0.042 1
T5	300 - 280	5/8	2.000	1.885	101.4 K=0.70	0.3068	-0.814	5.788	0.141 1
T6	280 - 260	5/8	2.000	1.885	101.4 K=0.70	0.3068	-0.379	5.788	0.065 1
T7	260 - 240	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.392	9.873	0.040 1
T8	240 - 220	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.644	9.873	0.065 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	40 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
Т9	220 - 200	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.551	9.873	0.056 1
T10	200 - 180	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.420	9.873	0.042 1
T11	180 - 160	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.936	9.873	0.095 1
T12	160 - 140	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.641	9.873	0.065 1
T13	140 - 120	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.741	9.851	0.075 1
T14	120 - 100	3/4	2.000	1.854	84.3 K=0.71	0.4418	-1.252	9.851	0.127 1
T15	100 - 80	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.454	9.851	0.046 1
T16	80 - 60	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.619	9.851	0.063 1
T17	60 - 40	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.630	9.851	0.064 1
T18	40 - 20	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.614	9.851	0.062 1
T19	20 - 10	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.612	9.851	0.062 1
T20	10 - 0	3/4	1.983	1.837	84.4 K=0.72	0.4418	-0.549	9.835	0.056 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	343 - 341.875	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.094	5.718	0.016 1
T2	341.875 - 340	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.599	5.718	0.105 1
Т3	340 - 320	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.239	5.718	0.042 1
T4	320 - 300	5/8	2.000	1.906	102.5 K=0.70	0.3068	-0.661	5.718	0.116 ¹
T5	300 - 280	5/8	2.000	1.885	101.4 K=0.70	0.3068	-0.365	5.788	0.063 1
Т6	280 - 260	5/8	2.000	1.885	101.4 K=0.70	0.3068	-0.317	5.788	0.055 1
T7	260 - 240	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.567	9.873	0.057 1
Т8	240 - 220	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.584	9.873	0.059 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	41 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
Т9	220 - 200	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.355	9.873	0.036 1
T10	200 - 180	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.912	9.873	0.092 1
T11	180 - 160	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.600	9.873	0.061 1
T12	160 - 140	3/4	2.000	1.875	84.0 K=0.70	0.4418	-0.557	9.873	0.056 1
T13	140 - 120	3/4	2.000	1.854	84.3 K=0.71	0.4418	-1.016	9.851	0.103 1
T14	120 - 100	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.613	9.851	0.062 1
T15	100 - 80	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.454	9.851	0.046 1
T16	80 - 60	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.619	9.851	0.063 1
T17	60 - 40	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.630	9.851	0.064 1
T18	40 - 20	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.614	9.851	0.062 1
T19	20 - 10	3/4	2.000	1.854	84.3 K=0.71	0.4418	-0.612	9.851	0.062 1

¹ P_u / ϕP_n controls

Torque-Arm Top Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T17	60 - 40 (1378)	C8x11.5	3.055	2.982	57.3 K=1.00	3.3800	-0.032	92.153	0.000 1

¹ P_u / ϕP_n controls

	Torque-Arm Bottom Design Data										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	K	K	ϕP_n		
T14	120 - 100 (1391)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-5.311	87.761	0.061 1		
T14	120 - 100 (1392)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-5.420	87.761	0.062 1		
T14	120 - 100 (1397)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-6.919	87.761	0.079 1		
T14	120 - 100	C8x11.5	3.460	3.378	64.9	3.3800	-4.423	87.761	0.050^{-1}		

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	42 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF)	12:30:28 08/04/21
343ft Guyed	
Client	Designed by
Vertical Bridge	CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ΦP_n
	(1398)				K=1.00				~
T14	120 - 100 (1403)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-5.936	87.761	0.068 1
T14	120 - 100 (1404)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-5.954	87.761	0.068 1
T17	60 - 40 (1373)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-3.905	87.761	0.044 1
T17	60 - 40 (1374)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-4.035	87.761	0.046 1
T17	60 - 40 (1379)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-5.291	87.761	0.060 1
T17	60 - 40 (1380)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-3.022	87.761	0.034 1
T17	60 - 40 (1385)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-4.470	87.761	0.051 1
T17	60 - 40 (1386)	C8x11.5	3.460	3.378	64.9 K=1.00	3.3800	-4.969	87.761	0.057 1

¹ P_u / ϕP_n controls

Tension Checks

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
110.	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
T1	343 - 341.875	1 1/8	1.125	0.792	33.8	0.9940	0.071	44.731	0.002 1
T2	341.875 - 340	1 1/8	1.875	0.250	10.7	0.9940	0.373	44.731	0.008 1
T3	340 - 320	1 1/8	20.000	1.625	69.3	0.9940	5.895	44.731	0.132 1
T4	320 - 300	1 1/8	20.000	1.625	69.3	0.9940	5.961	44.731	0.133
T5	300 - 280	1 3/8	20.000	1.625	56.7	1.4849	7.003	66.820	0.105 1
T6	280 - 260	1 3/8	20.000	1.625	56.7	1.4849	1.165	66.820	0.017 1
T7	260 - 240	1 1/2	20.000	0.250	8.0	1.7672	7.381	79.522	0.093 1
Т8	240 - 220	1 1/2	20.000	1.625	52.0	1.7672	8.818	79.522	0.111 1
T14	120 - 100	1 3/4	20.000	1.625	44.6	2.4053	5.037	108.238	0.047

Bennett and Pless 47 Perimeter Center E, Ste 500

Job		Page
	US-CA-5177	43 of 50
Pro	pject	Date
М	D007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Clie	ent Vertical Bridge	Designed by CBlake

¹ P_u / ϕP_n controls

		Di	agonal [Desig	n Dat	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	343 - 341.875	3/4	2.151	2.050	131.2	0.4418	0.320	14.314	0.022 1
Т2	241 075 240	2/4	2.525	2.407	1540	0.4410	1 416	14214	0.000.1

T2 341.875 - 340 3/4 2.525 2.407 154.0 0.4418 1.416 14.314 0.099 ~ 0.092^{-1} T3 340 - 320 3/4 2.577 2.456 157.2 0.44181.324 14.314 ~ T4 320 - 300 0.112^{-1} 3/4 2.577 2.456 157.2 0.44181.599 14.314 1 $0.157^{\ 1}$ T5 300 - 280 3/4 2.577 2.429 155.5 0.44182.244 14.314 1 $0.\bar{0}73\ ^{1}$ 280 - 260 T6 3/4 2.577 2.429 155.5 0.44181.045 14.314 1 0.100^{-1} T7 260 - 240 2.416 3/4 2.577 154.6 0.4418 1.426 14.314 ~ T8 240 - 220 3/4 2.577 2.416 154.6 0.44181.750 14.314 0.122^{-1} 1 0.110^{-1} T9 220 - 200 3/4 2.577 2.416 154.6 0.44181.572 14.314 ~ 0.161 1 T10 200 - 180 3/4 2.577 2.416 154.6 0.44182.299 14.314 ~ 0.163 1 T11 180 - 160 3/4 2.577 2.416 154.6 0.44182.329 14.314 1 0.122^{-1} T12 160 - 140 3/4 2.577 2.416 154.6 0.4418 1.740 14.314 1 140 - 120 0.159^{-1} T13 7/8 2.577 2.389 131.1 0.6013 3.096 19.483 ~ 0.172^{-1} T14 120 - 100 7/8 2.577 2.389 131.1 0.6013 3.355 19.483 1 0.046^{-1} T15 100 - 80 7/8 2.577 2.389 131.1 0.6013 0.893 19.483 ~ T16 80 - 60 7/8 2.577 2.389 131.1 0.6013 1.415 19.483 0.073^{-1} ~ T17 60 - 40 7/8 2.577 2.389 131.1 0.6013 2.516 19.483 0.129^{-1} 1 40 - 20 7/8 2.577 2.389 131.1 0.6013 1.893 19.483 0.097^{-1} T18 ~ T19 20 - 10 7/8 2.568 2.381 130.6 0.6013 1.180 19.483 0.061^{-1} 1 T20 10 - 0 7/8 1.753 96.2 0.187 19.483 0.010^{-1} 2.153 0.6013

¹ P_u / ϕP_n controls

Bennett and Pless 47 Perimeter Center E, Ste 500

> Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	44 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

		Но	rizontal	Desig	ın Da	ta (Ter	nsion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ϕP_n
Т3	340 - 320	3/4	2.000	1.906	122.0	0.4418	0.850	14.314	0.059 1
T4	320 - 300	3/4	2.000	1.906	122.0	0.4418	1.100	14.314	0.077 1
T5	300 - 280	3/4	2.000	1.885	120.7	0.4418	2.901	14.314	0.203 1
Т6	280 - 260	3/4	2.000	1.885	120.7	0.4418	0.722	14.314	0.050 1
T7	260 - 240	3/4	2.000	1.875	120.0	0.4418	1.037	14.314	0.072 1
T8	240 - 220	3/4	2.000	1.875	120.0	0.4418	2.424	14.314	0.169 ¹
Т9	220 - 200	3/4	2.000	1.875	120.0	0.4418	1.128	14.314	0.079 1
T10	200 - 180	3/4	2.000	1.875	120.0	0.4418	1.557	14.314	0.109 ¹
T11	180 - 160	3/4	2.000	1.875	120.0	0.4418	2.494	14.314	0.174 ¹
T12	160 - 140	3/4	2.000	1.875	120.0	0.4418	1.192	14.314	0.083 1
T13	140 - 120	7/8	2.000	1.854	101.7	0.6013	2.249	19.483	0.115^{-1}
T14	120 - 100	7/8	2.000	1.854	101.7	0.6013	3.813	19.483	0.196 ¹
T15	100 - 80	7/8	2.000	1.854	101.7	0.6013	0.518	19.483	0.027 1
T16	80 - 60	7/8	2.000	1.854	101.7	0.6013	1.091	19.483	0.056 1
T17	60 - 40	7/8	2.000	1.854	101.7	0.6013	3.132	19.483	0.161 ¹
T18	40 - 20	7/8	2.000	1.854	101.7	0.6013	1.241	19.483	0.064 1
T19	20 - 10	7/8	2.000	1.854	101.7	0.6013	0.963	19.483	0.049 1
T20	10 0	7/8	0.302	0.156	8.6	0.6013	0.723	10 483	0.037 1

10 - 0

7/8

T20

		To	op Girt L)esigr	n Data	a (Tens	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	343 - 341.875	5/8	2.000	1.906	146.4	0.3068	0.202	9.940	0.020 1
T2	341.875 - 340	5/8	2.000	1.906	146.4	0.3068	0.593	9.940	0.060^{-1}

0.156

8.6

0.6013

0.723

19.483

 0.037^{-1}

0.302

¹ P_u / ϕP_n controls

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	45 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	\boldsymbol{A}	P_u	ϕP_n	$Ratio$ P_u
IVO.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\Phi P_n}$
Т3	340 - 320	5/8	2.000	1.906	146.4	0.3068	0.569	9.940	0.057 1
T4	320 - 300	5/8	2.000	1.906	146.4	0.3068	0.239	9.940	0.024 1
T5	300 - 280	5/8	2.000	1.885	144.8	0.3068	0.803	9.940	0.081 1
Т6	280 - 260	5/8	2.000	1.885	144.8	0.3068	0.358	9.940	0.036 1
T7	260 - 240	3/4	2.000	1.875	120.0	0.4418	0.392	14.314	0.027 1
Т8	240 - 220	3/4	2.000	1.875	120.0	0.4418	0.609	14.314	0.043 1
Т9	220 - 200	3/4	2.000	1.875	120.0	0.4418	0.582	14.314	0.041 1
T10	200 - 180	3/4	2.000	1.875	120.0	0.4418	0.445	14.314	0.031 1
T11	180 - 160	3/4	2.000	1.875	120.0	0.4418	0.970	14.314	0.068^{-1}
T12	160 - 140	3/4	2.000	1.875	120.0	0.4418	0.600	14.314	0.042 1
T13	140 - 120	3/4	2.000	1.854	118.7	0.4418	0.751	14.314	0.052 1
T14	120 - 100	3/4	2.000	1.854	118.7	0.4418	1.280	14.314	0.089 1
T15	100 - 80	3/4	2.000	1.854	118.7	0.4418	0.454	14.314	0.032 1
T16	80 - 60	3/4	2.000	1.854	118.7	0.4418	0.619	14.314	0.043 1
T17	60 - 40	3/4	2.000	1.854	118.7	0.4418	0.630	14.314	0.044 ¹
T18	40 - 20	3/4	2.000	1.854	118.7	0.4418	0.614	14.314	0.043 1
T19	20 - 10	3/4	2.000	1.854	118.7	0.4418	0.612	14.314	0.043 1
T20	10 - 0	3/4	1.983	1.837	117.6	0.4418	0.921	14.314	0.064 ¹

¹ P_u / ϕP_n controls

Bottom	Girt	Design	Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	343 - 341.875	5/8	2.000	1.906	146.4	0.3068	1.332	9.940	0.134 1
T2	341.875 - 340	5/8	2.000	1.906	146.4	0.3068	0.611	9.940	0.061 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
Т3	340 - 320	5/8	2.000	1.906	146.4	0.3068	0.239	9.940	0.024 1
T4	320 - 300	5/8	2.000	1.906	146.4	0.3068	0.681	9.940	0.068 1
T5	300 - 280	5/8	2.000	1.885	144.8	0.3068	0.411	9.940	0.041 1
Т6	280 - 260	5/8	2.000	1.885	144.8	0.3068	0.358	9.940	0.036 1
T7	260 - 240	3/4	2.000	1.875	120.0	0.4418	0.639	14.314	0.045 1
T8	240 - 220	3/4	2.000	1.875	120.0	0.4418	0.600	14.314	0.042 1
Т9	220 - 200	3/4	2.000	1.875	120.0	0.4418	0.390	14.314	0.027 1
T10	200 - 180	3/4	2.000	1.875	120.0	0.4418	0.926	14.314	0.065 1
T11	180 - 160	3/4	2.000	1.875	120.0	0.4418	0.699	14.314	0.049 1
T12	160 - 140	3/4	2.000	1.875	120.0	0.4418	0.624	14.314	0.044 1
T13	140 - 120	3/4	2.000	1.854	118.7	0.4418	1.130	14.314	0.079 1
T14	120 - 100	3/4	2.000	1.854	118.7	0.4418	0.613	14.314	0.043 1
T15	100 - 80	3/4	2.000	1.854	118.7	0.4418	0.454	14.314	0.032 1
T16	80 - 60	3/4	2.000	1.854	118.7	0.4418	0.619	14.314	0.043 1
T17	60 - 40	3/4	2.000	1.854	118.7	0.4418	0.670	14.314	0.047^{-1}
T18	40 - 20	3/4	2.000	1.854	118.7	0.4418	0.614	14.314	0.043 1
T19	20 - 10	3/4	2.000	1.854	118.7	0.4418	1.081	14.314	0.075 1

¹ P_u / ϕP_n controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T14	120 - 100 (1389)	C8x11.5	3.055	2.982	57.3	3.3800	4.151	109.512	0.038 1
T14	120 - 100 (1390)	C8x11.5	3.055	2.982	57.3	3.3800	4.393	109.512	0.040 1
T14	120 - 100 (1395)	C8x11.5	3.055	2.982	57.3	3.3800	5.875	109.512	0.054 1
T14	120 - 100 (1396)	C8x11.5	3.055	2.982	57.3	3.3800	3.912	109.512	0.036 1

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	47 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	ϕP_n
T14	120 - 100 (1401)	C8x11.5	3.055	2.982	57.3	3.3800	5.022	109.512	0.046 ¹
T14	120 - 100 (1402)	C8x11.5	3.055	2.982	57.3	3.3800	5.256	109.512	0.048 1
T17	60 - 40 (1371)	C8x11.5	3.055	2.982	57.3	3.3800	3.272	109.512	0.030^{-1}
T17	60 - 40 (1372)	C8x11.5	3.055	2.982	57.3	3.3800	3.993	109.512	0.036 1
T17	60 - 40 (1377)	C8x11.5	3.055	2.982	57.3	3.3800	4.529	109.512	0.041^{-1}
T17	60 - 40 (1378)	C8x11.5	3.055	2.982	57.3	3.3800	3.263	109.512	0.030 1
T17	60 - 40 (1383)	C8x11.5	3.055	2.982	57.3	3.3800	3.722	109.512	0.034 1
T17	60 - 40 (1384)	C8x11.5	3.055	2.982	57.3	3.3800	4.666	109.512	0.043 1

¹ P_u / ϕP_n controls

Torque-Arm	Bottom	Design	Data	
------------	---------------	--------	------	--

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
110.	ft		ft	ft		in^2	K	K	$\frac{P_n}{\phi P_n}$
T14	120 - 100 (1391)	C8x11.5	3.460	3.378	64.9	3.3800	1.230	109.512	0.011 1
T14	120 - 100 (1392)	C8x11.5	3.460	3.378	64.9	3.3800	0.845	109.512	0.008 1
T14	120 - 100 (1397)	C8x11.5	3.460	3.378	64.9	3.3800	0.700	109.512	0.006 1
T14	120 - 100 (1398)	C8x11.5	3.460	3.378	64.9	3.3800	0.873	109.512	0.008 1
T14	120 - 100 (1403)	C8x11.5	3.460	3.378	64.9	3.3800	0.639	109.512	0.006 1
T14	120 - 100 (1404)	C8x11.5	3.460	3.378	64.9	3.3800	0.345	109.512	0.003 1
T17	60 - 40 (1373)	C8x11.5	3.460	3.378	64.9	3.3800	1.689	109.512	0.015 1
T17	60 - 40 (1374)	C8x11.5	3.460	3.378	64.9	3.3800	1.004	109.512	0.009^{-1}
T17	60 - 40 (1379)	C8x11.5	3.460	3.378	64.9	3.3800	0.988	109.512	0.009^{-1}
T17	60 - 40 (1380)	C8x11.5	3.460	3.378	64.9	3.3800	1.529	109.512	0.014^{-1}
T17	60 - 40 (1385)	C8x11.5	3.460	3.378	64.9	3.3800	1.531	109.512	0.014 1
T17	60 - 40 (1386)	C8x11.5	3.460	3.378	64.9	3.3800	0.944	109.512	0.009^{-1}

Bennett and Pless 47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

Job	Page
US-CA-5177	48 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section	Elevation	Size	L	L_u	Kl/r	\boldsymbol{A}	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in ²	K	K	ϕP_n

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$^{\phi P_{allow}}_{K}$	% Capacity	Pass Fail
T1	343 - 341.875	Leg	1 1/8	2	-5.444	44.690	12.2	Pass
T2	341.875 - 340	Leg	1 1/8	14	-5.956	32.151	18.5	Pass
T3	340 - 320	Leg	1 1/8	26	-12.524	31.374	39.9	Pass
T4	320 - 300	Leg	1 1/8	104	-12.453	31.370	39.7	Pass
T5	300 - 280	Leg	1 3/8	182	-15.977	52.247	30.6	Pass
T6	280 - 260	Leg	1 3/8	259	-15.120	52.289	28.9	Pass
T7	260 - 240	Leg	1 1/2	337	-22.440	61.934	36.2	Pass
T8	240 - 220	Leg	1 1/2	417	-24.388	61.293	39.8	Pass
T9	220 - 200	Leg	1 1/2	495	-18.370	59.571	39.8	Pass
T10	200 - 180	•	1 1/2	571	-17.656	59.366	29.7	Pass
		Leg	1 1/2					
T11	180 - 160	Leg		651	-18.559	58.325	31.8	Pass
T12	160 - 140	Leg	1 1/2	729	-20.272	58.701	34.5	Pass
T13	140 - 120	Leg	1 3/4	805	-24.823	85.923	28.9	Pass
T14	120 - 100	Leg	1 3/4	885	-35.407	88.018	40.2	Pass
T15	100 - 80	Leg	1 3/4	963	-25.927	84.647	30.6	Pass
T16	80 - 60	Leg	1 3/4	1040	-34.961	86.622	40.4	Pass
T17	60 - 40	Leg	1 3/4	1118	-36.348	86.825	41.9	Pass
T18	40 - 20	Leg	1 3/4	1196	-35.470	85.209	41.6	Pass
T19	20 - 10	Leg	1 3/4	1274	-35.155	84.517	41.6	Pass
T20	10 - 0	Leg	1 3/4	1316	-30.903	83.593	37.0	Pass
T1	343 - 341.875	Diagonal	3/4	12	-0.289	9.181	3.1	Pass
T2	341.875 - 340	Diagonal	3/4	23	-1.357	7.761	17.5	Pass
T3	340 - 320	Diagonal	3/4	101	-1.241	7.567	16.4	Pass
T4	320 - 300	Diagonal	3/4	113	-1.634	7.567	21.6	Pass
T5	300 - 280	Diagonal	3/4	209	-2.211	7.673	28.8	Pass
T6	280 - 260	Diagonal	3/4	336	-1.061	7.673	13.8	Pass
T7	260 - 240	Diagonal	3/4	347	-1.554	7.726	20.1	Pass
T8	240 - 220	Diagonal	3/4	474	-1.756	7.726	22.7	Pass
T9	220 - 200	Diagonal	3/4	570	-1.654	7.726	21.4	Pass
T10	200 - 180	Diagonal	3/4	581	-2.323	7.726	30.1	Pass
T11	180 - 160	Diagonal	3/4	725	-2.428	7.726	31.4	Pass
T12	160 - 140	Diagonal	3/4	737	-1.741	7.726	22.5	Pass
T13	140 - 120	Diagonal	7/8	815	-3.252	12.509	26.0	Pass
T14	120 - 100	Diagonal	7/8	959	-3.401	12.509	27.2	Pass
T15	100 - 80	Diagonal	7/8	1038	-0.840	12.509	6.7	Pass
T16	80 - 60	Diagonal	7/8	1049	-1.647	12.509	13.2	Pass
T17	60 - 40	Diagonal	7/8	1187	-2.923	12.509	23.4	Pass
T18	40 - 20	Diagonal	7/8	1271	-1.869	12.509	14.9	Pass
T19	20 - 10	Diagonal	7/8	1283	-1.365	12.547	10.9	Pass
T20	10 - 0	Diagonal	7/8	1325	-3.223	17.911	18.0	Pass
T3	340 - 320	Horizontal	3/4	98	-0.902	9.750	9.2	Pass
T4	320 - 300	Horizontal	3/4	115	-1.137	9.750	11.7	Pass
T5	300 - 280	Horizontal	3/4	205	2.901	14.314	20.3	Pass
T6	280 - 260	Horizontal	3/4	333	-0.722	9.832	7.3	Pass
T7	260 - 240	Horizontal	3/4	349	-0.722	9.832	10.0	Pass
T8	240 - 220	Horizontal	3/4	482	-0.990 2.424	14.314	16.9	Pass
T9	240 - 220 220 - 200		3/4			9.873		Pass
T10		Horizontal		567 584	-1.098	9.873	11.1	
	200 - 180	Horizontal	3/4		-1.577		16.0	Pass
T11	180 - 160	Horizontal	3/4	710	2.494	14.314	17.4	Pass

Bennett and Pless 47 Perimeter Center E, Ste 500

Job	Page
US-CA-5177	49 of 50
Project	Date
MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	12:30:28 08/04/21
Client Vertical Bridge	Designed by CBlake

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
T12	160 - 140	Horizontal	3/4	801	-1.212	9.873	12.3	Pass
T13	140 - 120	Horizontal	7/8	818	-2.201	13.301	16.5	Pass
T14	120 - 100	Horizontal	7/8	943	3.813	19.483	19.6	Pass
T15	100 - 80	Horizontal	7/8	1035	-0.624	13.301	4.7	Pass
T16	80 - 60	Horizontal	7/8	1052	-0.977	13.301	7.3	Pass
T17	60 - 40	Horizontal	7/8	1189	3.132	19.483	16.1	Pass
T18	40 - 20	Horizontal	7/8	1268	-1.357	13.301	10.2	Pass
T19	20 - 10	Horizontal	7/8	1286	-0.858	13.301	6.5	Pass
T20	10 - 0	Horizontal	7/8	1363	-0.549	13.549	4.1	Pass
T1	343 - 341.875	Top Girt	5/8	6	-0.173	5.718	3.0	Pass
T2	341.875 - 340	Top Girt	5/8	17	0.593	9.940	6.0	Pass
T3	340 - 320	Top Girt	5/8	29	-0.583	5.718	10.2	Pass
T4	320 - 300	Top Girt	5/8	106	-0.239	5.718	4.2	Pass
T5	300 - 280	Top Girt	5/8	185	-0.814	5.788	14.1	Pass
T6	280 - 260	Top Girt	5/8	264	-0.379	5.788	6.5	Pass
T7	260 - 240	Top Girt	3/4	342	-0.392	9.873	4.0	Pass
T8	240 - 220	Top Girt	3/4	419	-0.644	9.873	6.5	Pass
T9	220 - 200	Top Girt	3/4	498	-0.551	9.873	5.6	Pass
T10	200 - 180	Top Girt	3/4	575	-0.420	9.873	4.2	Pass
T11	180 - 160	Top Girt	3/4	653	-0.936	9.873	9.5	Pass
T12	160 - 140	Top Girt	3/4	732	-0.641	9.873	6.5	Pass
T13	140 - 120	Top Girt	3/4	809	-0.741	9.851	7.5	Pass
T14	120 - 100	Top Girt	3/4	887	-1.252	9.851	12.7	Pass
T15	100 - 80	Top Girt	3/4	965	-0.454	9.851	4.6	Pass
T16	80 - 60	Top Girt	3/4	1042	-0.619	9.851	6.3	Pass
T17	60 - 40	Top Girt	3/4	1120	-0.630	9.851	6.4	Pass
T18	40 - 20	Top Girt	3/4	1198	-0.614	9.851	6.2	Pass
T19	20 - 10	Top Girt	3/4	1276	-0.612	9.851	6.2	Pass
T20	10 - 0	Top Girt	3/4	1319	0.921	14.314	6.4	Pass
T1	343 - 341.875	Bottom Girt	5/8	9	1.332	9.940	13.4	Pass
T2	341.875 - 340	Bottom Girt	5/8	20	-0.599	5.718	10.5	Pass
T3	340 - 320	Bottom Girt	5/8	31	-0.239	5.718	4.2	Pass
T4	320 - 300	Bottom Girt	5/8	110	-0.661	5.718	11.6	Pass
T5	300 - 280	Bottom Girt	5/8	189	-0.365	5.788	6.3	Pass
T6	280 - 260	Bottom Girt	5/8	266	-0.317	5.788	5.5	Pass
T7	260 - 240	Bottom Girt	3/4	344	-0.567	9.873	5.7	Pass
T8	240 - 220	Bottom Girt	3/4	423	-0.584	9.873	5.9	Pass
Т9	220 - 200	Bottom Girt	3/4	501	-0.355	9.873	3.6	Pass
T10	200 - 180	Bottom Girt	3/4	578	-0.912	9.873	9.2	Pass
T11	180 - 160	Bottom Girt	3/4	657	-0.600	9.873	6.1	Pass
T12	160 - 140	Bottom Girt	3/4	734	-0.557	9.873	5.6	Pass
T13	140 - 120	Bottom Girt	3/4	812	-1.016	9.851	10.3	Pass
T14	120 - 100	Bottom Girt	3/4	890	-0.613	9.851	6.2	Pass
T15	100 - 80	Bottom Girt	3/4	968	-0.454	9.851	4.6	Pass
T16	80 - 60	Bottom Girt	3/4	1045	-0.619	9.851	6.3	Pass
T17	60 - 40	Bottom Girt	3/4	1123	-0.630	9.851	6.4	Pass
T18	40 - 20	Bottom Girt	3/4	1201	-0.614	9.851	6.2	Pass
T19	20 - 10	Bottom Girt	3/4	1280	1.081	14.314	7.5	Pass
T1	343 - 341.875	Guy A@341.958	5/16	1416	5.261	6.720	78.3	Pass
T5	300 - 280	Guy A@285.125	3/8	1413	6.634	9.240	71.8	Pass
T8	240 - 220	Guy A@236.5	3/8	1410	6.233	9.240	67.5	Pass
T11	180 - 160	Guy A@174.875	5/16	1407	4.871	6.720	72.5	Pass
T14	120 - 100	Guy A@114.875	5/16	1399	4.117	6.720	61.3	Pass
T17	60 - 40	Guy A@58.125	3/8	1381	3.926	9.240	42.5	Pass
T1	343 - 341.875	Guy B@341.958	5/16	1415	6.242	6.720	92.9	Pass
T5	300 - 280	Guy B@285.125	3/8	1412	7.959	9.240	86.1	Pass
T8	240 - 220	Guy B@236.5	3/8	1409	7.360	9.240	79.7	Pass
T11	180 - 160	Guy B@174.875	5/16	1406	5.373	6.720	80.0	Pass
T14	120 - 100	Guy B@114.875	5/16	1394	4.314	6.720	64.2	Pass
T17	60 - 40	Guy B@58.125	3/8	1376	4.124	9.240	44.6	Pass
T1	343 - 341.875	Guy C@341.958	5/16	1414	5.125	6.720	76.3	Pass

Bennett and Pless

47 Perimeter Center E, Ste 500

Atlanta, GA 30346 Phone: (678) 990-8700 FAX:

٦	1-6	Page
	Job US-CA-5177	50 of 50
	Project MD007 KHKK-FM KATM-FM STL KHKK-FM Aux (City of SF) 343ft Guyed	Date 12:30:28 08/04/21
	Client Vertical Bridge	Designed by CBlake

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T5	300 - 280	Guy C@285.125	3/8	1411	6.431	9.240	69.6	Pass
T8	240 - 220	Guy C@236.5	3/8	1408	5.970	9.240	64.6	Pass
T11	180 - 160	Guy C@174.875	5/16	1405	4.703	6.720	70.0	Pass
T14	120 - 100	Guy C@114.875	5/16	1388	3.897	6.720	58.0	Pass
T17	60 - 40	Guy C@58.125	3/8	1370	3.727	9.240	40.3	Pass
T14	120 - 100	Torque Arm Top@114.875	C8x11.5	1395	5.875	109.512	5.4	Pass
T17	60 - 40	Torque Arm Top@58.125	C8x11.5	1384	4.666	109.512	4.3	Pass
T14	120 - 100	Torque Arm Bottom@114.875	C8x11.5	1397	-6.919	87.761	7.9	Pass
T17	60 - 40	Torque Arm Bottom@58.125	C8x11.5	1379	-5.291	87.761	6.0	Pass
		0					Summary	
						Leg (T17)	41.9	Pass
						Diagonal (T11)	31.4	Pass
						Horizontal (T5)	20.3	Pass
						Top Girt (T5)	14.1	Pass
						Bottom Girt (T1)	13.4	Pass
						Guy A (T1)	78.3	Pass
						Guy B (T1)	92.9	Pass
						Guy C (T1)	76.3	Pass
						Torque Arm	5.4	Pass
						Top (T14)		
						Torque Arm	7.9	Pass
						Bottom (T14)		
						RATING =	92.9	Pass

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: Y:/Shared/Projects/2021/21.03.000\ -\ Boca\ Raton/21.03.006.xxx\ -\ VB\ Ops\ Towers/21.03.006.155\ -\ US-CA-5177\ MD007\ KHKK-FM\ KATM-FM\ STL\ KHKK-FM\ Aux\ (City\ of\ SF)\ 343ft\ Guyed/Calcs/US-CA-5177\ _SA_(City\ of\ SF)_343ft\ Guyed.eri$

Topographic Factors for use in tnxTower

	3.1, effecitve 10.14.13) W RSM-03 Figure 3-3						
per our	W Now of rigure 5 5						
BU#:							
Site Name: US-CA-5177							
App#:							
App#: Considered Wind Direction Crest Point Mid-Elevation Point H Base Point H/2 ~10% slope							
☐ Topographic Feature	t the midheight of the slope Exposure Category						
Continuous Ridge	Exposure Category Exposure B Exposure C						
Flat Topped Ridge	Exposure D						
○ нііі	Notes: Feature is assumed to be isolated p	1) per section 1.8 of Determination of					
○ Flat Topped Hill	Hill Feature is assumed to be isolated per section 1.8 of the Crown Castle standard for the Determination of Topographic Factors (ENG-PRC-10040). 2) Base Kzt may differ slightly from TNX value due to differences in where the base line is established. This does not effect the results in anyway.						
Continuous Escarpment	This does not effect the results in a	nyway.					
T							
Topographic Input	4074						
Crest Point Elevation (ft. AMSL)							
Base Point Elevation (ft. AMSL) Mid-Height Elevation (ft. AMSL)							
Mid-Height Elevation (π. AMSL) Crest to Mid-Height Distance (L/2) (ft.)							
Tower Point Elevation (ft. AMSL)							
Structure Upwind/Downwind Distance (x)(ft.)	0						
tnxTower Input	0	K _{ZT} (RSM-03)					
Topographic Category	5	1.21 (1.5.77 55)					
Crest Height, H (ft.)	756	At Base:					
Slope Distance, L (ft.)	5808	1.905 ²					
Distance from Creet v (ft)	0	1.505					

BU:	US-CA-5177
WO:	
Order:	

Structure:	А
Rev:	

Location	1		
Decimal Degrees	Deg	Min	Sec
Lat: 37.652522 +	37	39	9.08
Long: -121.478067 -	121	28	41.04
Code and Site Pa	rameters		
Seismic Design Code:	TIA-222-H	1	
Site Soil:	D (Default)	Default	
Risk Category:	II		
<u>USGS Seismic Reference</u> S _S :	1.4620	g	
S ₁ :	0.4930	g	
T _L :	8	S	
- 1			
Seismic Design Categor	y Determination		
Importance Factor, I _e :	1	7	
Acceleration-based site coefficient, F _a :	1.2000	_	
Velocity-based site coefficient, F _v :	1.8070		
, , , , , , , , , , , , , , , , , , ,		_	
Design spectral response acceleration short period, S_{DS} :	1.1696	g	
Design spectral response acceleration 1 s period, S_{D1} :	0.5939	g	
		-	
Seismic Design Category Based on S_{DS} :	D		
Seismic Design Category Based on S_{D1} :	D		
Seismic Design Category Based on S_1 :	N/A		
		-	
Controlling Seismic Design Category:	D		

BU:	US-CA-5177	Structure:	А
WO:			
Order:		Rev:	

Tower Details					
Tower Type: Height, h: Effective Seismic Weight, W: Amplification Factor, A₅:	Guyed Tower 343 ft 18.05 kips	2.7.8.1			
Seismic Base	Shear				
Response Modification Factor, R:	3				
C _g :	176.5				
K _g :	0.0020				
F _a :	1.8132 hz				
Approximate Fundamental Period Guyed Towers, Ta:	0.5515 s	2.7.7.1.3.4			
Seismic Response Coefficient, C _s	0.3899	2.7.7.1.1			
Seismic Response Coefficient Max 1, C _{smax}	0.3589	2.7.7.1.1			
Seismic Response Coefficient Max 2, C _{smax}	N/A	2.7.7.1.1			
Seismic Response Coefficient Min 1, C _{smin}	0.0515	2.7.7.1.1			
Seismic Response Coefficient Min 2, C _{smin}	N/A	2.7.7.1.1			
Controlling Seismic Response Coefficient, C _{sc}	0.3589				
Seismic Base Shear, V	6.480 kips	2.7.7.1.1			
Vertical Distributi	on Factors				
Period Related Exponent, k: Sum of w _i h _i ^k	1.026 3268.13	2.7.7.1.2 2.7.7.1.2			

EXHIBIT B-4

Use Fee Schedule

Exhibit B-4
Use Fee Schedule - US-CA-5177

 Annual Increases
 3.00%

 Year One - Monthly
 \$ 2,500.00

 Year One - Annual
 \$ 30,000.06

	YEAR(S) (Five (5) Year Term)							m)	
Month		1		2		3		4	5
1	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
2	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
3	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
4	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
5	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
6	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
7	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
8	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
9	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
10	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
11	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78
12	\$	2,500.00	\$	2,575.00	\$	2,652.26	\$	2,731.82	\$ 2,813.78

Yearly

Total: \$ 30,000.06 \$ 30,900.06 \$ 31,827.06 \$ 32,781.87 \$ 33,765.33

TOTAL LICENSE PAYMENTS - 5-YR TERM: 159,274.38

EXHIBIT C

Prime Agreement

REQUESTED THRU : SIMPLIFILE	Doc #: 2020-144956 10/27/2020 11:55:17 AM Page 1 of 5 Fee: \$36.00 Tax Paid: \$251.90 Steve J. Bestolarides
	San Joaquin County Recorder
Name: FIDELITY NATIONAL TITLE Street: 7130 GLEN FOREST DR #300 Post Office Box #: City / St. / Zip: RICHMOND, VA 23226	Paid By: FIDELITY NATIONAL TITLE INSURANCE
	This space for recorder's use only
Special Warranty Deed	
(Document	Title)
DO	E UNDERSIGNED GRANTOR DECLARES: CUMENTARY TRANSFER TAX \$ 251.90 CO. \$ 0.00 CY.

This page added to provide adequate space for the above information only. (Government Code 27361.6)

CONVEYED, OR

REMAINING AT TIME OF SALE

____COMPUTED ON FULL VALUE OF PROPERTY

COMPUTED ON FULL VALUE LESS LIENS

CITY OF Tracy UNINCORPORATED___

(Additional recording fee applies)

Cumulus Media Tower Co., LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, Florida 33487 Attn: Daniel Marinberg, Esq., General Counsel Site Number: US-CA-5177 Commitment #: 32027623 Send Tax Stalement to Cumulus Media Touce Co cec (Space Above for Recorder's Use) 750 Part of Commerce De.
Beca Raton Fi 38487 SPECIAL WARRANTY DEED

This Instrument Was Prepared by and Record and Return to:

THIS SPECIAL WARRANTY DEED made this 30th day of 5 Ept., 2020 between, CUMULUS RADIO LLC, a Delaware limited liability company, successor by conversion to Cumulus Radio Corporation, a Nevada corporation, formerly known as Citadel Broadcasting Company, a Nevada corporation, formerly known as Citadel Communications Corporation, a Nevada corporation ("Grantor"), whose address is 3280 Peachtree Street, NW, Suite 2200 Atlanta, GA 30305, and CUMULUS MEDIA TOWER CO., LLC, a Delaware limited liability company ("Grantee"), whose address is 750 Park of Commerce Drive, Suite 200, Boca Raton, Florida 33487.

WITNESSETH:

That Grantor, for and in consideration of the sum of TEN DOLLARS (\$10.00) and other good and valuable consideration, to it in hand paid by Grantee, the receipt whereof is hereby acknowledged, has granted, bargained, and sold to Grantee, its heirs and assigns forever, the following described land (the "Property") located in San Joaquin County, California, and more particularly described as follows:

LEGAL DESCRIPTION ATTACHED AS EXHIBIT A.

Tax Parcel No. 251-120-080-000

TOGETHER with all the improvements, tenements, hereditaments and appurtenances belonging or in any way appertaining to the Property.

TO HAVE AND TO HOLD the same in fee simple forever.

AND GRANTOR hereby covenants with Grantee that Grantor is lawfully seized of the Property in fee simple; Grantor has good, right, and lawful authority to sell and convey the Property; and Grantor does hereby fully warrant the title to said Property, and will defend the same against the lawful claims of all persons whomsoever, subject, however, to any Permitted

Encumbrances (as defined in that certain Master Agreement dated as of August 7, 2020 among Cumulus Media New Holdings Inc., a Delaware limited liability company, Vertical Bridge REIT, LLC, a Delaware limited liability company, VB Nimbus, LLC, a Delaware limited liability company, and Grantee).

[Remainder of page intentionally left blank; signature page immediately following]

[Grantor Signature Page to Warranty Deed]

IN WITNESS WHEREOF, the undersigned have executed this Special Warranty Deed as of the date first written above.

CUMULUS RADIO LLC, a Delaware limited liability company, successor by conversion to Cumulus Radio Corporation, a Nevada corporation, formerly known as Citadel Broadcasting Company, a Nevada corporation, formerly known as Citadel Communications Corporation, a Nevada corporation

Print Name: 12 chal S. Denney

Title: FV! > 6C

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document

State of <u>Expression</u> County of <u>Fulton</u>

On <u>Sept. 30</u>, 2020 before me, <u>Hope Relec</u> (insert name and title of the officer) personally appeared <u>Richards</u>. <u>Denning</u> (name of signatory), who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s) or the entity upon behalf of which the person(s) acted, executed the instrument.

WITNESS my hand and official seal.

Signature The True

EXHIBIT A - LEGAL DESCRIPTION

The following described real property in the County of San Joaquin, State of California:

A portion of Section 24, Township 3 South, Range 4 East, Mount Diablo Base and Meridian, being Parcel A as shown upon Parcel Map filed January 20, 1976, in Volume 2 of Parcel Maps, at Page 113, San Joaquin County Records.

TOGETHER WITH AND SUBJECT TO

A 25-foot private right of way to be used for access to proposed radio tower only as shown upon Parcel Map filed January 20, 1976, in Volume 2 of Parcel Maps, at Page 113, San Joaquin County Records.

AND BEING the same property conveyed to Citadel Communications Corporation, a Nevada corporation from Fuller-Jeffrey Broadcasting Companies, Inc., a corporation by Corporation Grant Deed dated September 24, 1993 and recorded October 4, 1993 in Instrument No. 93114694.

Tax Parcel No. 251-120-080-000

EXHIBIT D

City's Letter of Self-Insurance

City & County of San Francisco

London N. Breed, Mayor

Office of the City Administrator

Carmen Chu, City Administrator Matt Hansen, Director, Risk Management

March 17, 2022

VB NIMBUS, LLC

Attn: Pilar Lozano, Regional Leasing Specialist 750 Park of Commerce Drive, Suite 200 Boca Raton, Florida 33487

RE: SFPUC Water Radio Replacement Project

This letter certifies that the City and County of San Francisco is self-insured and self-funded for the following insurance coverages, which cover the City and County of San Francisco, its officers and employees.

Comprehensive General Liability insurance in the amount of \$6,000,000 per occurrence and \$6,000,000 general aggregate for bodily injury, property damage, and personal injury to third parties for liability arising out of the City's negligence in performance of this agreement.

Automobile Liability insurance with limits not less than \$1,000,000 combined single limit per accident for bodily injury and property damage including owned, and non-owned and hired auto coverage as applicable.

Workers' Compensation in statutory amounts with Employer's Liability of \$1,000,000 per accident, injury or illness.

The City and County of San Francisco's self-insurance program is not commercial insurance and has no legal capacity to name another entity as additional insured.

Do not hesitate to contact this office should you have any questions.

Sincerely,

Matt Hansen Director

cc: Sondra Greene, SFPUC

EXHIBIT E

City Requirements

EXHIBIT E

CITY PROVISION

- 1. MacBride Principles Northern Ireland. The provisions of San Francisco Administrative Code Section 12F are incorporated into this Agreement by this reference and made part of this Agreement. Owner confirms that Owner has read and understood that City and County of San Francisco ("City") urges companies doing business in Northern Ireland to resolve employment inequities and to abide by the MacBride Principles, and urges San Francisco companies to do business with corporations that abide by the MacBride Principles.
- 2. Controller's Certification of Funds. The terms of this Agreement are governed by and subject to the budgetary and fiscal provisions of City's Charter. Notwithstanding anything to the contrary contained in this Agreement, there will be no obligation for the payment or expenditure of money by City under this Agreement unless the Controller of the City and County of San Francisco first certifies, under Section 3.105 of City's Charter, that there is a valid appropriation from which the expenditure may be made and that unencumbered funds are available from the appropriation to pay the expenditure. Without limiting the foregoing, if in any fiscal year of City after the fiscal year in which the Term of this Agreement commences, sufficient funds for the payment of Rent are not appropriated, then City may terminate this Agreement, without penalty, liability, or expense of any kind to City, as of the last date on which sufficient funds are appropriated. City will use its reasonable efforts to give Owner reasonable advance notice of the termination.

3. Non Discrimination in City Contracts and Benefits Ordinance.

(a) Covenant Not to Discriminate

In the performance of this Agreement, Owner will not to discriminate against any employee of Owner, any City employee working with Owner, any applicant for employment with Owner, or against any person seeking accommodations, advantages, facilities, privileges, services, or membership in all business, social, or other establishments or organizations on the basis of the fact or perception of a person's race, color, creed, religion, national origin, ancestry, age, height, weight, sex, sexual orientation, gender identity, domestic partner status, marital status, disability or Acquired Immune Deficiency Syndrome or HIV status (AIDS/HIV status), or association with members of those protected classes, or in retaliation for opposition to discrimination against those classes.

(b) Subcontracts

Owner will include in all subcontracts relating to the Site a non-discrimination clause applicable to the subcontractor in substantially the form of subsection (a) above. In addition, Owner will incorporate by reference in all subcontracts the provisions of San Francisco Administrative Code Sections 12B.2(a), 12B.2(c)-(k), and 12C.3 and require all subcontractors to comply with those provisions. Owner's failure to comply with the obligations in this subsection will constitute a material breach of this Agreement.

(c) Non-Discrimination in Benefits

Owner does not as of the date of this Agreement, and will not during the Term, in any of its operations in San Francisco, on real property owned by City, or where the work is being performed for City or elsewhere within the United States, discriminate in the provision of bereavement leave, family medical leave, health benefits, membership or membership discounts, moving expenses, pension and retirement benefits, or travel benefits, as well as any benefits other than the benefits specified above, between employees with domestic partners and

employees with spouses, and/or between the domestic partners and spouses of the employees, where the domestic partnership has been registered with a governmental entity under state or local law authorizing that registration, subject to the conditions set forth in San Francisco Administrative Code Section 12B.2(b).

(d) CMD Form

As a condition to this Agreement, Owner will execute the "Chapter 12B Declaration: Nondiscrimination in Contracts and Benefits" form (Form CMD-12B-101) with supporting documentation and secure the approval of the form by the San Francisco Contract Monitoring Division (the "CMD"). Owner represents that before execution of the Agreement: (i) Owner executed and submitted to the CMD Form CMD-12B-101 with supporting documentation, and (ii) the CMD approved the form.

(e) Incorporation of Administrative Code Provisions by Reference

The provisions of San Francisco Administrative Code Chapters 12B and 12C relating to non-discrimination by parties contracting for the lease of property to City are incorporated into this Section by reference and made a part of this Agreement as though fully set forth. Owner will comply fully with and be bound by all of the provisions that apply to this Agreement under Administrative Code Chapters 12B and 12C, including the remedies provided in those Chapters. Without limiting the foregoing, Owner understands that under San Francisco Administrative Code Section 12B.2(h) a penalty of Fifty Dollars (\$50) for each person for each calendar day during which that person was discriminated against in violation of the provisions of this Agreement may be assessed against Owner and/or deducted from any payments due Owner.

- **4. Resource-Efficient City Buildings.** Owner acknowledges that the City and County of San Francisco has enacted San Francisco Environment Code Sections 700 to 713 relating to green building requirements for the design, construction, and operation of City buildings. Owner will comply with all applicable provisions of those code sections.
- 5. Sunshine Ordinance. In accordance with San Francisco Administrative Code Section 67.24(e), contracts, contractors' bids, leases, agreements, responses to Requests for Proposals, and all other records of communications between City and persons or firms seeking contracts will be open to inspection immediately after a contract has been awarded. Nothing in this provision requires the disclosure of a private person's or organization's net worth or other proprietary financial data submitted for qualification for a contract, lease, agreement, or other benefit until and unless that person or organization is awarded the contract, lease, agreement, or benefit. Information provided that is covered by this Section will be made available to the public on request.
- **6. Conflicts of Interest.** Through its execution of this Agreement, Owner acknowledges that it is familiar with the provisions of City's Campaign and Governmental Conduct Code Article III, Chapter 2 and California Government Code Section 87100 <u>et seq.</u> and Section 1090 <u>et seq.</u>, and certifies that it does not know of any facts that would constitute a violation of those provisions. If Owner becomes aware of any such fact during the Term of this Agreement, Owner will immediately notify City.
- 7. Notification of Prohibition on Contributions. By executing this Agreement, Owner acknowledges its obligations under Section 1.126 of the City's Campaign and Governmental Conduct Code, which prohibits any person who leases, or seeks to lease, to or from any department of the City any land or building from making any campaign contribution to (a) a City elected official if the lease must be approved by that official, (b) a candidate for that City elective office, or (c) a committee controlled by that elected official or a candidate for that

office, at any time from the submission of a proposal for the lease until the later of either the termination of negotiations for the lease or twelve (12) months after the date the City approves the lease. Owner acknowledges that the foregoing restriction applies only if the lease or a combination or series of leases or other contracts approved by the same individual or board in a fiscal year have a total anticipated or actual value of One Hundred Thousand Dollars (\$100,000) or more. Owner further acknowledges that (i) the prohibition on contributions applies to each prospective party to the lease; any person with an ownership interest of more than ten percent (10%) in Owner; any subcontractor listed in the lease; and any committee that is sponsored or controlled by Owner; and (ii) within thirty (30) days of the submission of a proposal for the Lease, the City department with whom Owner is leasing is obligated to submit to the Ethics Commission the parties to the lease and any subcontractor. Additionally, Owner certifies that it has informed each such person of the limitation on contributions imposed by Section 1.126 by the time it submitted a proposal for the lease, and has provided the names of the persons required to be informed to the City department with whom it is leasing.

8. Preservative-Treated Wood Containing Arsenic

Owner may not purchase preservative-treated wood products containing arsenic in the performance of this Agreement unless an exemption from the requirements of Environment Code Chapter 13 is obtained from the Department of Environment under Environment Code Section 1304. The term "preservative-treated wood containing arsenic" means wood treated with a preservative that contains arsenic, elemental arsenic, or an arsenic copper combination, including chromated copper arsenate preservative, ammoniac copper zinc arsenate preservative, or ammoniacal copper arsenate preservative. Owner may purchase preservative-treated wood products on the list of environmentally preferable alternatives prepared and adopted by the Department of Environment. This provision does not preclude Owner from purchasing preservative-treated wood containing arsenic for saltwater immersion. The term "saltwater immersion" means a pressure-treated wood that is used for construction purposes or facilities that are partially or totally immersed in saltwater.

9. Contractor Vaccination Requirements

- (a) Owner acknowledges that it has read the requirements of the 38th Supplement to Mayoral Proclamation Declaring the Existence of a Local Emergency ("Emergency Declaration"), dated February 25, 2020, and the Contractor Vaccination Policy for City Contractors issued by the City Administrator ("Contractor Vaccination Policy"), as those documents may be amended from time to time. A copy of the Contractor Vaccination Policy can be found at: https://sf.gov/confirm-vaccine-status-your-employees-and-subcontractors. Any undefined, initially-capitalized term used in this Section has the meaning given to that term in the Contractor Vaccination Policy.
- (b) A Contract, as defined in the Emergency Declaration, is an agreement between the City and any other entity or individual and any subcontract under such agreement, where Covered Employees of the contractor or subcontractor work in-person with City employees at a facility owned, leased, or controlled by the City. A Contract includes such agreements currently in place or entered into during the term of the Emergency Declaration. A Contract does not include an agreement with a state or federal governmental entity or agreements that does not involve the City paying or receiving funds.
- (c) Owner has read the Contractor Vaccination Policy. In accordance with the Emergency Declaration, if this Agreement is (or becomes) a Contract as defined in the Contractor Vaccination Policy, Owner agrees that:

- (I) Owner shall ensure it complies with the requirements of the Contractor Vaccination Policy pertaining to Covered Employees, as they are defined under the Emergency Declaration and the Contractor Vaccination Policy, and insure such Covered religious grounds; and
- (II) If Owner grants Covered Employees an exemption based on medical or religious grounds, Owner will promptly notify City by completing and submitting the Covered Employees Granted Exemptions Form ("Exemptions Form"), which can be found at https://sf.gov/confirm-vaccine-status-your-employees-and-subcontractors (navigate to "Exemptions" to download the form).