TREASURE ISLAND / YERBA BUENA ISLAND

REDEVELOPMENT PROJECT

Volume 5 – Appendices D-I

CITY AND COUNTY OF SAN FRANCISCO PLANNING DEPARTMENT CASE NO. 2007.0903E

STATE CLEARINGHOUSE NO. 2008012105

DRAFT EIR PUBLICATION DATE: JULY 12, 2010

DRAFT EIR PUBLIC HEARING DATE: AUGUST 12, 2010

DRAFT EIR PUBLIC COMMENT PERIOD: JULY 12, 2010 - AUGUST 26, 2010

(EXTENDED TO SEPTEMBER 10, 2010)

COMMENTS AND RESPONSES PUBLICATION DATE: MARCH 10, 2011

FINAL EIR CERTIFICATION DATE: APRIL 21, 2011

TREASURE ISLAND / YERBA BUENA ISLAND REDEVELOPMENT PROJECT

Final Environmental Impact Report Volume 5 – Appendices D-I

CITY AND COUNTY OF SAN FRANCISCO PLANNING DEPARTMENT CASE NO. 2007.0903E

STATE CLEARINGHOUSE NO. 2008012105

DRAFT EIR PUBLICATION DATE: JULY 12, 2010

DRAFT EIR PUBLIC HEARING DATE: AUGUST 12, 2010

DRAFT EIR PUBLIC COMMENT PERIOD: JULY 12, 2010 - AUGUST 26, 2010

(EXTENDED TO SEPTEMBER 10, 2010)

COMMENTS AND RESPONSES PUBLICATION DATE: MARCH 10, 2011

FINAL EIR CERTIFICATION DATE: APRIL 21, 2011

Changes from the Draft EIR are indicated by a dot (●) in the left margin.

TREASURE ISLAND / YERBA BUENA ISLAND REDEVELOPMENT PROJECT FINAL EIR

TABLE OF CONTENTS Volumes 1 – 6

VOLUME 1

SI	TN	M	Λſ	Δ	R	V

I.	INTRODUCTION	I.1
II.	PROJECT DESCRIPTION	II.1
III.	PLANS AND POLICIES	III.1
IV.	ENVIRONMENTAL SETTING AND IMPACTS	
	A. Land Use and Land Use Planning	IV.A.1
	B. Aesthetics	
	C. Population and Housing	IV.C.1
	D. Cultural and Paleontological Resources	
	E. Transportation	IV.E.1
	F. Noise	
	G. Air Quality	IV.G.1
	H. Greenhouse Gas Emissions	
VOL IV.	LUME 2 ENVIRONMENTAL SETTING AND IMPACTS (continued)	
1 V .	I. Wind and Shadow	
	J. Recreation	
	K. Utilities and Service Systems	
	L. Public Services	
	M. Biological Resources	
	N. Geology and Soils	
	O. Hydrology and Water Quality	
	P. Hazards and Hazardous Materials	
	Q. Mineral and Energy Resources	
T 7	C	
V.	OTHER CEQA ISSUES	V.1
VI.	PROJECT VARIANTS	VI.1
VII.	ALTERNATIVES TO THE PROPOSED PROJECT	VII.1
VIII.	AUTHORS AND PERSONS CONSULTED	VIII.1

VOLUME 3

• IX. COMMENTS AND RESPONSES

VOLUME 4

APPENDICES

- A. Notice of Preparation
- B. Public Scoping Report
- C. Transportation Impact Study

VOLUME 5

APPENDICES (continued)

- D. Noise Calculations
- E. Air Quality Health Risk Assessment
- F. Approach to Greenhouse Gas Emissions
- G. Treasure Island Wind Conditions Technical Memorandum
- H. Flora of Yerba Buena Island, San Francisco County
- I. Final Water Supply Assessment

VOLUME 6

• APPENDICES (continued) – COMMENTS AND RESPONSES

- J. DEIR Comment Letters
- K. Transcript of Draft EIR Public Hearing

APPENDIX D: NOISE CALCULATIONS

TI/YBI Redevelopment Project

Vibration propogation from Construction Equipment

Formula from FTA,	2006 = PPVequip = PPV where	ref x (25/D)^1.5						
PPV refs @ 25 ft =	pile driver (impac pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer	PPV@25ft 1.518 0.734 0.089 0.076 0.035	PPV refs @ 25 ft =	pile driver (impac pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer		PPV refs @ 25 ft =	pile driver (imp pile driver (soni Bulldozer (large Truck(loaded) Jackhammer	ic) 0.734
Enter distance =	50 Adjace	ent Buildings	Enter distance =	100		Enter distance =	200	
Resultant PPV =	pile driver (impact) pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer Truck		Resultant PPV =	pile driver (impact) pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer		Resultant PPV =		0.067087 0.032439 0.003933 0.003359 0.001547
	pile driver (impact) pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer	112 105 87 86 79		pile driver (impact) pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer	112 105 87 86 79		pile driver (impact) pile driver (sonic) Bulldozer (large) Truck(loaded) Jackhammer	112 105 87 86 79
Resultant Lv =	Bulldozer (large) 77.9 Truck(loaded) 76.9	9691 9691 9691 9691 9691	Resultant Lv =	pile driver (sonic) 86. Bulldozer (large) 68. Truck(loaded) 67.	9382 9382 9382 9382 9382	Resultant Lv =	pile driver (sonic) 7 Bulldozer (large) 5 Truck(loaded) 5	44.9073 77.9073 99.9073 88.9073 11.9073

AM PEAK HOUR

	TOTAL				VEHICLE TYPE	%		Vehical Speed	Distance to	TNM 2.5 Lookup
No.	Avenue of the Palms, north of 1st Stre # VEHICLES	Auto %	Medium Truck Auto % MT	Heavy Truck % H	Bus HT %	Motorcycle Bus %	moto	miles/hour	Receptor (feet)	Result (dBA)
1	Existing 407	85	346 3 12	5 2	20 3	12 4	16	25	50	61.9
2	Exist + Project (Funded) 1,516 Exist + Project (Enhanced) 1,241	86 83	1,298 3 45 1,027 3 37		76 2 62 5	36 4 65 4	61 50	25 25	50 50	67.6 67.2
4	Exist + Alternative (Funded) 1,264	85	1,076 3 38		63 3	36 4	51	25	50	66.9
5	Exist + Alternative (Enhanced) 1,040	82	850 3 31		52 6	65 4	42	25	50	66.6
6 7	2030 No Project 1,516 2030 + Project (Funded) 1,516	87 86	1,322 3 45 1,298 3 45		76 1 76 2	12 4 36 4	61 61	25 25	50 50	67.2 67.6
8	2030 + Project (Enhanced) 1,040	82	850 3 31		52 6	65 4	42	25	50	66.6
9	2030 + Alternative (Funded) 864	84	724 3 26		43 4	36 4	35	25	50	66.5
10	2030 + Alternative (Enhanced) 1,040	82	8 50 3 3 1	5	52 6	65 4	42	25	50	66.6
	TOTAL		VEHICLE TYPE %		VEHICLE TYPE			Vehical Speed	Distance to	TNM 2.5 Lookup
No.	Avenue of the Palms, south of 1st Str # VEHICLES	<u>Auto</u> %	Medium Truck Auto % MT	Heavy Truck % F	Bus HT %	Motorcycle Bus %	moto	miles/hour	Receptor (feet)	Result (dBA)
11	Existing 431	85	367 3 13		22 3	12 4	17	25	50	62.2
12	Exist + Project (Funded) 1,855	86	1,596 3 56 1,371 3 49		93 2 82 4	36 4 65 4	74 65	25	50 50	68.3
13 14	Exist + Project (Enhanced) 1,632 Exist + Alternative (Funded) 1,667	84 86	1,371 3 49 1,431 3 50		83 2	65 4 36 4	67	25 25	50	68.2 67.9
15	Exist + Alternative (Enhanced) 1,371	83	1,141 3 41	5	69 5	65 4	55	25	50	67.8
16 17	2030 No Project 1,993 2030 + Project (Funded) 1,993	87 86	1,742 3 60 1,718 3 60		00 1	12 4 36 4	80 80	25 25	50 50	68.4 68.6
18	2030 + Project (Enhanced) 1,371	83	1,141 3 41		69 5	65 4	55	25	50	67.6
19	2030 + Alternative (Funded) 1,267	85	1,079 3 38		63 3	36 4	51	25	50	66.9
20	2030 + Alternative (Enhanced) 1,371	83	1,141 3 41	5	69 5	65 4	55	25	50	67.6
No	TOTAL	A	VEHICLE TYPE %	Heavy Truck	VEHICLE TYPE			Vehical Speed	Distance to	TNM 2.5 Lookup
NO.	1st Street, east of Avenue of the Palm #VEHICLES	<u>Auto</u> %	Medium Truck Auto % MT		Bus HT %	Motorcycle Bus %	moto	miles/hour	Receptor (feet)	Result (dBA)
21	Existing 24	38	9 3 1		1 50	12 4	1	25	50	54.6
22 23	Exist + Project (Funded) 717 Exist + Project (Enhanced) 589	83 77	595 3 22 453 3 18		36 5 29 11	36 4 65 4	29 24	25 25	50 50	64.8 64.9
24	Exist + Alternative (Funded) 599	82	491 3 18		30 6	36 4	24	25	50	64.2
25	Exist + Alternative (Enhanced) 491	75	367 3 15		25 13	65 4	20	25	50	64.5
26 27	2030 No Project 717 2030 + Project (Funded) 717	86 83	619 3 22 595 3 22		36 2 36 5	12 4 36 4	29 29	25 25	50 50	64.2 64.8
28	2030 + Project (Enhanced) 491	75	367 3 15	5 2	25 13	65 4	20	25	50	64.5
29 30	2030 + Alternative (Funded) 599 2030 + Alternative (Enhanced) 491	82 75	491 3 18 367 3 15		30 6 25 13	36 4 65 4	24 20	25 25	50 50	64.2 64.5
30	2030 + Alternative (Elinanceu) 491	75	307 3 13	5	23 13	03 4	20	25	30	64.5
	PM PEAK HOUR									
	TOTAL		VEHICLE TYPE %		VEHICLE TYPE	%		Vehical Speed	Distance to	TNM 2.5 Lookup
No.	TOTAL Avenue of the Palms north of 1st Stre #VEHICLES	Auto	Medium Truck	Heavy Truck	<u>Bus</u>	Motorcycle	mata	Vehical Speed miles/hour	Distance to Receptor (feet)	TNM 2.5 Lookup Result (dBA)
No.		<u>Auto</u> % 83		% H	<u>Bus</u>		moto			
31 32	Existing 315 Exist+ Project (Funded) 2,057	% 83 86	Medium Truck Auto % MT 261 3 9 1,770 3 62	% H	Bus HT % 16 5 03 2	Motorcycle Bus % 16 4 4 4 4	13 82	miles/hour 25 25	Receptor (feet) 50 50	Result (dBA) 61.3 68.8
31 32 33	Existing 315 Exist + Project (Funded) 2,057 Exist + Project (Enhanced) 1,726	% 83 86 83	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52	% H 5 1	Bus HT % 16 5 103 2 86 5	Motorcycle	13 82 69	miles/hour 25 25 25	50 50 50	61.3 68.8 68.7
31 32	Existing 315 Exist+ Project (Funded) 2,057	% 83 86	Medium Truck Auto % MT 261 3 9 1,770 3 62	% F 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Bus HT % 16 5 03 2	Motorcycle Bus % 16 4 4 4 4	13 82	miles/hour 25 25	Receptor (feet) 50 50	Result (dBA) 61.3 68.8
31 32 33 34 35 36	Avenue of the Palms north of 1st Stre # VEHICLES Existing	% 83 86 83 86 82 87	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,794 3 62	% H 5 1 5 5 5 5 5 5 1 5 1 1	Bus HT % 16 5 103 2 86 5 94 2 77 6 103 1	Motorcycle Bus % 16 4 40 4 92 4 40 4 92 4 16 4	13 82 69 75 62 82	25 25 25 25 25 25 25 25	50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5
31 32 33 34 35 36 37	Avenue of the Palms north of 1st Stre	% 83 86 83 86 82 87 86	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,770 3 62	% H 5 1 5 5 5 5 5 5 1 5 5 1 5 5 1 1 5 5 1 1	HT % 16 5 103 2 886 5 94 2 777 6 103 1 103 2	Motorcycle	13 82 69 75 62 82	25 25 25 25 25 25 25 25 25 25	50 50 50 50 50 50 50 50 50	61.3 68.8 68.7 68.4 68.3 68.5 68.8
31 32 33 34 35 36 37 38 39	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,794 3 62 1,770 3 62 1,268 3 46 1,610 3 56	% F 5 1 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Bus % 16 5 103 2 886 5 94 2 777 6 103 2 777 6 104 2 777 6 105 2 107 6 108 2 10	Motorcycle	13 82 69 75 62 82 82 62 75	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4
31 32 33 34 35 36 37 38	Avenue of the Palms north of 1st Stre	% 83 86 83 86 82 87 86 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,770 3 62 1,770 3 62 1,268 3 46	% F 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Bus % 16 5 103 2 86 5 94 2 777 6 003 1 003 2 777 6	Motorcycle	13 82 69 75 62 82 82 62	25 25 25 25 25 25 25 25 25 25 25 25	50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3
31 32 33 34 35 36 37 38 39	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,794 3 62 1,770 3 62 1,268 3 46 1,610 3 56	% F 5 1 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Bus % 16 5 103 2 886 5 94 2 777 6 103 2 777 6 104 2 777 6 105 2 107 6 108 2 10	Motorcycle	13 82 69 75 62 82 82 62 75	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4
31 32 33 34 35 36 37 38 39 40	Avenue of the Palms north of 1st Stre	% 83 86 83 86 82 87 86 82 86 82	Medium Truck	% F 5 1 5 5 5 5 1 5 5 7 5 5 7 5 7 5 7 7 5 7 7 5 7 7 7 7	Bus % HT % 16 5 103 2 86 5 94 2 777 6 103 1 103 2 777 6 94 2 777 6 94 6 94 1 8 USHICLE TYPE Bus	Motorcycle	13 82 69 75 62 82 82 62 75 62	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 5	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4
31 32 33 34 35 36 37 38 39 40	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 82 87 86 82 86 82	Medium Truck	% F 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HT % 16 5 103 2 86 5 94 2 77 6 103 1 103 2 77 6 94 2 77 6 VEHICLE TYPE Bus HT %	Motorcycle	13 82 69 75 62 82 82 62 75 62	miles/hour 25 25 25 25 25 25 25 25 25 25 25 Vehical Speed miles/hour	Receptor (feet) 50 50 50 50 50 50 50 50 50 5	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.3 7 TNM 2.5 Lookup Result (dBA)
31 32 33 34 35 36 37 38 39 40 No.	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,794 3 62 1,770 3 62 1,610 3 56 1,610 3 56 1,268 3 46 VEHICLE TYPE % Medium Truck Auto % MT 310 3 11 2,168 3 75	% F 5 1 5 5 5 7 5 7 5 1 5 5 7 5 7 5 7 5 1 7 5 7 5	Bus	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 Comparison of the comparison of	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6
31 32 33 34 35 36 37 38 39 40 No.	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,770 3 62 1,68 3 46 1,610 3 56 1,68 3 46 VEHICLE TYPE % Medium Truck Auto % MT 310 3 11 2,168 3 75 1,955 3 70	% F 5 1 5 5 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	HT 8 Bus	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15 100 93	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 Character to Receptor (feet) 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7
31 32 33 34 35 36 37 38 39 40 No.	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 82	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,794 3 62 1,770 3 62 1,610 3 56 1,610 3 56 1,268 3 46 VEHICLE TYPE % Medium Truck Auto % MT 310 3 11 2,168 3 75	% F 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5	Bus	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 Comparison of the comparison of	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6
31 32 33 34 35 36 37 38 39 40 No. 41 42 43 44 45 46	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 88 84 86 84 86 84 86 87	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,770 3 62 1,610 3 56 1,610 3 56 1,628 3 46 VEHICLE TYPE % Medium Truck Auto MT 310 3 11 2,168 3 75 1,955 3 70 2,184 3 76 1,742 3 63 1,742 3 63 2,426 3 83	% F 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HT 8us % HT 55 HT 66 HT 75	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15 100 93 101 83 111	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 Comparison of the comparison of th	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8
31 32 33 34 35 36 37 38 39 40 No. 41 42 43 44 45 46 47	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 84 86 84 86 84	Medium Truck	% F 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Bus	Motorcycle Bus	13 82 69 75 62 82 62 75 62 15 100 93 101 83 111 111	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 60 Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 7TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0
31 32 33 34 35 36 37 38 39 40 No. 41 42 43 44 45 46	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 88 84 86 84 86 84 86 87	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 56 1,268 3 46 1,770 3 62 1,610 3 56 1,610 3 56 1,628 3 46 VEHICLE TYPE % Medium Truck Auto MT 310 3 11 2,168 3 75 1,955 3 70 2,184 3 76 1,742 3 63 1,742 3 63 2,426 3 83	% F 5 1 5 5 5 1 5 5 5 1 5	HT 8us	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15 100 93 101 83 111	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 Comparison of the comparison of th	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8
31 32 33 34 35 36 37 38 39 40 No. 41 42 43 44 45 46 47 48	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 88 84 86 84 87 87 87	Medium Truck	%	Bus	Motorcycle	13 82 69 75 62 82 62 75 62 moto 15 100 93 111 111 83	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 60 Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3
31 32 33 34 35 36 37 38 39 40 No. 41 42 43 44 45 46 47 48	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 88 84 86 84 86 84 86 84 87	Medium Truck Auto % MT 261 3 9 1,770 3 62 1,427 3 52 1,610 3 46 1,794 3 42 1,770 3 42 1,610 3 56 1,268 3 46 VEHICLE TYPE % Medium Truck Auto % MT 310 3 11 2,168 3 75 1,955 3 70 2,184 3 76 1,742 3 63 2,426 3 83 2,402 3 83 2,184 3 76	% F 5 1 5 5 5 1 5 5 5 1 5	HT 8	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15 100 93 101 111 111 83 101	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 60 Distance to Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.8 69.3 69.6
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 444 455 466 477 488 950	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 84 86 84 86 84 86 84 87 87 87	Medium Truck	% F 5 1 5 5 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	HT 16	Motorcycle	13 82 69 75 62 82 82 62 75 62 moto 15 100 93 101 111 111 83 101	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.8 71.0 69.3 69.8 TNM 2.5 Lookup
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 444 455 466 477 488 950	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 82 84 86 84 86 84 87 87 87	Medium Truck	% F	HT 8 Ws HT 16 S 10 S	Motorcycle Bus	13 82 69 75 62 82 82 62 75 62 15 100 93 101 83 111 111 83 101 83	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.6 69.3
311 322 333 344 355 366 377 388 39 40 No. 411 422 433 444 455 466 477 488 950	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 84 86 84 86 84 86 84 86 84 87 87 87 84 86 84 86 84 87	Medium Truck	% F	Bus	Motorcycle	moto 111 83 101	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.8 71.0 69.3 69.8 TNM 2.5 Lookup
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 444 455 50 No. 511 522	Avenue of the Palms north of 1st Stre # VEHICLES	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 84 86 84 86 84 87 87 84 86 84 86 84 87 87 84 86 84 88 84	Medium Truck	%	Bus	Motorcycle Sus	moto 13 82 82 62 75 62 82 82 62 75 62 83 101	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 70.0 69.6 69.3 69.8 70.0 69.3 69.8 70.0 69.3 69.8 70.0 69.3 69.8 70.0 69.3 69.8 70.0 69.3 69.8 70.0 69.3
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 444 455 466 477 488 499 50	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 84 86 84 86 84 87 87 87 84 86 84 86 84 87 87	Medium Truck	%	Bus % % % % % % % % %	Motorcycle	13 82 69 75 62 82 82 62 75 62 83 101	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 TNM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.6 69.3 TNM 2.5 Lookup Result (dBA)
311 322 333 344 355 366 377 388 399 40 No. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. V	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 84 86 84 86 84 87 87 87 84 86 84 86 84 87 87 87 87 84 86 84 86 84 87	Medium Truck MT	%	Bus	Motorcycle Sus	moto 15 101 83 101 83 101 83 101 83 22 38 32 28	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 70.0 69.6 69.7 69.6 69.3 69.8 70.0 69.3 70.0 69.3 70.0 69.3 69.6 69.3 70.0 69.3 69.6 69.3 69.6 69.3
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 446 477 488 499 50 No. 511 522 533 544 555 66	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 Auto % 84 86 84 87 87 87 84 86 84 86 84 87 87 87 87 87 87 88 86	Medium Truck	%	Bus	Motorcycle Sus	13 82 69 75 62 82 82 62 75 62 15 100 183 101 83 101 83 101 83 101 83 32 35 28 38 38	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 7. Constant (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.6 69.3 70.0 69.3 69.6 69.3 70.0 69.3 69.6 69.3 69.6 69.3
311 322 333 344 355 366 377 388 399 40 No. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. Vo. V	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 82 86 84 86 84 86 84 87 87 87 84 86 84 86 84 87 87 87 87 84 86 84 86 84 87	Medium Truck MT	%	Bus	Motorcycle Sus	moto 15 101 83 101 83 101 83 101 83 22 38 32 28	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 70.0 69.6 69.7 69.6 69.3 69.8 70.0 69.3 70.0 69.3 70.0 69.3 69.6 69.3 70.0 69.3 69.6 69.3
311 322 333 344 355 366 377 388 399 40 No. 411 422 433 446 447 455 50 No. 511 522 533 544 555 665 577 586 596 597 598 598 598 598 598 598 598 598 598 598	Existing	% 83 86 83 86 82 87 86 82 86 82 86 82 86 84 86 84 86 84 86 84 87 87 87 87 84 86 84 86 84 86 84 86 84 86 84 86 88 88 88 88 88 88 88 88 88 88 88 88	Medium Truck Auto	% F	Bus	Motorcycle	moto moto moto 13 82 82 82 82 62 75 62 moto 15 100 93 101 111 83 101 83 moto 2 38 38 38	miles/hour 25 25 25 25 25 25 25 25 25 25 25 25 25	Receptor (feet) 50 50 50 50 50 50 50 50 50 50 50 50 50	Result (dBA) 61.3 68.8 68.7 68.4 68.3 68.5 68.8 68.3 68.4 68.3 7. NM 2.5 Lookup Result (dBA) 61.9 69.6 69.7 69.6 69.3 69.8 70.0 69.3 69.6 69.3 TNM 2.5 Lookup Result (dBA) 56.8 65.9 66.3 65.5 66.0 65.3 65.9

SATURDAY PEAK HOUR

		TOTAL		VEHICLE TYP	€ %		VEI	HICLE TYP	E %		Vehical Speed	Distance to	TNM 2.5 Lookup
No.	Avenue of the Palms north of 1st Stre	# VEHICLES	Auto	Medium Truc	<u>k</u>	Heavy Truck		Bus	Motorcycle		miles/hour	Receptor (feet)	Result (dBA)
	_		%	Auto %	MT	%	HT	%	Bus %	moto			
61	Existing	221	83	182 3	7	5	11	5	12 4	9	25	50	59.8
62	Exist + Project (Funded)	2,343	86	2,026 3	70	5	117	2	36 4	94	25	50	69.3
63	Exist + Project (Enhanced)	2,044	85	1,734 3	61	5	102	3	65 4	82	25	50	69.0
64	Exist + Alternative (Funded)	2,123	86	1,832 3	64	5	106	2	36 4	85	25	50	68.9
65	Exist + Alternative (Enhanced)	1,852	84	1,565 3	56	5	93	4	65 4	74	25	50	68.7
66	2030 No Project	2,343	87	2,050 3	70	5	117	1	12 4	94	25	50	69.0
67	2030 + Project (Funded)	2,343	86	2,026 3	70	5	117	2	36 4	94	25	50	69.3
68	2030 + Project (Enhanced)	1,852	84	1,565 3	56	5	93	4	65 4	74	25	50	68.7
69	2030 + Alternative (Funded)	2,123	86	1,832 3	64	5	106	2	36 4	85	25	50	68.9
70	2030 + Alternative (Enhanced)	1,852	84	1,565 3	56	5	93	4	65 4	74	25	50	68.7
		TOTAL		VEHICLE TYP			VEI	HICLE TYP			Vehical Speed	Distance to	
No.	Avenue of the Palms south of 1st Stre	# VEHICLES	<u>Auto</u>	Medium Truc	_	Heavy Truck		<u>Bus</u>	Motorcycle		miles/hour	Receptor (feet)	
74	F.::: [200	%	Auto %	MT	%	HT	%	Bus %	moto	0.5	50	00.0
71	Existing	300	84	252 3	9	5 5	15 147	4	12 4 36 4	12	25	50	60.8
72	Exist + Project (Funded)	2,931	87	2,543 3	88			1		117	25	50	70.2
73	Exist + Project (Enhanced)	2,736	86 87	2,343 3	82	5 5	137	2	65 4	109	25	50	70.1
74	Exist + Alternative (Funded)	2,835	85	2,459 3 2,115 3	85	5	142	1	36 4 65 4	113	25	50	70.0
75	Exist + Alternative (Enhanced)	2,477		_,	74	5	124	3	12 4	99	25	50	69.7
76	2030 No Project	3,135	88	2,747 3	94		157 157	- 0	36 4	125	25	50	70.3
77	2030 + Project (Funded)	3,135	87	2,723 3	94	5		1		125	25	50	70.5
78	2030 + Project (Enhanced)	2,477	85	2,115 3	74	5	124	3	65 4	99	25	50	69.7
79	2030 + Alternative (Funded)	2,835	87	2,459 3	85	5	142	1	36 4 65 4	113	25	50	70.0
80	2030 + Alternative (Enhanced)	2,477	85	2,115 3	74	5	124	3	65 4	99	25	50	69.7
		TOTAL		VEHICLE TYP	- %		VE	HICLE TYP	E %		Vehical Speed	Distance to	
No.	Avenue of the Palms south of 1st Stre	# VEHICLES	Auto	Medium Truc		Heavy Truck		Bus	Motorcycle		miles/hour	Receptor (feet)	
			%	Auto %	МТ	%	HT	%	Bus %	moto		,	
81	Existing	79	73	58 3	2	5	4	15	12 4	3	25	50	56.7
82	Exist + Project (Funded)	1,088	85	921 3	33	5	54	3	36 4	44	25	50	66.3
83	Exist + Project (Enhanced)	950	81	771 3	29	5	48	7	65 4	38	25	50	66.4
84	Exist + Alternative (Funded)	982	84	828 3	29	5	49	4	36 4	39	25	50	65.9
85	Exist + Alternative (Enhanced)	859	80	691 3	26	5	43	8	65 4	34	25	50	66.0
86	2030 No Project	1,088	87	945 3	33	5	54	1	12 4	44	25	50	65.8
87	2030 + Project (Funded)	1,088	85	921 3	33	5	54	3	36 4	44	25	50	66.3
88	2030 + Project (Enhanced)	859	80	691 3	26	5	43	8	65 4	34	25	50	66.0
89	2030 + Alternative (Funded)	982	84	828 3	29	5	49	4	36 4	39	25	50	65.9
90	2030 + Alternative (Enhanced)	859	80	691 3	26	5	43	8	65 4	34	25	50	66.0
	()	230	30										

Existing - A.M. Weekday Peak Hour Noise Levels Leq

	Roadway Segment	Existing	Existing plus Project (Funded)	dBA Diffence	Significant Increase?	Existing plus Project (Enhanced)	dBA Difference	Significant Increase?
1	Avenue of the Palms, north of 1st Street	61.9	67.6	5.7	Yes	67.2	5.3	Yes
2	Avenue of the Palms, south of 1st Street	62.2	68.3	6.1	Yes	68.2	6.0	Yes
3	1st Street, east of Avenue of the Palms	54.6	64.8	10.2	Yes	64.9	10.3	Yes

Existing - P.M. Weekday Peak Hour Noise Levels Leq

		Existing plus			Existing plus		
		Project	<u>dBA</u>	Significant	Project	<u>dBA</u>	Significant
Roadway Segment	Existing	(Funded)	Diffence	Increase?	(Enhanced)	Difference	Increase?
Avenue of the Palms, north of							
1st Street	61.3	68.8	7.5	Yes	68.7	7.4	Yes
Avenue of the Palms, south of							
1st Street	61.9	69.6	7.7	Yes	69.6	7.7	Yes
1st Street, east of Avenue of							
the Palms	56.8	65.9	9.1	Yes	66.3	9.5	Yes

Existing - Saturday Peak Hour Noise Levels Leq

		Existing plus			Existing plus		
		Project	<u>dBA</u>	Significant	Project	dBA	Significant
Roadway Segment	Existing	(Funded)	Diffence	Increase?	(Enhanced)	Difference	Increase?
Avenue of the Palms, north of							
1st Street	69.3	69.3	0.0	No	69.0	-0.3	No
Avenue of the Palms, south of							
1st Street	60.8	70.2	9.4	Yes	70.1	9.3	Yes
1st Street, east of Avenue of							
the Palms	56.7	66.3	9.6	Yes	66.4	9.7	Yes

2030 - A.M. Weekday Peak Hour Noise Levels Leq

Roadway Segment	Existing	2030 plus Project (Funded)	dBA Diffence	Significant Increase?	2030 plus Project (Enhanced)	dBA Difference	Significant Increase?
Avenue of the Palms, north of 1st Street	61.9	67.6	5.7	Yes	66.6	4.7	Yes
Avenue of the Palms, south of 1st Street	62.2	68.6	6.4	Yes	67.6	5.4	Yes
1st Street, east of Avenue of the Palms	54.6	64.8	10.2	Yes	64.5	9.9	Yes

2030 - P.M. Weekend Peak Hour Noise Levels Leq

Roadway Segment	Existing	2030 plus Project (Funded)	dBA Diffence	Significant Increase?	2030 plus Project (Enhanced)	dBA Difference	Significant Increase?
Avenue of the Palms, north of 1st Street		68.8	7.5	Yes	68.3	7.0	Yes
Avenue of the Palms, south of 1st Street	61.9	70.0	8.1	Yes	69.3	7.4	Yes
1st Street, east of Avenue of the Palms	56.8	65.9	9.1	Yes	66.0	9.2	Yes

2030 - Saturday Peak Hour Noise Levels Leq

Roadway Segment	Existing	2030 plus Project (Funded)	dBA Diffence	Significant Increase?	2030 plus Project (Enhanced)	dBA Difference	Significant Increase?
Avenue of the Palms, north							
of 1st Street	69.3	69.3	0.0	No	68.7	-0.6	No
Avenue of the Palms,							
south of 1st Street	60.8	70.5	9.7	Yes	69.7	8.9	Yes
1st Street, east of Avenue							
of the Palms	56.7	66.3	9.6	Yes	66.0	9.3	Yes


APPENDIX E: AIR QUALITY HEALTH RISK ASSESSMENT

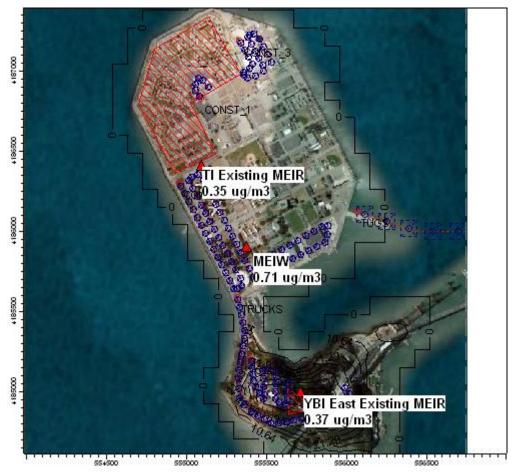
Exposure to Diesel Particulate Matter (DPM) During Construction

Phase 1 Construction

Receptors that would be exposed to DPM during construction of Phase 1 would include existing residents on Treasure Island, existing residents on Yerba Buena Island East and Yerba Buena Island West as well as workers located on the islands. As shown in the figure below, the maximum exposed individual in each of these groups would be exposed to DPM concentrations as follows:

- (1) Treasure Island Existing Maximum Exposed Individual Resident (MEIR): 0.25µg/m³
- (2) Yerba Buena Island (East) MEIR: 0.23 μg/m³
- (3) Yerba Buena Island (West) MEIR: 0.31 μg/m³
- (4) Maximum Exposed Individual Worker (MEIW): 0.35 μg/m³

(Maximum Exposed Individuals from Phase 1 Construction)


Phase 2 Construction

Receptors that would be exposed to DPM during construction of Phase 2 would include existing residents on Treasure Island, existing residents on Yerba Buena Island East as well as workers located on the islands. As shown in the figure below, the maximum exposed individual in each of these groups would be exposed to DPM concentrations as follows:

(1) Treasure Island Existing MEIR: 0.35μg/m³

(2) Yerba Buena Island (East) MEIR: 0.37 μg/m³

(3) Maximum Exposed Individual Worker (MEIW): 0.35 μg/m³

(Maximum Exposed Individuals from Phase 2 Construction)

Phase 3 Construction

Receptors that would be exposed to DPM during construction of Phase 3 would include existing residents on Treasure Island, existing residents on Yerba Buena Island West, new residences constructed during Phase 2 as well as workers located on the islands. As shown in the Figure below, the maximum exposed individual in each of these groups would be exposed to DPM concentrations as follows:

(1) Treasure Island Existing MEIR: 0.05µg/m³

(2) Yerba Buena Island (West) MEIR: 0.06 μg/m³

(3) Phase 2 MEIR: $0.36 \mu g/m^3$

(3) Maximum Exposed Individual Worker (MEIW): 0.55 μg/m³

(Maximum Exposed Individuals from Phase 3 Construction)

Phase 4 Construction

Receptors that would be exposed to DPM during construction of Phase 4would include existing residents on Yerba Buena Island East and Yerba Buena Island West, new residences constructed during Phase 2 and 3 as well as workers located on the islands. As shown in the Figure below, the maximum exposed individual in each of these groups would be exposed to DPM concentrations as follows:

(1) Yerba Buena Island (East) MEIR: 0.01 μg/m³

(2) Yerba Buena Island (West) MEIR: 0.01 μg/m³

(3) Phase 2 MEIR: $0.12 \mu g/m^3$

(4) Phase 3 MEIR: $0.14 \mu g/m^3$

(5) Maximum Exposed Individual Worker (MEIW): 0.17 μg/m³

(Maximum Exposed Individuals from Phase 4 Construction)

Detailed Risk Calculations by Receptor Group from Construction DPM

Existing Treasure Island Residential Receptors

Existing residents located on the northwest corner of the island would be exposed to DPM emissions generated during construction of Phases 1, 2 and 3 of the proposed project. The maximum annual average DPM concentration at any receptor within this neighborhood during construction of Phases 1, 2 and 3 would be 0.25μg/m³, 0.35μg/m³, and 0.05μg/m³, respectively. It should be noted that the maximum annual average DPM concentration for each of these phases would occur at a different receptor within this neighborhood; therefore this analysis presents a conservative analytic assumption as it assumes that an individual receptor would be exposed to the maximum concentration throughout construction. As shown below, incremental cancer risk at the MEIR in this neighborhood from construction of the proposed project would be approximately 8.8 in one million.

Phase 1 (Dose-inh) =
$$\frac{0.25 \mu g/m^3}{(25,550 \text{ days})} \frac{* 302 \text{ L/kg-day} * 1 * 350 \text{ days/year} * 3 \text{ years} * 10^{-6}}{(25,550 \text{ days})}$$

= $3.1 * 10^{-6}$
Phase 2 (Dose-inh) = $\frac{0.35 \mu g/m^3}{(25,550 \text{ days})} \frac{* 302 \text{ L/kg-day} * 1 * 350 \text{ days/year} * 3 \text{ years} * 10^{-6}}{(25,550 \text{ days})}$
= $4.3 * 10^{-6}$
Phase 3 (Dose-inh) = $\frac{0.05 \mu g/m^3}{(25,550 \text{ days})} \frac{* 302 \text{ L/kg-day} * 1 * 350 \text{ days/year} * 3 \text{ years} * 10^{-6}}{(25,550 \text{ days})}$
= $0.6 * 10^{-6}$
Total (Dose-inh) = $(3.1 * 10^{-6}) + (4.3 * 10^{-6}) + (0.6 * 10^{-6})$
= $8.0 * 10^{-6}$
Cancer Risk = $8.0 * 10^{-6}$ mg/kg-day * 1.1 (mg/kg-day)⁻¹
= $8.8 * 10^{-6}$
 ~ 8.8 in one million

Phase 2 Treasure Island Residential Receptors

New residences constructed on Treasure Island during Phase 2 would likely be occupied during construction of Phases 3 and 4 and would therefore be exposed to elevated concentrations of DPM. During construction of Phase 3, the maximum exposed receptor in the area developed during Phase 2 would be exposed to a DPM concentration of up to $0.36\mu g/m^3$ and would be located at the south eastern portion of this area. During construction of Phase 4, the maximum exposed Phase 2 receptor would be exposed to a DPM concentration of up to $0.12\mu g/m^3$ and would be located near the northern end of the Phase 2 development area. It should be noted that the maximum annual average DPM concentration would occur a different receptor within this

cluster of receptors during Phases 3 and 4, thereby rendering this a conservative analysis. As shown below, incremental cancer risk at the MEIR would be 9.9 in one million.

Phase 3 (Dose-inh) =
$$\frac{0.36 \,\mu\text{g/m}^3 * 302 \,\text{L/kg-day} * 1 * 350 \,\text{days/year} * 3 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$$

= $4.5 * 10^{-6}$
Phase 4 (Dose-inh) = $\frac{0.12 \,\mu\text{g/m}^3 * 302 \,\text{L/kg-day} * 1 * 350 \,\text{days/year} * 9 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$
= $4.5 * 10^{-6}$
Total (Dose-inh) = $(4.5 * 10^{-6}) + (4.5 * 10^{-6})$
= $9.0 * 10^{-6}$
Cancer Risk = $9.0 * 10^{-6} \,\text{mg/kg-day} * 1.1 \,(\text{mg/kg-day})^{-1}$
= $9.9 * 10^{-6}$
 $\sim 9.9 \,\text{in one million}$

Phase 3 Treasure Island Residential Receptors

New residences constructed on the east side of Treasure Island during Phase 3 would likely be occupied during construction of Phase 4 and would therefore be exposed to DPM emissions associated with construction activities. During construction of Phase 4, the maximum exposed resident on the east side of the island would be exposed to an annual average DPM concentration of approximately $0.14\mu g/m^3$. As shown below, this would result in an incremental cancer risk of 5.7 in one million.

Phase 4 (Dose-inh) =
$$\frac{0.14 \text{ } \mu\text{g/m}^3 * 302 \text{ L/kg-day} * 1 * 350 \text{ days/year} * 9 \text{ years} * 10^{-6}}{(25,550 \text{ days})}$$

= $5.2 * 10^{-6}$
Cancer Risk = $5.2 * 10^{-6} \text{ mg/kg-day} * 1.1 \text{ (mg/kg-day)}^{-1}$
= $5.7 * 10^{-6}$
 $\sim 5.7 \text{ in one million}$

Existing Yerba Buena Receptors (West)

Existing residences on the western edge of Yerba Buena Island would be exposed to DPM emissions during construction of Phase 1. During Phase 2 it was assumed that existing residents would move out and residences would be demolished and rebuilt. It was assumed that these residences would then be reoccupied during construction of Phases 3 and 4. As a conservative analysis it was assumed that the same receptors would move back into the residences to be reconstructed and would therefore be exposed to elevated DPM concentrations during construction of Phases 1, 3 and 4. As shown below, maximum incremental cancer risk in this neighborhood would be 5.4 in one million.

Phase 1 (Dose-inh) =
$$\frac{0.31 \ \mu g/m^3 * 302 \ L/kg-day * 1 * 350 \ days/year * 3 \ years * 10^{-6}}{(25,550 \ days)}$$

= $3.8 * 10^{-6}$
Phase 3 (Dose-inh) = $\frac{0.06 \ \mu g/m^3 * 302 \ L/kg-day * 1 * 350 \ days/year * 3 \ years * 10^{-6}}{(25,550 \ days)}$
= $0.7 * 10^{-6}$
Phase 4 (Dose-inh) = $\frac{0.01 \ \mu g/m^3 * 302 \ L/kg-day * 1 * 350 \ days/year * 9 \ years * 10^{-6}}{(25,550 \ days)}$
= $0.4 * 10^{-6}$
Total (Dose-inh) = $(3.8 * 10^{-6}) + (0.7 * 10^{-6}) + (0.4 * 10^{-6})$
= $4.9 * 10^{-6}$
Cancer Risk = $4.9 * 10^{-6} \ mg/kg-day * 1.1 \ (mg/kg-day)^{-1}$
= $5.4 * 10^{-6}$
 $\sim 5.4 \ in \ one \ million$

Existing Yerba Buena Receptors (East)

Existing residences located on Yerba Buena Island east of the residences described above would be exposed to elevated DPM concentrations during construction of Phases 1 and 2. During Phase 3 it was assumed that existing residents would move out and residences would be demolished and rebuilt. It was assumed that these residences would then be reoccupied during construction of Phase 4. As a conservative analysis it was assumed that the same receptors would move back into the residences to be reconstructed and would therefore be exposed to elevated DPM concentrations during construction of Phases 1, 2 and 4. As shown below, maximum incremental cancer risk in this neighborhood would be 8.7 in one million.

Phase 1 (Dose-inh) =
$$\frac{0.23 \ \mu g/m^3}{(25,550 \ days)} = \frac{0.23 \ \mu g/m^3}{(25,550 \ days)} = 2.9 * 10^{-6}$$

Phase 2 (Dose-inh) = $\frac{0.37 \ \mu g/m^3}{(25,550 \ days)} = \frac{302 \ L/kg-day}{(25,550 \ days)} = \frac{350 \ days/year}{(25,550 \ days)} = \frac{302 \ L/kg-day}{(25,550 \ days)} = \frac{350 \ days/year}{(25,550 \ days)} = \frac{350 \ days/y$

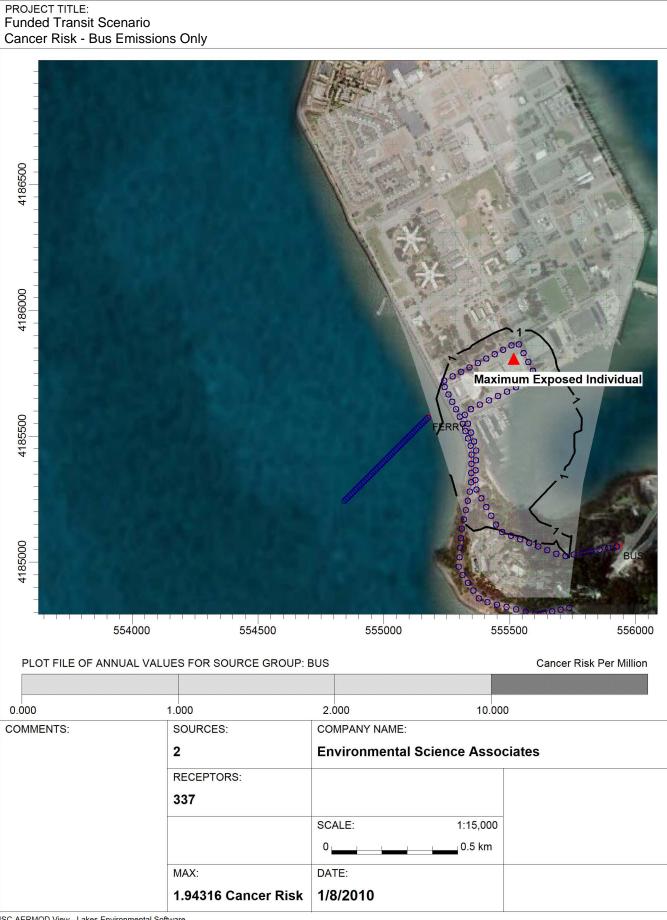
Worker Risk

Risk at worker receptors was evaluated by modeling DPM concentrations throughout Treasure Island and Yerba Buena Island. The maximum annual average DPM concentration modeled for each phase was used to determine maximum incremental cancer risk at the MEIW. This represents an extremely conservative analysis as the maximum DPM concentration was modeled at a different receptor under each phase. As shown below, risk at the MEIW would be approximately 10 in one million.

Phase 1 (Dose-inh) =
$$\frac{0.35 \,\mu\text{g/m}^3 * 149 \,\text{L/kg-day} * 1 * 245 \,\text{days/year} * 3 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$$

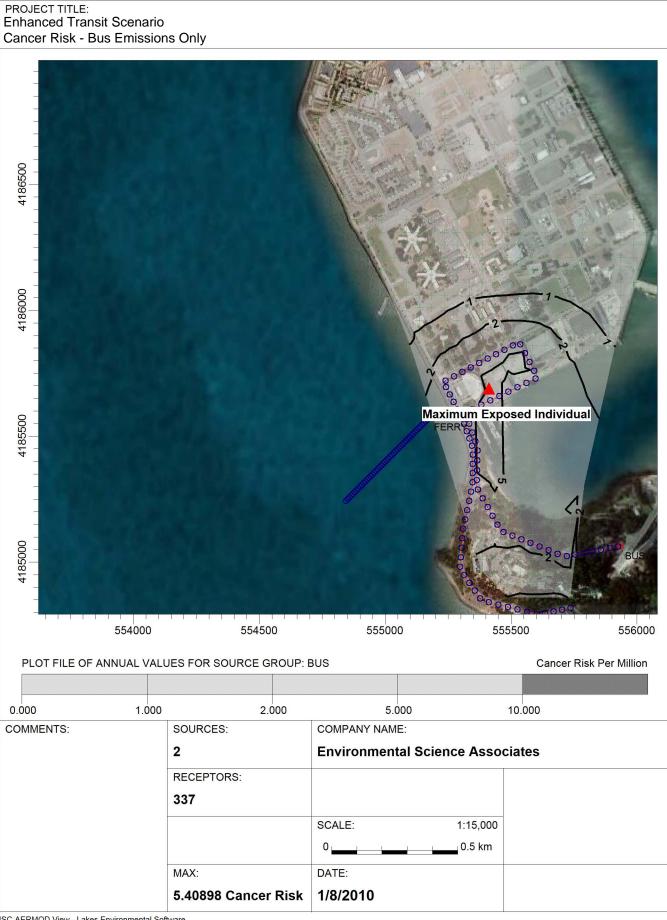
= $1.50 * 10^{-6}$
Phase 2 (Dose-inh) = $\frac{0.71 \,\mu\text{g/m}^3 * 149 \,\text{L/kg-day} * 1 * 245 \,\text{days/year} * 3 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$
= $3.04 * 10^{-6}$
Phase 3 (Dose-inh) = $\frac{0.55 \,\mu\text{g/m}^3 * 149 \,\text{L/kg-day} * 1 * 245 \,\text{days/year} * 3 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$
= $2.36 * 10^{-6}$
Phase 4 (Dose-inh) = $\frac{0.17 \,\mu\text{g/m}^3 * 149 \,\text{L/kg-day} * 1 * 245 \,\text{days/year} * 9 \,\text{years} * 10^{-6}}{(25,550 \,\text{days})}$
= $2.19 * 10^{-6}$
Total (Dose-inh) = $(1.50 * 10^{-6}) + (3.04 * 10^{-6}) + (2.36 * 10^{-6}) + (2.19 * 10^{-6})$
= $9.09 * 10^{-6}$
Cancer Risk = $9.09 * 10^{-6} \,\text{mg/kg-day} * 1.1 \,(\text{mg/kg-day})^{-1}$
= $9.999 * 10^{-6}$

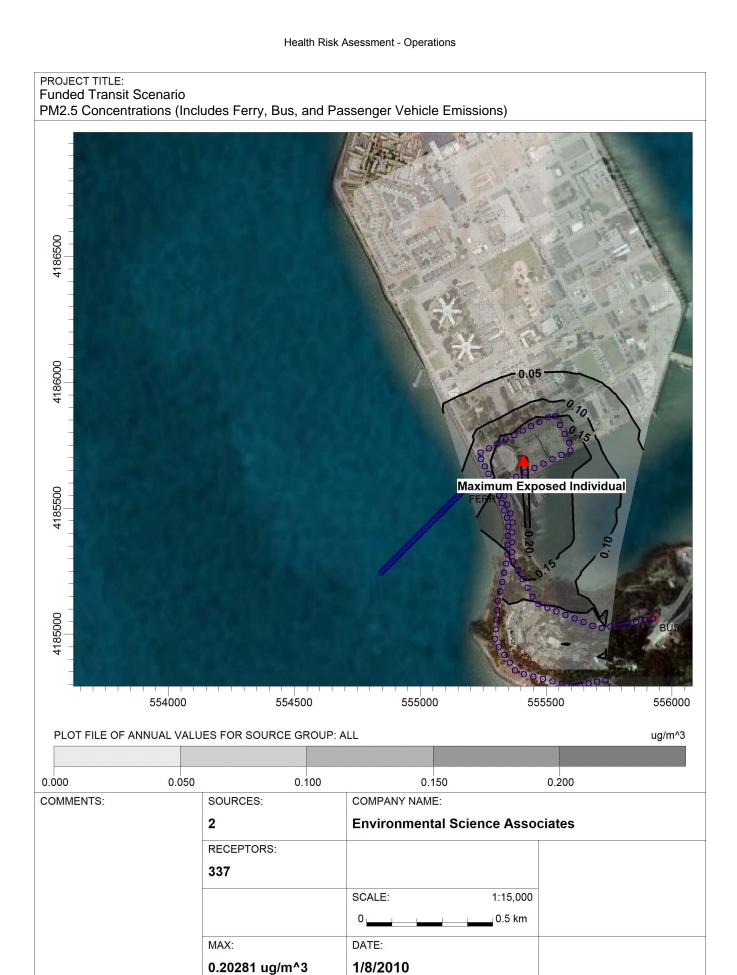
Treasure Island Construction DPM Emissions for HRA

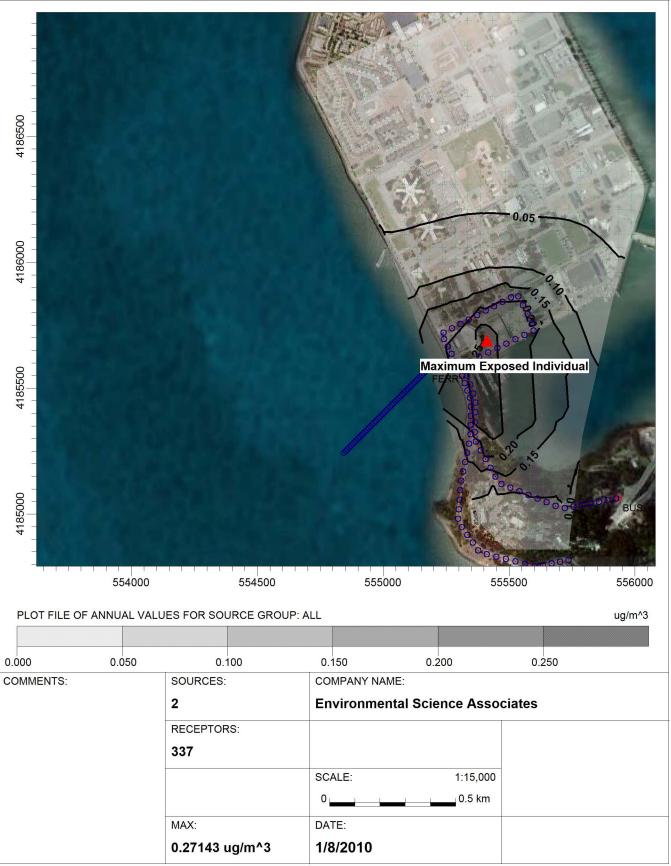

Annual Diesel Particulate Matter Emissions (tons per year)

	Phase 1-TI	Phase 1-YBI	Phase 2	Phase 3	Phase 4	Phase 5	Phase 1-VC	Phase 2-VC	Phase 3-VC	Phase 4-VC	Phase 5-VC
2011	0.886	0.700					0.508				
2012	0.810	0.641					0.845				
2013	0.738	0.585					3.20				
2014			0.576					3.06			
2015	i		0.634					2.73			
2016	i		0.470					3.19			
2017	•			0.586					2.67		
2018	1			0.524					1.53		
2019	1			0.468					2.07		
2020	1				0.288					2.13	
2021					0.256					1.34	
2022					0.228					0.982	
2023	1					0.341					0.799
2024						0.303					0.488
2025	i					0.268					0.194
2026	i										0.016
2027	•										0.043
2028											0.014
70-Year											
Average	0.0348	0.0275	0.0240	0.0225	0.0110	0.0130	0.0651	0.1283	0.0895	0.0636	0.0222


Note: Construction schedule is 10 hours per day, 5 days per week, 52 week per year. Includes onsite construction equipment; does not include tugs and offsite haul trucks.







APPENDIX F: APPROACH TO GREENHOUSE GAS EMISSIONS TREASURE ISLAND/YERBA BUENA ISLAND REDEVELOPMENT PROJECT EIR

707 Wilshire Boulevard Suite 1450 Los Angeles, CA 90017 213.599.4300 phone 213.599.4301 fax

memorandum

date July 2, 2010

to Barbara Sahm

Turnstone Consulting

from Chris Sanchez

Environmental Science Associates

subject Approach to Greenhouse Gas Emissions

Treasure Island/Yerba Buena Island Redevelopment Project EIR (ESA No. D207246)

The following outlines ESA's approach to the greenhouse gas emissions (GHG) inventory that will be used in the Treasure Island/Yerba Buena Island Redevelopment Project Environmental Impact Report (EIR).

Short-term (One-Time) Impacts

Short-term or one-time emissions from the development of this Project are associated with vegetation removal and re-vegetation of the Project site, and construction-related activities. While construction activities also result in life-cycle emissions of GHG associated with the manufacture and transport of building materials and infrastructure, life-cycle emissions are not included in the final inventory as these emissions would be accounted for under Assembly Bill (AB) 32 in other industry sectors and are specifically identified as "speculative" in the 2009 CEQA Amendments. A discussion of lifecycle emissions and the uncertainties in their quantification will be included in the GHG section of the EIR.

Vegetation Sequestration Change

The overall CO₂ emissions due to vegetation change would result from the amount that can be expected to be sequestered by new plantings. The Project would result in approximately 4,323 net new trees on both islands. This assumes relocation of 100 trees on Treasure Island (TI), removal of all of the remaining 1,677 existing trees on all of TI and the developed areas of Yerba Buena Island (YBI), and the planting of 6,000 new trees, as proposed by the applicant. The Proposed Project's net increase in trees would continue to sequester carbon after 20 years, although at a slower rate that is typically offset by losses from clipping, pruning, and occasional death. Although some of the 100 existing trees to remain may still be sequestering carbon, without specific knowledge as to the age of these existing trees, they were not considered in this conservative analysis. The BAAQMD Greenhouse Gas Model (BGM) model was used to estimate sequestration emissions associated with these trees

assuming an equal split between medium-growth hardwoods and medium-growth conifers. BGM calculations show that temporary sequestering would remove approximately 22 MT CO₂e emissions annually.

Additionally, the proposed athletic fields would also sequester carbon and would have a net GHG benefit even after consideration of lawn maintenance practices. A majority of the proposed 40-acre sports park would consist of grass playing fields. Also considering residential and community plantings in addition to playing fields, the project would result in a net increase of 106 acres of lawn¹, which was used to calculate sequestration. BAAQMD's BGM model does not calculate sequestration from grasses but only from trees. Consequently, the calculation of sequestration from grasslands was performed using available studies. Sequestration rates for landscape grass range from 794 to 1,786 kg of carbon per hectare per year, depending on management practices employed.² Conservatively assuming the lowest sequestration rate, 106 additional acres of athletic fields and lawn would sequester approximately 1,124 MT CO₂e for the average 33 years of grassland sequestration or about 34 MT annually.³⁻⁴ Total vegetation sequestration from trees and grass would total 56 MT of CO₂. As discussed above, other landscape plantings (shrubs, etc.) would also sequester carbon, but would only marginally increase relative to existing plantings. This annualized sequestering is subtracted from the total Project-related GHG emissions in Table 2 (Annual Proposed Project Related Operational CO₂e Emissions), on p. 4.

Ten to fifteen acres of wetlands are also proposed to be created as a method of storm water treatment. Other project variants also propose relatively smaller areas of wetlands. Wetlands act as both a carbon sink due to carbon sequestration as well as a carbon source resulting from methane generation. Recent studies indicate that estuarine wetlands are likely a net GHG sink "because they support both rapid rates of carbon sequestration and low methane emissions." Additionally, use of wetlands for storm water treatment reduces the energy-related GHG emissions as compared with standard treatment technologies. However, given the developing nature of science around plant-specific carbon sequestration rates that are not related to forestry or agriculture, a quantitative estimate of the net carbon benefits of wetlands creation was not undertaken for this analysis, although wetlands would likely result in further GHG emission savings.

Construction-Related Activities

CO₂ emissions associated with different aspects of construction activities for urban development can be estimated using a combination of software programs. BAAQMD's BGM model does not calculate GHG emissions from construction sources. Consequently, these emissions were calculated using the OFFROAD2007 and the EMFAC2007 models to generate emission factor data for construction equipment and motor vehicles, respectively. These values serve as inputs for the URBEMIS2007 model, which estimates emissions from several

¹ CNG e-mail response from Kim Diamond on March 1, 2010.

² West et al., Considering the Influence of Sequestration Duration and Carbon Saturation on Estimates of Soil Carbon Capacity, Climatic Change, January 2007.

West et al., Considering the Influence of Sequestration Duration and Carbon Saturation on Estimates of Soil Carbon Capacity, Climatic Change, January 2007.

⁴ The Sports Park may include some artificial turf fields, reducing the amount of grass by an unknown amount (see pp. 88-89 in the Treasure Island and Yerba Buena Island Design for Development, Public Review Draft, March 5, 2010). If this were to occur, the vegetation sequestration identified in this paragraph would be slightly less, and the resulting total operational GHG emissions shown in Tables 3 and 4 would be slightly greater. This change would not alter the conclusions regarding service population GHG emissions.

⁵ Bridgeham, Scott D., et al., *The Carbon Balance of North American Wetlands*, December 2006.

different phases of urban development including from emissions from construction sources based on emission factors and information specific to the Project.

Assumptions regarding construction timing and the number, type, and operating hours of equipment are based on the number and type of equipment that would be used in the construction of the Proposed Project, as well as the duration of each construction phase. These assumptions are used with CO₂ specific emission factors compiled in OFFROAD 2007 and EMFAC2007. Available models do not analyze emissions from construction-related electricity or natural gas consumption. Construction-related electricity and natural gas emissions vary based on the amount of electric power used during construction and other unknown factors that make them too speculative to quantify. In addition, this analysis assumes that all heavy duty construction equipment is diesel or gasoline powered and no substantial electrically-powered pieces of construction equipment are envisioned as necessary, based on the project description. While recently implemented federal standards (Tier 3 and Tier 4) will reduce emissions of nitrogen oxides and particulate matter on newly manufactured diesel construction equipment, these reductions are achieved through use of post combustion engineering applications to the diesel engine⁶ and will not result in reduced CO₂e emissions and no adjustments are warranted for this newer equipment.

Table 1, below, summarizes the construction activity-related GHG inventory and presents the emissions estimates in metric tons of CO₂. The table indicates that an estimated 243,039 MT CO₂e emissions from Project construction equipment would be emitted over the course of the minimum construction period of 17 years. This is a conservative emission estimate that does not account for any Best Management Practices that may reduce GHG emissions.

TABLE 1
CONSTRUCTION GENERATED GHG EMISSIONS OF THE PROPOSED PROJECT

Emission Source	Emissions (metric tons CO₂e)				
	CO ₂	CH₄	N₂O	Total CO₂e	
Worker Trips	7,402	9	59	7,470	
Construction Equipment	189,851	228	1,508	191,587	
Haul Trucks	42,892	51	341	43,284	
Barge Tugs	693	1	5	699	
Total	240,838	289	1,913	243,040	
Construction Emissions (40-Year project lifetime amortization)	6,021	7	48	6,076	

Source: ESA, 2010

If these one-time emissions are annualized assuming a 40-year development life (which is likely low), the one-time emissions contribute approximately 6,076 MT CO_2 e emissions annually. These annualized emissions are added to the total Project-related GHG emissions in Table 2 (Emissions of GHG from the Proposed Project).

3

-

⁶ http://www.dieselnet.com/standards/us/nonroad.php, accessed March 31, 2010.

Long-Term Operational Impacts

Long-term operational or annual emissions from the development of this Project include indirect GHG emissions from electricity use in residential and non-residential buildings and emissions from natural gas combustion used in residential and non-residential buildings, mobile sources, municipal sources, area sources, transit services, water conveyance and waste disposal. Table 2 (Emissions of GHG from the Proposed Project) lists the emissions for each of these categories. Table 3 presents the same information for the Proposed Project with Expanded Transit Service. Although the adopted BAAQMD CEQA Guidelines specifically state that they are not recommending a significance threshold relative to construction-related emissions of GHG's, the Guidelines also state that a lead agency should quantify construction related emissions and make a determination of significance relative to them. For this reason, amortized construction emissions were included in the inventory for the purposes of threshold comparison.

TABLE 2
EMISSIONS OF GHG FROM THE PROPOSED PROJECT

Emission Source/Sink	Emissions (metric tons CO₂e per year)				
	CO ₂	CH₄	N ₂ O	Total CO₂e	
Construction Emissions (40 Year amortization)	6,021	7	48	6,076	
Carbon sequestration of trees and grasses (40 Year amortization)	- 56			- 56	
Motor vehicle trips	45,431	139	2,729	48,299	
Buses	971		1	972	
Ferries	3,215	5	26	3,246	
Shuttle Buses	247	5	6	258	
Natural gas	5,188	10	3	5,201	
Grid Electricity				1,030	
Solid Waste generation				4,544	
Water Conveyance	452		3	455	
Wastewater Treatment & Conveyance	On island WWTP Treatment & Conveyance Energy included in Grid Electricity Above				
Area Source (landscape maintenance)	3			3	
Total Project Operational Greenhouse Gas Emissions	64,472	166	2,816	70,025	

Source: ESA, 2010

TABLE 3
EMISSIONS OF GHG FROM THE PROPOSED PROJECT WITH EXPANDED TRANSIT SERVICE

Emission Source/Sink	Emissions (metric tons CO₂e per year)				
	CO ₂	CH ₄	N ₂ O	Total CO₂e	
Construction Emissions (40 Year amortization)	6,021	7	48	6,076	
Carbon sequestration of trees and grasses	-56			- 56	
Motor vehicle trips	38,147	116	2,292	40,555	
Buses	1,905		1	1,906	
Ferries	9,645	15	77	9,737	
Shuttle Buses	247	5	6	258	
Natural gas	5,188	10	3	5,201	
Grid Electricity				1,030	
Solid Waste generation				4,544	
Water Conveyance	452		3	455	
Wastewater Treatment & Conveyance	On Island WWTP Treatment & Conveyance Energy included in Grid Electricity Above				
Area Source (landscape maintenance)	3			3	
Total Proposed Project with Expanded Transit Service Operational Greenhouse Gas Emissions	61,552	153	2,430	69,709	

Source: ESA, 2010

Indirect Project Electrical GHG Emissions

Both residential and non-residential uses require electricity for space and water heating, air conditioning, lighting, and plug-in outlets. Non-residential buildings may also require electricity to run mechanical or process equipment. The amount of energy and, therefore, the amount of associated GHG emissions emitted per dwelling unit would vary with the type of residential building.

GHGs are indirectly emitted as a result of the increased demand for electricity required for a proposed project. GHGs are emitted during the generation of electricity from fossil fuels. When electricity is used in a building, some portion of the electricity generation typically takes place off-site at the power plant, while other percentages are generated by renewable resources such as hydroelectric dams. The relative percentages of renewable and non-renewable resources vary from year to year based on the magnitude of available water flows at hydroelectric dams and other source variables. SFPUC receives a majority of its electricity from Hetch Hetchy hydroelectric sources. As a result, GHG emission rate data specific to SFPUC is one of the lowest for utilities in California. For 2007, the last verifiable year of analysis available, the SFPUC electrical emission factor was 39.53 pounds of CO₂e per Megawatt hour.⁷ This factor, 39.53 pounds per megawatt hour, is provided in terms of CO₂e and the individual contribution of a separate CH₄ and N₂O, are not available. While fuel combustion generates CH₄ and N₂O, the

_

Ostrander, Calla, Climate Action coordinator, City of San Francisco Department of the Environment, e-mail communication, June 23, 2010.

emissions of these GHGs typically comprise less than 1 percent of CO₂e emissions from electricity generation and natural gas consumption. Energy use in a building may be divided into (1) energy consumed by the built environment, and (2) energy consumed by uses that are independent of the construction of the building, such as plug-in appliances. In California, Title 24 governs energy consumed by the built environment, including the HVAC system, water heating, and some fixed lighting.

While BAAQMD's BGM program can quantify GHG emissions from electrical demand, it does not allow the user to adjust the statewide average emission factors which are currently using values from an incorrect CCAR source. Consequently, electrical GHG emissions were independently calculated using the SFPUC-specific emission factor for the last verifiable year to achieve a more refined analysis. Project electrical GHG emissions were calculated based on energy demand estimates contained in the 2009 Final Treasure Island Development Energy Study.⁸ This study contains the results of an analysis undertaken to estimate building and site energy use for the Treasure Island/Yerba Buena Development Program. The analysis also defines profiles for this energy use, identifying how much energy is used annually. The resulting energy use quantities were then converted to GHG emissions by multiplying by the appropriate emission factors⁹ and incorporating information on local electricity production. The net Project-related electrical GHG emissions would be 1,030 MT of CO₂e per year.

Project Natural Gas Combustion Emissions

Project electrical GHG emissions were also calculated based on natural gas demand estimates contained in the 2009 Final Treasure Island Development Energy Study. GHG emission estimates from natural gas used the BAAQMD BGM program. The net Project-related natural gas GHG emissions would be 5,201 MT of CO₂e per year.

Area Sources

Area source emissions stem from hearths (including gas fireplaces, wood-burning fireplaces, and wood-burning stoves) and small mobile fuel combustion sources such as lawnmowers and other landscape maintenance equipment. Fuel combustion associated with these sources produce direct GHG emissions. Since emissions from project-wide natural gas demand are already included in the natural gas combustion estimate above, no separate calculation for gas fireplaces is necessary. Further, BAAQMD and the City and County of San Francisco restrict the installation of wood-burning fireplaces and stoves to pellet stoves or EPA-approved devices in new construction.¹⁰ This analysis assumes that hearth emissions would be from natural gas combustion and does not consider pellet stoves or wood-burning fireplaces beyond what was assumed from natural gas demand. An estimated 3 MT of CO₂e would be generated annually by landscape maintenance related to proposed new residential and commercial buildings. Emissions from landscape maintenance of proposed athletic fields are

_

⁸ ARUP, TICD Treasure Island Development Energy Study, Final, December 2009.

The Beta version of the BGM model of the BAAQMD does not allow user alterations of the statewide emissions factors embedded in the model. Per discussion with BGM developer Tim Rimpo of Rimpo & Associates at the BAAQMD's May 25, 2009 BGM training workshop, the next version of the model will allow for the user to input utility-specific emission rates. Consequently electrical emissions were calculated using custom spreadsheets and not using BGM, as the PG&E emissions factor of 524 pounds of eCO2/mWhr is substantially less than the statewide emission factor of 805 pounds of CO2 per mWhr.

¹⁰ BAAQMD Regulation 6, Rule 3-304: "Effective for construction permits issued after January 1, 2009, no person or builder shall commence construction of a new building or structure permitted to contain or containing a wood-burning device or install a new wood-burning device resulting from a remodel unless the device meets the requirements of Section 6-3-303."

accounted for in the earlier analysis of carbon sequestration of these proposed fields. While there will also be approximately 180 acres of open space and wetlands associated with the Project, these land uses do not require the same degree of maintenance (weekly to monthly operation of landscaping equipment) as manicured landscaping, and any seasonal emissions related to equipment operations such as for fire control, would not represent a substantial contribution to these estimated annual emissions.

Water and Wastewater Treatment and Conveyance

Municipal sources of GHG emissions that can contribute to a GHG inventory include drinking water supply and wastewater treatment. In general, the majority of municipal sector GHG emissions are related to the energy used to convey, treat, and distribute water and wastewater. Thus, these emissions are generally indirect emissions from the production of electricity to power these systems. Additional emissions from wastewater treatment include CH_4 and N_2O , which are emitted directly from the wastewater.

The 2009 Final Treasure Island Development Energy Study accounted for electrical demand associated with all on-Island infrastructure activities. This included:

- Wastewater treatment plant operations and distribution facilities;
- Recycled water treatment plant operations and distribution facilities;
- Storm water treatment distribution facilities (storm water treatment itself is through natural, non-energy consuming processes like bioswales); and
- Potable water distribution. (Potable water treatment was not included in that report's estimate, and is discussed more below.)

Therefore, GHG emissions from wastewater treatment and conveyance are already contained in the emissions estimate for electrical demand discussed previously.

Treatment of potable water would be done off-Island and was not included in the 2009 Final Treasure Island Development Energy Study. The amount of electricity required to treat and supply water depends on the volume of water involved. According to Section IV.K, Utilities and Service Systems, of the DEIR, the Project would generate a net new water demand of 1.08 million gallons per day (mgd) after accounting for the demand by existing uses that would remain on the Islands.

Three processes are necessary to supply potable water to residential and commercial users: (1) supply and conveyance of the water from the source; (2) treatment of the water to potable standards; and (3) distribution of the water to individual users. Indirect emissions resulting from electricity use were determined by multiplying electricity use by California statewide CO₂, CH₄ and N₂O emission factors from CCAR's General Reporting Protocol. Statewide emission factors are used rather than local PG&E factors to reflect the fact that drinking water in San Francisco is pumped from the Hetch Hetchy reservoir, and therefore has the potential to be pumped through the jurisdiction of different electricity providers. However, much of San Francisco's water is supplied via gravity flow and therefore the emission factors used are likely conservative estimates.

Energy use for different aspects of water treatment (e.g., source water pumping and conveyance, water treatment, distribution to users) was determined using the stated volume of water and energy intensities values from the

California Energy Commission. The BGM program of the BAAQMD was not used to calculate water and wastewater-related GHG emissions because it does not allow for user adjustment of water demand.

Emissions associated with wastewater treatment include indirect emissions necessary to power the treatment process and direct emissions from degradation of organic material in the wastewater, which are biogenic in nature and not considered as part of the Project's GHG inventory. Because the wastewater treatment plant is located on Treasure Island and the electrical demand for the treatment plant and on-island conveyance needs were accounted for in the 2009 Final Treasure Island Development Energy Study, GHG emissions from wastewater treatment and conveyance are already contained in the emissions estimate for electrical demand discussed previously.

While BAAQMD's BGM program can quantify GHG emissions from water demand treatment and conveyance, it does not allow the user to adjust the calculations to remove the wastewater treatment component. Consequently, water demand treatment and conveyance GHG emissions were independently calculated using the same methods and emission factors as BGM. In total, all water and wastewater treatment and conveyance for the Project are expected to produce approximately 455 MT of CO₂e annually.

Solid Waste Disposal Emissions

The Project's proposed residential and non-residential uses would generate waste. A large percentage of this waste would be diverted from landfills either by waste generation reduction, recycling, or composting. San Francisco currently diverts a large portion of its waste generated (approximately 72 percent) and has goals to even further reduce the amount of waste sent to a landfill. The remainder of the waste not diverted would be disposed of at a landfill. Landfills emit GHG emissions associated with the anaerobic breakdown of material. The BAAQMD BGM model was used to estimate GHG emissions from solid waste generation. BGM uses the waste disposal rates for the various land uses from values compiled by CalRecycle (formerly the California Integrated Waste Management Board). 11 These are likely overestimates since they do not account for the recent increases in waste percentages that would are diverted from a landfill. BGM also includes emissions from haul trucks transporting waste to the landfill. The total GHG emissions from solid waste generation are predicted by BGM to be 4,544 MT CO₂e per year for the Project. These estimates are likely conservative given the fact there are aggressive goals for waste reduction in San Francisco and that waste generation estimates are based on 1999 data (the most recent available) when statewide recycling rates were substantially lower than the present day 72 percent in San Francisco. In addition, this estimate does not account for the carbon sequestration that would occur as a result of disposal in the landfill of carbon that would not degrade. Although solid waste emissions are not included in the proposed BAAQMD "GHG Quantification Guidance Standard" they are calculated and presented for the purposes of full disclosure and are not considered relative to BAAQMD's proposed GHG significance thresholds. Additionally, on-site composting would reduce the waste haul trips associated with waste generation assumed in the calculation.

.

¹¹ California Integrated Waste Management Board, Statewide Waste Characterization Study Results and Final Report, available at http://www.calrecycle.ca.gov/publications/LocalAsst/34000009.pdf, December, 1999.

Bay Area Air Quality Management District, *California Environmental Quality Act Air Quality Guidelines*, Table 4-3: GHG Quantification Guidance Standard, page 4-6. http://www.baaqmd.gov/~/media/Files/Planning%20and%20Research/CEQA/Draft%20BAAQMD%20CEQA%20Guidelines Dec%207%202009.ashx, accessed on March 31, 2010.

Mobile Source (Motor Vehicle) Emissions - Proposed Project

The Proposed Project consists of high-density, compact residential and commercial development located within walking distance of an intermodal transit hub to maximize walking, bicycling, and use of public transportation, and to minimize the use and impacts of private automobiles.

As discussed in the Project Description and the Transportation Impact Sections of the DEIR, the Proposed Project would include numerous elements that would reduce motor vehicle trips compared to a similar project without trip reduction elements (termed a "business as usual" or BAU project). Specifically, the impact analysis considers both the Proposed Project transit scenario and a Proposed Project with Expanded Transit Service scenario. The Proposed Project would include the following trip-reduction elements:

- Ferry service every 50 minutes (corresponding to a single ferry operating at one of the existing docks in San Francisco);
- AC Transit bus service to downtown Oakland with service every 10 minutes;
- Continued SF Muni line 108 Treasure Island bus service to Treasure Island with no island circulation;
 and
- On-island fleet shuttle service using alternatively fueled shuttle buses.

The Proposed Project with Expanded Transit Service would include the same elements as the Proposed Project's transit scenario, plus the following additions:

- New ferry service to San Francisco every 15 minutes (corresponding to three ferries operating at one of the existing docks in San Francisco);
- Modification of the existing SF Muni line 108 Treasure Island bus service to increase peak hour frequency from every 15 minutes to every 7 minutes in the AM peak hour and every 5 minutes in the PM peak hour. Additionally, existing buses would be replaced with larger capacity buses;
- New SF Muni bus service to the San Francisco Civic Center area.

The mobile source emissions considered for this Project would result from the typical daily operation of motor vehicles by residents and non-residents. Vehicle trip generation from the Proposed Project is based upon information from the *Treasure Island and Yerba Buena Island Redevelopment Plan Transportation Impact Study*. The Proposed Project would result in a net increase of 30,330 standard vehicle trips per day over existing conditions. Emissions for vehicle trips were calculated using the URBEMIS2007 computer model. Trip generation rates of the model were adjusted to reflect the project-specific vehicle trip generation of the *Transportation Impact Study*. The model default vehicle trip lengths specific to urban areas of the San Francisco Bay Area Air Basin were adjusted to account for the fact that a majority of the vehicle trips would be destined for off-island locations. Consequently these trips would necessitate an additional 1.7 miles or 3.2 miles if traveling toward San Francisco or Oakland, respectively. Using a trip distribution ratio of 79 percent toward San Francisco and 21 percent toward Oakland from the transportation study, a composite average trip length addition factor of 2.0 miles was added to each default trip length.

URBEMIS2007 calculates the CO₂ emissions from motor vehicle trips based on trip generation and trip lengths. For mobile sources, CH₄ and N₂O were explicitly calculated using emission factors from CCAR, multiplied by

their respective GWP and added to the CO₂ emissions to result in total CO₂e emissions from mobile sources. Vehicles associated with the Proposed Project would emit approximately 48,299 MT CO₂e per year.

Mobile Source (Motor Vehicle) Emissions - Proposed Project with Expanded Transit Service

The Proposed Project with Expanded Transit Service would result in reduced trip generation as a result of increased ferry and transit services provided under this scenario. GHG emissions for this scenario were calculated in the same manner as the Proposed Project. The Proposed Project with Expanded Transit Service would result in a net increase of 25,466 standard vehicle trips per day over existing conditions, which would emit approximately 40,554 MT CO₂e per year.

Transit Service GHG Emissions – Proposed Project

Emissions from the intermodal Transit Hub are associated with increased public transport needed to serve the Proposed Project. GHGs are emitted from public buses when the vehicles are in transit and when the vehicles are idling at the curbside. The emissions are based on the net new miles and trips made by transit servicing the Project. The details of the net new transit service were provided by Fehr & Peers.

Bus emissions were estimated using emission factors for diesel buses generated by the EMFAC2007 model of ARB, daily vehicle bus trip generation provided by Fehr & Peers, and trip lengths estimated based on destinations. New transit trips under the Proposed Project would consist of new AC Transit service to downtown Oakland. A bus trip length of 8.3 miles to downtown Oakland was assumed. AC Transit currently has three hydrogen fuel cell buses as part of a demonstration project and 12 more will be in service in 2010. These 15 AC Transit zero-emission busses represent approximately two percent of its current fleet of 674 buses. Consequently, as a conservative analysis, GHG emissions from new bus service under the Proposed Project is assumed to be entirely diesel, although the likelihood is that by the 2030 build-out year of the Project, a substantially greater percentage of buses could emit zero emissions. Therefore the estimate of transit related GHG emission is considered a worst-case analysis and likely overestimates future emissions.

The total amount of GHG emissions from the diesel transit service under the Proposed Project is estimated to be 972 MT of CO₂e per year. Additionally, there would be 120 daily alternatively fueled on-island shuttle trips generated by the Proposed Project. The type of alternative fuel has not been specified and for the purpose of this analysis was assumed to be compressed natural gas (CNG) based on its ubiquity as an alternative bus fuel. Shuttle bus routes would consist of two separate island loops on TI and one on YBI. A worst case loop length of 2.5 miles was assumed. The analysis used CCAR emission factors for CO2, CH₄ and N₂O for CNG. GHG emissions from the alternative fueled shuttle busses are estimated to be approximately 258 MT of CO₂e per year.

Transit Service GHG Emissions – Proposed Project with Expanded Transit Service

In addition to transit service to downtown Oakland the Proposed Project with Expanded Transit Service would also provide additional Muni line 108 – Treasure Island service to the Transbay Terminal and a new service line to the Civic Center area of San Francisco. Emissions from additions to SF Muni bus service under the Proposed Project with Expanded Transit Service scenario assumed trip lengths from Treasure Island to the Transbay Terminal (3.6 miles) for additions to Muni line 108, and to the Civic Center area of San Francisco (5.3 miles) as a new service line (consistent with the Transportation Impact Study).

Although San Francisco uses carbon-free electricity to power its electric buses and trolleys, these vehicles do not and would not serve the Islands. While approximately 17 percent of the SFMTA non-electric bus fleet consist of hybrid buses that reduce fuel usage by 25 percent, as a conservative assumption, all new SFMTA bus trips were assumed to be diesel. Additionally, San Francisco transit buses use a 20 percent blend of biodiesel fuel (B20, 20 percent biodiesel, 80 percent petroleum diesel). Use of biodiesel reduces GHG emission based on a lifecycle analysis of fuel production. However exhaust emission of CO₂ from B20 have been demonstrated to be similar to that of standard diesel. Consequently, as a conservative analysis of GHG emissions from new Muni bus service under the Proposed Project with Expanded Transit Service is based on exhaust emissions only and is not based on life cycle considerations. It is estimated however that the total lifecycle GHG emissions for biodiesel are 41 percent less than those from petroleum diesel.¹³ The total amount of GHG emissions from the diesel transit service under the Proposed Project with Expanded Transit Service is estimated to be 1,906 MT of CO₂e per year. Similar to the Proposed Project with base transit service, the Proposed Project with Expanded Transit Service would also generate 120 daily alternative-fueled on-island shuttle trips. GHG emissions from the alternative-fueled shuttle buses are estimated to be approximately 258 MT of CO₂e per year.

Ferry Service GHG Emissions - Proposed Project

Emissions from the proposed new ferry service were estimated using fuel consumption data provided by Elliot Bay Design Group specific to the types of ferries under consideration for the project. These emissions estimates examined three different engine and generator configurations. The worst case configuration was assumed for fuel consumption. The daily profile assumed 15 round trips with eight percent of the daily operations at commute speed, 10 percent of the daily operations at maneuvering speed, 15 percent of the daily operations at cruise speed, 25 percent of the daily operations at dock and 42 percent of the day idle (not in use) over a 24-hour period. Ferries were assumed to use shore power during idle time at the dock. The analysis used CCAR emission factors for CO₂, CH₄ and N₂O for diesel. GHG emissions from the ferry service are estimated to be approximately 3,245 MT of CO₂e per year.

Ferry Service GHG Emissions – Proposed Project with Expanded Transit Service

The Proposed Project with Expanded Transit Service would increase ferry service from every 50 minutes (corresponding to a single ferry operating at one of the existing docks in San Francisco) under the proposed Project to ferry service to San Francisco every 15 minutes (corresponding to a three ferries operating at one of the existing docks in San Francisco). GHG emissions for this scenario were calculated in the same manner as the Proposed Project. The Proposed Project with Expanded Transit Service would result in approximately 9,737 MT CO₂e per year.

Total Annual GHG Emissions – Proposed Project

As shown in Table 2, using all the emission source categories quantified above, the total annual GHG emissions generated from the Project, with the design features related to energy use and transit, is approximately 70,025 MT CO₂e per year. The table reveals that the majority of annual Project emissions is the result of vehicle use (69 percent), followed by natural gas demand (7 percent).

11

¹³ Hill, Jason, et.al., Environmental, *Economic and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels*, Proceedings of the National Acadmy of Science, June 2, 2006.

¹⁴ Elliot Bay Design Group, Memorandum to Wilson Meany Sullivan, August 15, 2009.

Several emissions sources were not quantified in this inventory, due to the inherent speculative nature of assumptions required for their estimation. These sources include lifecycle emissions and emissions from refrigeration leaks. Life-cycle emissions of GHG would be associated with the manufacture and transport of building materials and infrastructure. Life-cycle emissions are not included in the final inventory as these emissions would be accounted for under AB 32 in other industry sectors and are specifically identified as "speculative" in the 2009 CEQA Amendments. A discussion of lifecycle emissions and the uncertainties in their quantification will be included in the GHG section of the EIR. Emissions associated with leaks of high global warming potential gases such as from refrigeration leaks were not quantified. While the BAAQMD's BGM model can calculate emissions from refrigerant losses, the model requires specific data (the pounds of charge of refrigerant for all air handling units) to make this calculation. At the entitlement stage of development, data necessary to estimate emissions is not readily available. Therefore GHG emissions from leaking refrigeration gases could not be quantified for the Proposed Project.

Total Annual GHG Emissions - Proposed Project with Expanded Transit Service

As shown in Table 3, using all the emission source categories quantified above, the total annual GHG emissions generated from the Proposed Project with Expanded Transit Service with the design features related to energy use and transit is approximately 69,709MT CO₂e per year. The table reveals that the majority of annual Project emissions is the result of vehicle use (58 percent), followed by ferries (14 percent).

BAAQMD is the only agency with jurisdiction over the Proposed Project that has adopted quantitative CEQA thresholds of significance for operational-related GHG emission impacts. At present, two options relevant to the Proposed Project are under consideration for operational GHG emission thresholds; the lead agency can choose either option. Option 1 is based on a project's total operational GHG emissions of 1,100 MT CO₂e per year. The Proposed Project's total operational emissions would exceed this level, which means that if this threshold were used, the Proposed Project's GHG impact could be considered significant. Option 2, which would apply to most land use development projects, including residential, commercial, industrial, and public land uses, is based on the amount of a project's operational GHG emissions per capita of the service population, a threshold of 4.6 MT CO₂e per year.

Although, the adopted BAAQMD CEQA Guidelines specifically state that they are not recommending a significance threshold relative to construction-related emissions of GHGs, the Guidelines do state that a lead agency should quantify construction related emissions and makes a determination of significance relative to them. For this reason amortized construction emissions were included in the inventory for the purposes of threshold comparison.

The resulting emissions for the Proposed Project and the Proposed Project with Expanded Transit Service can then be divided by a service population calculated as the sum of 16,830 additional net new residents and 2,390 net new employees for a total service population of 19,220. This results in service population emissions of 3.6 MT/yr/service population for the Proposed Project and for the Proposed Project with Expanded Transit Service. Because service population-based emissions would be less than the BAAQMD significance threshold of 4.6 MT/year/service population, the Proposed Project and the Proposed Project with Expanded Transit Service would be considered to have a less than significant impact with respect to emissions of GHG.

APPENDIX G: TREASURE ISLAND WIND CONDITIONS TECHNICAL MEMORANDUM

Technical Memorandum

TO: Nancy Clark

Turnstone Consulting

330 Townsend Street, Suite 216 San Francisco, CA 94107

FROM: Charles Bennett

Environmental Science Associates 225 Bush Street, Suite 1700 San Francisco, CA 94104

DATE: April 10, 2010

SUBJECT: Potential Wind Conditions at Treasure Island

Under the Proposed Treasure Island / Yerba Buena Redevelopment Plan

Pedestrian Area Testing San Francisco, California

ESA 209672

I. Introduction and Overview

A series of wind tunnel tests were performed in January 2010 for the proposed Treasure Island / Yerba Buena Redevelopment Project (the Project) in the City of San Francisco. Although the Project would include development on both Islands, the changes in pedestrian level wind conditions on Yerba Buena Island due to the Project are generally expected to be both relatively small in magnitude and highly localized to individual building sites, compared to the larger scale and larger magnitude changes anticipated to occur on Treasure Island. This study therefore focused on Treasure Island; the wind tests were performed to define the pedestrian wind environment that would exist around the proposed development there. Pedestrian-level wind speeds were measured at a limited number of selected points for the Treasure Island site as it presently exists and at 200 points with the Proposed Project in place to quantify resulting pedestrian-level winds in public spaces near the Proposed Project.

The north half of Treasure Island now contains primarily two-story buildings, the central part contains scattered buildings up to three and four stories in height, and the south end of the Island contains several five-story buildings and hangars that are the tallest structures on the island. For the purpose of wind testing, the existing buildings at the site that would remain after site redevelopment were considered to be part of the existing setting conditions. These include the existing elementary school in the north, the Job Corps buildings in the center, and Buildings 1, 2 and 3 in the south of the Island. In addition, the two existing four-story star-shaped structures west of the Job Corps site were also considered as part of the existing setting conditions.

The development of the Project at the Treasure Island site would include demolition of many of the remaining existing buildings, minor elevation changes due to grading of the building sites and streets, and the construction of the many separate building clusters with buildings ranging in height from approximately 35 to 600 feet. The Project would include construction of approximately 19 high-rise towers, among a substantial base of low- and mid-rise buildings, on Treasure Island.

Because no building designs exist at this stage of development planning, this study used a proposed representative height and massing design to represent the Project in the wind-tunnel; a bulk model of this representative design was tested to evaluate likely effects that the Project would have on the street-level wind conditions on streets and within pedestrian areas of the development, in existing facility and recreation areas, and in the proposed locations of planned parks and open spaces. The intent of the study was to determine the general wind conditions that would exist within the development and to determine whether they would be compatible with the uses proposed at the site.

The Proposed Project would allow for flexibility in the shape and precise location of the towers; tower volumes may change as specific building designs are proposed. Although different building configurations will result in different ground-level wind effects, this study provides a solid basis for understanding the general street-level wind conditions that would result in pedestrian spaces from the overall massing of Project buildings.

Summaries of the test results and the study conclusions follow. Details of the background and test methods are presented in this technical memorandum in Section II, Background. The test results and discussion are presented in Section III, Test Cases and Study Results.

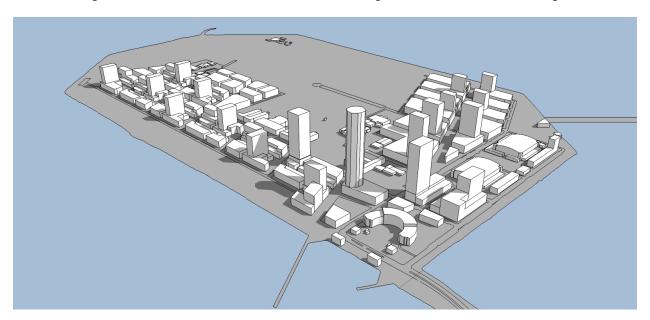
Summaries of Tests

Two development scenarios were modeled and tested in the wind tunnel. The scenarios were: 1) Existing Setting, and 2) Project. Five wind directions were tested for each scenario: North-Northwest, Northwest, West-Northwest, West and South-Southeast. A relatively small number of test points (29) were measured to characterize the existing setting. These were judged to be sufficient to characterize the existing wind environment over most of the Island. Many test points (200) were measured to characterize the Project, due to the need to determine the future wind environment in more detail and with some certainty.

Although the Project site is not subject to the City of San Francisco Planning Code Section 148, the Section 148 wind hazard criterion, an equivalent wind speed not to exceed 26 mph for one hour per year, is used to evaluate a significant wind impact for the purposes of the California Environmental Quality Act (CEQA) in San Francisco. The other Section 148 wind criteria, an 11 mph pedestrian-comfort criterion and a 7 mph seating-comfort criterion, are based on wind speeds not to be exceeded 10% of the time (see detail on page 8). These Section 148 comfort criteria are not CEQA significance criteria. This study's discussions of wind hazards and of the wind speeds exceeded 10% of the time provide the reader with a basis for comparison with these familiar wind hazard and wind comfort criteria.

Existing Setting

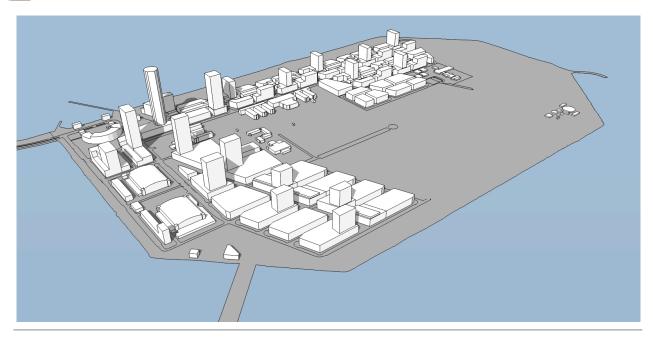
For the purpose of wind testing, the existing setting consists generally of the existing buildings on and in the vicinity of the Project site that would remain after site redevelopment. These include the existing


elementary school in the north, the Job Corps buildings in the center, and Buildings 1, 2 and 3 in the south of the Island. In addition, the two existing four-story star-shaped structures west of the Job Corps site were also considered as part of the existing setting.

Treasure Island, the Project site, is located in San Francisco Bay, where conditions are typically very windy. The average of the wind speeds exceeded only 10% of the time, as measured at the 29 existing test points, is over 16 mph; existing wind speeds range from 10 to 20 mph. The highest wind speed measured in the test (20 mph) occurs at the south end of the southern-most Job Corps building. Two (2) of the 29 points meet the Section 148 pedestrian-comfort criterion of 11 mph; one of these is located at the north entrance to Building 3 and one is in the yard of the existing school.

The wind hazard criterion of Planning Code Section 148 is exceeded at 23 of the 29 existing test locations. In addition, it is certain that the wind hazard criterion is exceeded at a very large number of other existing locations all over the Island.

Project


The Proposed Project scenario consists of a representative massing for the Proposed Project added to the existing buildings that would remain after site redevelopment. These include the existing elementary school in the north, the Job Corps buildings in the center, and Buildings 1, 2 and 3 in the south of the Island. Most of the other existing buildings would be demolished. The Proposed Project would involve construction of many separate building clusters with buildings ranging in height from approximately 35 to 600 feet. The proposed Redevelopment Plan would include construction of approximately 19 high-rise towers, among a substantial base of low- and mid-rise buildings, on Treasure Island. See Figures 1 and 2.

SOURCE: PERKINS + WILL. 2010

FIGURE 1
Cityside View – Representative Massing of Proposed Project

SOURCE: PERKINS + WILL, 2010

FIGURE 2 Eastside View – Representative Massing of Proposed Project

Wind speeds were measured at 200 locations within the Project and vicinity. These 200 points do not include the 6 test points that were used only to measure existing wind conditions. Of these 200 Project test points, 23 were also measured for the existing scenario. The following comparisons are made between the existing and Project wind conditions for winds measured at these 23 common locations.

With the Proposed Project, wind conditions at the exterior of the built areas would remain very windy, while wind speeds at locations within the interior of the development would generally decrease. The average of the 10% exceeded wind speeds measured for the 23 common test points would be less than 12 mph, a decrease of nearly 5 mph. Wind speeds at the common test points would range from 8 to 19 mph, with 13 of the 23 points meeting the Planning Code's pedestrian-comfort criterion. Nine existing exceedances of the pedestrian-comfort criterion would be eliminated, one new exceedance would be created, and 12 existing exceedances would remain.

With the Project, as compared to existing conditions, wind speeds would increase at two locations; remain unchanged at two locations; and decrease at 19 locations. Wind speed increases would range up to 4 mph; wind speed decreases would range up to 10 mph. The highest wind speed (19 mph) would occur at the south end of an existing Job Corps building that fronts on Avenue C.

With the Project, the Planning Code's wind hazard criterion would be exceeded at 2 of the 23 common test locations, 16 fewer than the existing 18 exceedances at those 23 locations. In addition, as is the case for the existing wind conditions, it is certain that the wind hazard criterion would be exceeded at many other exposed locations on the Island.

Study Summary and Conclusions

Comparative wind tests conclusively show that the Proposed Project would reduce wind speeds and the occurrence of wind hazards throughout most of the built area of the Project. The study also shows that the Project would have no adverse effect on winds in the open spaces outside of the built area.

Wind speeds would vary widely across the Project development area. Of course, wind speeds would remain high in the shoreline parks and open spaces, which are fully exposed to the winds approaching Treasure Island over the Bay. Since the Project would face the shoreline and the approaching Bay winds would reach the Project generally unabated, wind speeds would be higher along the Project edges and generally would diminish in the interior of the developed neighborhoods of the Project. Although the wind speeds exceeded 10% of the time would be 12 mph or more at nearly 2/3 of the 200 Project test locations, 10% exceeded wind speeds at 74 test point locations would be at or less than the 11 mph pedestrian-comfort criterion of Section 148.

Wind speeds that would occur within the interior of the Project would be similar to those found in some of San Francisco's windier areas, such as Mission Bay.

The strong existing winds and their accompanying higher incidence of wind hazards would still occur in the exposed shoreline parks and open spaces. Existing wind hazards would continue to occur in the new Project open spaces, including a number of locations along the Cityside Waterfront Park, Cultural Park and Waterfront Plaza. These strong winds and accompanying wind hazards would not be caused by the Project, but simply reflect the overall wind environment of Treasure Island.

Of all 200 locations in the Project area that were tested in the wind tunnel, wind hazard conditions were detected at 49 of these locations (see map at Figure 4, page 29). In general, the relative incidence of wind hazards within the Project would be higher along the Project edges and wind speeds and the incidence of wind hazards generally would diminish in the interior of the Project.

Examples of locations where higher wind speeds and a higher incidence of wind hazards would occur primarily because they are located at an outer edge of the developed area include:

- west: along Cityside Avenue and the north end of the Waterfront Plaza;
- *north*: along 10th Street;
- east: along 4th Street, Eastside Avenue and the east end of 2nd Street; and,
- *south*: along the west end of 1st Street.

Within the interior of the developed area, wind hazards could be caused by local wind effects of the nearby individual high-rise towers and/or by strong incident winds that channel along street canyons, between the building masses. Examples of such locations include:

- the north end of Cityside Alley;
- along Avenue C, from 10th Street to 4th Street; and,
- along 3rd Street, between Eastside Avenue and Avenue D.

The relatively high incidence of wind hazards that would occur within the Project's central area, generally bounded by the Cultural Park, 4th Street, Avenue D, and California Avenue, may be due to several contributing causes. First, that area is open to the predominant winds from the west, which can enter through the Waterfront and Cultural Parks. Second, the Project and Job Corps buildings there are generally more widely spaced, thus offering less mass to block ground-level winds. Third, this area would have several high-rise buildings, including the tallest two towers in the Proposed Project, so adverse local wind effects caused by those high-rise towers would be expected to occur.

Comparison of Project and Existing Wind Hazards

Evaluation of the Project's changes to existing wind conditions at the 23 comparable locations shows that the Project would reduce wind speeds or the occurrence of wind hazards at all but one location, a Job Corps building on Avenue C. Based on this information and further evaluation of the basic wind data, it is judged that for all of the above examples, the overall incidence and the durations of the wind hazards that would result from the Project would be similar to, or less than, those wind hazards that now occur on Treasure Island. The longer duration Project hazards, such as the approximately half-dozen hazards of 10 hours per year, or more, that would occur on Avenues C and D in the central area, are judged to be representative of the wind hazards that can be attributed to the Proposed Project, while the rest of the wind hazards identified for the Project may be considered to be equivalent to, or less than, the many unidentified existing wind hazards on Treasure Island.

Potential to Mitigate Wind Hazards

Whatever the fundamental causes of the individual wind hazards, efforts should be made to reduce the wind hazards that would occur, or to limit the exposure to those hazards by residents and visitors, in the developed areas of the Proposed Project.

It may be the case that the wind hazards may be reduced, but likely not eliminated, by design measures adopted during development. Most of the short-duration wind hazards that would occur in mid-block locations could be effectively eliminated by simple design measures and a combination of street furniture and landscaping that would protect pedestrian walkways and building entrances.

Addressing the hazards at large intersections and in open spaces would be more difficult – even problematic; given the open nature of these spaces, there may be no practical way to eliminate all wind hazards in these locations without changing the character of these open areas.

Finally, wind hazards that occur at the outer edges of the Project are also problematic, since the Project must have edges where the buildings adjoin open space and are exposed to the full force of the existing winds. Considerable effort may be necessary to develop combinations of measures that would prove effective in reducing the occurrence of those particular hazards, which may prove intractable.

II. Background

Buildings and Wind

Tall buildings and large structures can strongly affect the wind environment for pedestrians. In cities, groups of structures tend to slow the winds near ground level, due to the friction and drag of the structures themselves. In general, the taller and the more densely spaced the buildings in a downtown area, the more they slow the winds near the ground.

However, a building that is much taller than the surrounding buildings, or that stands alone, can intercept and redirect winds that might otherwise flow overhead, and bring them down the vertical face of the building to ground level, where they create ground-level wind and turbulence. These redirected winds can be relatively strong and also relatively turbulent, and can be incompatible with the intended residential or commercial uses of nearby ground-level spaces. Moreover, high-rise structure designs that present tall flat surfaces that intercept strong winds can create ground-level winds that can be hazardous to pedestrians in the vicinity.

On one hand, clustered buildings can improve wind conditions at street level; on the other hand, tall buildings can cause wind problems for pedestrians. The result depends upon the specifics of the situation.

For development at Treasure Island, most of the proposed buildings would be more closely spaced, taller and much larger than the existing, scattered buildings they would replace. The Project would add clustered low-rise, mid-rise and high-rise development to the Island in the middle of the Bay. Among the new buildings would be approximately 19 proposed high-rise towers, each of which would be large enough to cause ground-level wind problems for pedestrians, even if these towers were to stand alone. Because the Project Area would be so large and because winds here are known to be strong, it is expected that the Project would result in substantial changes in street-level wind conditions over the developed area of the Island. Furthermore, because the existing winds here are known to be strong, the potential exists for the Project to result in adverse or hazardous street-level winds in pedestrian areas.

Wind tunnel testing was used to determine if unsuitably strong winds would occur if the Project is built.

Wind Speed and Pedestrian Comfort¹

The comfort of pedestrians varies under different conditions of sun exposure, temperature, clothing, and wind speed. Winds up to four miles per hour (mph) have no noticeable effect on pedestrian comfort. With speeds from 4 to 8 mph, wind is felt on the face. Winds from 8 to 13 mph will disturb hair, cause clothing to flap, and extend a light flag mounted on a pole. Winds from 13 to 19 mph will raise loose paper, dust, and dry soil, and will disarrange hair. For winds from 19 to 26 mph, the force of the wind will be felt on the body. With 26 to 34 mph winds, umbrellas are used with difficulty, hair is blown straight, there is

Lawson, T.V. and A.D. Penwarden, "The Effects of Wind on People in the Vicinity of Buildings," Proceedings of the Fourth International Conference on Wind Effects on Buildings and Structures, London, 1975, Cambridge University Press, Cambridge, U.K., 605-622 1976.

difficulty in walking steadily, and wind noise is unpleasant. Winds over 34 mph increase difficulty with balance and gusts can blow people over.

San Francisco Planning Code Requirements

San Francisco Planning Code Section 148, Reduction of Ground-Level Wind Currents, outlines wind reduction criteria for C-3 zoning districts. Although Treasure Island is not located in a C-3 district, the Section 148 requirements are used for evaluation of wind impacts for the purposes of CEQA in San Francisco. The analysis of the Proposed Project was performed using the wind testing analysis and evaluation methods used for Section 148, a copy of which is attached to this memorandum.

The Planning Code requires buildings to be shaped so as not to cause ground-level wind currents to exceed defined comfort and hazard criteria. The comfort criteria are that wind speeds will not exceed, more than 10% of the time year-round between the hours of 7 a.m. and 6 p.m., 11 mph in substantial pedestrian use areas, and 7 mph in public seating areas. The Planning Code defines these wind speeds in terms of equivalent wind speeds², an average wind speed (mean velocity), adjusted to include the level of gustiness and turbulence. Similarly, the hazard criterion of the Code requires that buildings not cause the equivalent wind speeds to reach or exceed the hazard level of 26 mph as averaged for a single full hour of the year. The comfort criteria are based on wind speeds that are measured and averaged for one minute; this is the same basis for the extensive wind speed data in the meteorological record for San Francisco. In contrast, the hazard criterion is based on winds that are measured and averaged for one hour; when stated on the same averaging time basis as the comfort criteria winds and the wind data in the meteorological record, the hazard criterion speed is restated as a one-minute average of 36 mph³.

Existing Climate and Wind Conditions

Treasure Island and Yerba Buena Island are located in the middle of the Bay, between San Francisco and Oakland. They are fully exposed to strong storm winds from every direction, and their direct exposure to the Golden Gate, approximately 6 miles to the west, also places them in the path of the strong regular afternoon winds generated by the combination of large-scale climatic, meteorological and topographic conditions in the Bay Area.

The speed and turbulence of winds that reach Treasure Island and Yerba Buena Island are affected by topography and features of the lands and the Bay that lie upwind. Winds that move over the water or over land encounter surface roughness and take on differing wind speed profiles due to differing topography, vegetation, and structures that all act to slow the wind near the ground and create turbulence. However, when those winds reach large areas of smooth, flat surfaces, such as open land or the open waters of the Bay, wind speeds near the surface of the ground or water will increase and the level of turbulence will decrease.

Equivalent mean wind speed is defined as the mean wind speeds, multiplied by the quantity (one plus three times the turbulence intensity) divided by 1.45. This amplifies the equivalent mean wind speed values when turbulence intensity is greater than 15%.

³ Arens, E. *et al.*, "Developing the San Francisco Wind Ordinance and its Guidelines for Compliance," Building and Environment, Vol. 24, No. 4, p. 297-303, 1989.

Winds that reach Treasure Island first encounter the berms, ground-surfaces, and the low-rise development that occupies much of the Treasure Island; these features slow the winds close to the surface, but leave higher-velocity winds higher above the ground surface unaffected. Thus, conditions on the Island can be characterized as very windy.

Existing wind conditions

Because there is existing development and vegetation on Treasure Island, street-level wind conditions on the Island will vary by location, according to the amount of wind sheltering that is provided by the various types and densities of buildings and vegetation that now exist. As shown by the numerical results of the wind testing, the west is the predominant wind direction; therefore, this review focuses on west wind access to the island and the development along the western (upwind) edge of the island:

• From the north end of the island to 9th Street and from Perimeter Road to approximately 500 yards inland, development consists primarily of 2-story buildings – most are multi-family residential buildings. Those closest the Bay are generally grouped and aligned to face the Bay, placing the long side parallel to the shoreline. This exposes the Bay side to the prevailing winds and provides wind sheltering on the island side of the building. The pattern of development provides street-width openings for winds from the Bay. Because these buildings are 1) grouped together in sixes and eights, 2) oriented long side to the shore, 3) all of similar height, and 4) have few straight-through streets, they likely provide reasonable wind sheltering within the overall area.

There is less sheltering on the leeward of this area, with wind speeds increasing over vacant inland areas.

Scattered industrial buildings up to three stories in height occupy locations within the street grid, north of 9th Street between Avenue E and the eastern shore. These appear to provide sheltering similar to that in the residential area to the west.

• Between 9th Street and 4th Street, the area west of Avenue B is open space, while the area between Avenue B and Avenue D is occupied by large 3- and 4-story buildings, including the two four-story star-shaped structures west of the Job Corps, as well as the major Job Corps buildings. These buildings are interspersed with trees with canopies that reach above the buildings. These buildings and trees should provide good wind sheltering within the central part of this area. However, along 9th Street and 4th Street, the frontages are open parking lots that each provide a 50-yard-wide openings for winds off the Bay, which can flow freely along these street corridors.

The wind speed can increase as it passes over the baseball fields east of Avenue D.

Scattered industrial buildings up to three stories are located between 5th and 4th Streets between Avenue D and the eastern shore. These appear to provide wind sheltering similar to the industrial area to the north.

- South of 4th Street, the southern portion of the island is occupied by scattered large buildings up to 5 stories in height and substantial plantings of mature trees. Included are Building 1 and the more-massive Buildings 2 and 3, all of which are approximately 60 to 80 feet high. Together, these buildings and trees provide substantive wind sheltering, however, there are open areas that are sufficiently large that they allow wind speeds to recover and increase.
- Due to topography and dense vegetative cover, winds affect primarily the windward side of Yerba Buena Island, but the primary effect is localized by the local topography and the substantial sheltering provided by the stands of mature trees.

Currently, the speed of the incident wind at street level is materially reduced by the two-story multi-family residential development as the wind reaches into the developed areas at the north end of Treasure Island. More-substantial wind speed reductions occur in the more protected areas in the central and southern parts of the island. The diminished winds then increase again as they pass over vacant or open areas on the island. Once winds reach the east shore of the Island and move over the water, wind speeds

increase, until they reach the shore and low-lying areas of the East Bay. Regardless, the wind resistance (the surface roughness) of the existing development and vegetation on the island still reduces the speed of the wind to less than its speed over the open Bay and to less than its speed over the vacant areas of the Island.

The topography and dense vegetative cover of Yerba Buena Island determine ground level wind conditions in response to winds; any given wind will affect primarily the windward side of the island, but the major effect at pedestrian level will be localized and its magnitude determined by the sheltering provided by the local topography and stands of mature trees. Due to the structure of the winds in the atmosphere, the higher elevations on Yerba Buena Island are exposed to higher-speed winds than are lower elevations. Because the individual clusters of development proposed for Yerba Buena Island are not grossly different in size and scale from the existing development, few changes in wind conditions with respect to existing wind conditions are anticipated. Any differences in wind conditions before and after development would be highly localized and exclusively due to the size, shape and orientation of the individual buildings proposed for a given site.

Available Wind Data - San Francisco

Average winds speeds in San Francisco, as in most of the Bay Area, are highest in the summer and lowest in winter. However, the strongest peak winds occur in winter. The highest average wind speeds occur in mid-afternoon and the lowest in the early morning. Westerly to northwesterly winds are the most frequent and strongest winds during all seasons. Of the 16 primary wind directions, four have the greatest frequency of occurrence and subsequently make up the majority of the strong winds that occur. These winds in Downtown include the northwest, west-northwest, west, and west-southwest winds.

Data describing the speed, direction, and frequency of occurrence of winds were gathered at the old San Francisco Federal Building at 50 United Nations Plaza (at a height of 132 ft.) during the six-year period, 1945 to 1950. Measurements taken hourly and averaged over one-minute periods have been tabulated for each month (averaged over the six years) in three-hour periods using seven classes of wind speed and 16 compass directions. Analysis of these data shows that during the hours from 6:00 a.m. to 8:00 p.m., about 70% of all winds blow from five of the 16 directions as follows: Northwest (NW), 10%; West-Northwest (WNW), 14%; West (W), 35%; West-Southwest (WSW), 2%; Southwest (SW), 9%; and all other winds, 28%. Calm conditions occur 2% of the time. More than 90% of measured winds over 13 mph blow from these directions.

Available Wind Data - Naval Air Station, Alameda

The Islands lie within a climatological subregion of the San Francisco Bay Area Air Basin where the marine air that travels through the Golden Gate, as well as across San Francisco and the San Bruno Gap, is a dominant weather factor. The Oakland-Berkeley Hills to the east cause the westerly flow of marine air to split off to the north and south of Oakland; this phenomenon tends to diminish winds in Oakland itself.

Wind data from the Alameda Naval Air Station (now closed) meteorological station (at a height of 22 ft.) show that the predominant wind flow for the higher speed components of the wind is generally from the west; winds from the WSW, W and WNW account for nearly 40% of winds, each with mean wind speeds

between 10.0 and 10.5 mph. Average wind speeds vary from season to season with the strongest average winds occurring during summer and the lightest average winds during winter. In addition to West winds, higher velocity winds from NNW and SSE are often associated with storms. Together, the W, NNW and SSE winds are the most frequent winds that exceed 25 mph.

Application of Wind Data to Treasure Island

No satisfactory long-term wind data are available from a suitable meteorological station on Treasure Island. In the absence of a satisfactory wind record, data from a suitable substitute station can be used. The speed and the direction of winds at Treasure Island are expected to differ from the speed and the direction of the winds at the Civic Center of San Francisco (Downtown station), at Ft. Funston, and the San Francisco International Airport, all stations with qualified meteorological data. The winds in the Civic Center are affected by the topography and surface roughness of the City, which substantially alter the direction and slow the speed of the winds that reach Downtown. Winds at Ft. Funston reflect an open ocean exposure, with no shaping by the topography of the sea-level gap at the Golden Gate. Winds at San Francisco International Airport are strongly focused by the topography of the San Bruno Gap, which substantially alters the direction of those winds. These local effects are substantial enough to make these wind records unsuitable to represent wind conditions at Treasure Island.

The meteorological station nearest to Treasure Island was the Alameda Naval Air Station (NAS Alameda), located on the northern end of Alameda Island, some two miles southeast of the Bay Bridge. The NAS Alameda meteorological tower was located approximately 4 miles southeast of the center of Treasure Island. Similar to Treasure Island, NAS Alameda is at the edge of the Bay and has an open water exposure to the west. The distance from the meteorological tower west to the Bay shoreline was approximately 0.8 mile, which is more than the 0.7 mile east-west width of Treasure Island. The openwater distance from the ANAS shoreline west to San Francisco is 2.7 miles, whereas Treasure Island is directly open to the Golden Gate, nearly 6 miles to the west. Thus, NAS Alameda has: 1) less fetch over open water to the west, which tends to reduce wind speed reaching the shore; and; 2) more fetch over flat land to the west, which tends to further reduce speed reaching the tower. Although the magnitude of these reductions may not be large, these two factors tend to reduce the speed of the on-shore west winds that reach the meteorological tower at NAS Alameda. In addition to the potential speed differences, wind direction differences also can result, primarily as a result of Bay Area climatic and topographic factors, as discussed below, as well as the presence of Yerba Buena Island upwind of NAS Alameda.

Given the proximity to Treasure Island and the similar exposure to the Bay, the long-term wind record from NAS Alameda is judged to be a reasonable substitute for the unavailable Treasure Island wind record. However, it also appears that the winds at Treasure Island may have a higher velocity than those measured at NAS Alameda, due to the longer fetch of open waters of the Bay to the west, and a shorter fetch over flat land to the west. Each of these two factors tends to reduce the speed of the west winds that reached the NAS Alameda meteorological tower. However, a balancing factor is that the existing buildings and vegetation on Treasure Island combine to reduce wind speed as wind passes over the island; there is no similar development or vegetation at NAS Alameda. Considering these balancing factors, it is concluded that the NAS Alameda wind record indicates wind speeds that are similar to and possibly higher than the existing speeds at the Project sites on Treasure Island. Thus, the use of the NAS Alameda data should provide a conservatively high estimate of existing wind speeds on the Island.

The directional shift in west winds as the air mass flow diverges in the East Bay is likely to mean that winds that occur at Treasure Island are rotated somewhat to the north, compared to the direction of winds recorded at NAS Alameda. From an on-line review of historic wind direction data from the SF Bay Wind Archives⁴, the magnitude of this shift appears to vary with wind direction, but appears to range from approximately 0 degrees to 10 degrees. For this study, which focuses primarily on the higher speed winds, this directional shift is judged to be significant enough to affect these results.

Model and Wind Testing Protocols

A 1-inch to 50-foot scale model of the Treasure Island, as well as a substantial upwind and downwind reach into the Bay, was constructed in order to simulate the Project and its existing and future contexts. The scale model of the Project and surrounding area was provided by ESA. The Project test model was constructed by ESA from plans provided by the Project architects. The scale models were then tested in a boundary layer wind-tunnel facility at the University of California-Davis, under the direction of Bruce White, Ph.D. These wind tests, however, were performed independent of the University.

Wind Directions

Wind directions on Treasure Island differ from those at the old Weather Bureau site Downtown (where wind speed distribution data most-frequently used for analysis under Planning Code Section 148 were gathered). For tests in the Downtown, typically three wind directions (W, NW and WNW) are tested, with SW wind tested only for locations with open upwind exposures to that direction, such as south of Market, Mission Bay and Candlestick. These are usually sufficient to establish conformance to both the comfort and the hazard criteria of Section 148. However, for purposes of hazard criterion evaluation alone, Treasure Island's exposures to strong northerly and possibly southerly winds are considered important, especially at open sites along the eastern waterfront, and site exposure to strong southerly winds could be important along the oceanfront and avenues.

Given the location and exposure of the Treasure Island site, the wind hazard evaluation requires consideration of NNW, NW, WNW, W and SSE winds. Although the island is exposed to SW winds over the Bay, the higher-speed component of the SW wind, which is important for wind tests of projects located at south of Market sites, is expected to be substantially reduced by the mass of the buildings in San Francisco's Downtown core, so wind testing for Treasure Island omitted the SW wind. To allow maximum flexibility in this test, the Project was tested for each of five major wind directions, W, NNW, SSE, NW and WNW. This considered all directions that have high-speed components that may interact with the proposed street grid and development bulks on the island, and also will provide enough directional information to allow comparison of the results with the typical outputs from the Section 148 analysis for north of Market buildings Downtown. The wind speed profile (wind velocity as a function of height above the ground) was measured on the Island for each wind direction.

⁴ SF Bay Wind Archives, http://sfports.wr.usgs.gov/cgi-bin/wind/windarchive.cgi, accessed Sept. 2009

Test Scenarios

Two development scenarios were modeled and tested in the wind tunnel. The scenarios are: 1) Existing Setting, and 2) Proposed Project.

Due to the isolation of the Island, the only cumulative development projects that could relate to the Proposed Project are: 1) proposed replacement of existing on/off ramps from the Bay Bridge to the east side of Yerba Buena Island; 2) construction and operation of a 400-berth marina in Clipper Cove, approved in 2006, but not yet built; and, 3) completion of the new eastern span of the Bay Bridge and removal of the existing bridge. It is not likely that these projects could result in measurable pedestrian wind effects on Treasure Island because the marina would consist of relatively low structures at the south end of Treasure Island and the Bay Bridge is about two thousand feet south of Treasure Island. Therefore, neither should have an appreciable effect on winds on Treasure Island. Therefore, a cumulative scenario was not included in the test scenarios for the Proposed Project.

Test Procedure

The test procedure consisted of orienting the selected configuration of the model in the atmospheric boundary layer wind-tunnel and measuring the wind speed at each of the test locations with a hot-wire anemometer. Hot-wire measurements were taken at most of the same surface points for all test configurations and wind directions.

The wind tunnel allows testing of natural atmospheric boundary layer flow past surface objects such as buildings and other structures. The tunnel has an overall length of 22 meters (m) (72 feet), a test section of 1.22 m (4 feet) wide by 1.83 m (6 feet) high, and an adjustable false ceiling. The adjustable ceiling and turbulence generators allow speeds within the tunnel to vary from 1 meter per second (m/s) to 8 m/s, or 2.2 mph to 17.9 mph.

Wind-speed measurements at each test location were made with a hot-wire anemometer, an instrument that directly relates rates of heat transfer to wind speeds by electronic signals that are proportional to the magnitude and steadiness of the wind. The hot-wire probe was calibrated to an accuracy of within 2% before the test procedure was begun. The hot-wire probe measured the analog voltage for approximately 30 seconds at each test location. When converted to digital signals, this measurement provided approximately 30,000 individual voltage samples that were averaged and the root mean square calculated for each test location. These data, when converted to velocity using the calibration curves, provided the mean velocity and turbulence⁵ values used to calculate the equivalent wind speed. By measuring both the mean wind speeds and corresponding turbulence intensities, high wind speeds and gustiness (changes in wind speeds over short periods of time) could be determined. The ratio of near-surface speed to reference wind speed was calculated from the hot-wire measurements. The inherent uncertainty of measurements made with the hot-wire anemometer close to the surface of the model is ±5% of the true values.

These values were compared with the free stream wind as measured in the wind tunnel. As a result, each wind-tunnel measurement resulted in a ratio (called a R-value) that relates the speed of ground-level wind

⁵ Turbulence Intensity = RMS/Mean Velocity

to the speed at the reference elevation, in this case the height of the NAS Alameda meteorological tower (22 feet). These ratios were the output data from the wind-tunnel tests.

Wind Analysis Program

These output data were reduced using a computer program that evaluated the contribution from each tested wind direction to the total wind speed output ratios to account for the differences between the boundary layer profile in the wind-tunnel and the profile as measured at the meteorological station. To better match the directional and speed frequency distribution of the wind at Treasure Island, this protocol uses the wind record data from NAS Alameda as being more representative, and a computer program based on the NAS Alameda wind speed and direction distribution data and the data for W, NNW and SSE winds to determine Project compliance with the one-hour per year wind hazard criterion. The program then computed the equivalent wind speed that conforms to the selected criterion; either the wind speed exceeded 10% of the time or the wind speed exceeded one hour or more per year. The program also computed the percentage of time that the wind would exceed the speed criterion selected, and further computed the percentage contribution of each wind direction to the equivalent wind speed and to the excess of the criterion. In addition to the computations for each tested wind direction, the program computed an average ratio and used this to compute statistics for "Other" winds, which accounted for all remaining wind directions.

Added Analysis

While it was the original intent to also calculate wind speeds from the test results using the San Francisco Downtown Station data to provide a familiar basis for comparison, ultimately, it was deemed not practical to do so, because the wind speed and direction relationships between the San Francisco Downtown Station meteorological data and winds on Treasure Island could not be established with sufficient certainty. However, it is very informative to compare the R-Values for the additional NW and WNW wind directions with the R-Values from the W, NNW and SSE wind directions, in order to evaluate the sensitivity of each of the 200 locations in the development to winds from these common high-speed wind directions; this fulfills an intent of the study to clearly indicate if difficult wind problems might occur for the NW or WNW wind directions. The output of the computer program is presented in the wind-tunnel test results tables for wind speeds that would be exceeded 10% of the time and for hazardous winds. These tables, appended to this Technical Memorandum, provide the detail of the data and of the intermediate results that are described above. The wind tunnel ratios were included in the program input, and the results evaluated in the discussions that follow.

Wind Speed Profile Adjustments

The Section 148 wind test methodology implicitly assumes that the relationship between height above the ground and wind speed (referred to hereafter as the wind speed profile) is the same in the test area as at the reference weather station; for test sites in San Francisco, the reference is usually the Old Federal Building meteorological station at Civic Center. However, this test must reference the weather station at NAS Alameda, rather than the Civic Center station. The two stations are located in substantively different wind regimes.

A series of detailed measurements were made in the wind tunnel to determine the wind speed profiles to be used for each wind direction - NNW, NW, WNW, W, and SSE. Wind profile adjustment factors were estimated for each of those wind directions, based on the profile measurement and upon the standard method presented in the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Handbook, Chapter 14. The ASHRAE methodology was applied to determine the parameters and calculate the profiles for the NAS Alameda; the parameters for Treasure Island were determined using data from wind speed profiles measured in the wind tunnel above the test model for the Treasure Island site. A category was considered for each of the wind directions at the NAS Alameda meteorological station and for each of the wind directions at the Project site; due to the open nature of the site, the values were the same for all directions. They yielded the values used for alpha, the power-law exponent, and delta, the boundary-layer thickness, and ultimately the factors for normalizing that NAS Alameda meteorological data to the wind speed at Treasure Island.

For Treasure Island, a power-law exponent (alpha) of 0.14 and a boundary layer height of 750 feet were used for all wind test directions. The resulting wind speed at pedestrian level on Treasure Island is about 1.25 times the pedestrian level wind speed measured at the NAS Alameda meteorological station. The wind test cases and study results reflect the use of these adjusted values.

Wind Speed and Hazard Duration Uncertainties

Because Section 148 wind testing usually references the Old Federal Building meteorological station at Civic Center for test sites in San Francisco, the results of those many tests have much in common. The results of those wind tests for buildings in the Downtown are easily compared, and the values of wind speed and hazard duration for one building can be compared easily to those results from other building tests. A 15 mph wind speed at one Downtown building compares very well to a 15 mph wind speed at another Downtown building.

There are more uncertainties in precisely converting the testing results to wind speeds and hazard duration for this test at Treasure Island; these uncertainties may degrade the <u>absolute accuracy</u> of the numerical results when it comes to precisely establishing wind speed on the ground. Thus, although it may be close, a 15 mph wind speed reported in this test may not compare exactly to a 15 mph wind speed measured in a test for at a Downtown building. Whether the results match, whether they all may be slightly high, or whether they all may be slightly low, all of the values would trend the same way, and by the same percentage factor, because the uncertainty is a matter of scaling. The size of this uncertainty is expected to be of the order of ±1 mph for a reported 15 mph speed.

However for every point tested, the <u>relative accuracy</u> of this testing is exactly the same as for all other wind testing for San Francisco buildings. The net result is that the reported values of wind speed and hazard duration that are presented here have the same relative accuracy, one to another, as those found among the results of wind tests for buildings in the Downtown. All of the test values – wind speed and hazard duration – for the existing setting and the Proposed Project scenarios and for every point on Treasure Island are fully comparable.

III. Test Cases and Study Results

Introduction

Pedestrian-level wind-tunnel tests were conducted for the Existing Setting and for the Proposed Project scenario. Twenty-nine (29) test point locations were measured for the Existing Setting and 200 locations were measured for the Project scenario.

Each scenario was tested for five wind directions: NNW, NW, WNW, W, and SSE. These winds are the most representative for evaluation of the Proposed Project. Wind tunnel testing results are shown here as calculated wind speeds, where those are the equivalent wind speeds⁶ that are exceeded 10% of the time, and these results are also shown as R-Values⁷, to facilitate an understanding of the directional sensitivity of the results.

Test Point Locations⁸

The test points on the premises of the Proposed Project site are scattered among all of the buildings and building clusters, with several points located on the perimeter of the Island (see Figures 3a and 3b). Twenty-nine (29) test point locations (points #1 - #29) were studied for the Existing Setting and 200 locations (points #7 – #206) were studied for the Project scenario. Six points (#1 - #6) were sited to indicate existing wind conditions around the existing star-shaped buildings⁹; since these buildings would be demolished, points #1 - #6 were not measured under the Project scenario. The remaining Existing Setting points (#7 - #29) were also measured for the Project scenario. All measurement points are color-keyed in Figures 3a and 3b as follows: 1) points #1 through #6 are in green numerals on a rectangular white fields; 2) points #7 through #29 are in white numerals on a rectangular green fields; and, 3) points #30 – 206 are black numerals on a rectangular white fields.

Special attention was paid in locating the test points to provide information about wind conditions in identified parks and open spaces, as well as along streets and pedestrian thoroughfares. For narrative purposes in identifying test point locations, Figures 3a and 3b show street names ¹⁰ for the proposed development. In the narratives, some of the test points are considered more than once, since this provides useful information about wind flows along streets.

The test points were selected because they are located in areas where measurable effects caused by the Proposed Project would reasonably be anticipated. Some points are located at building corners, and on roadways and pathways that run between the buildings. Care was taken to trace turbulent winds that could originate from the 19 high-rise towers that are a part of the Project.

Unless otherwise noted, throughout this discussion, "wind speed" refers to an "equivalent wind speed" that is exceeded 10% of the time. An "equivalent wind speed" is a metric defined as the mean wind speed multiplied by the quantity (1 + 3 x Turbulence Intensity) and divided by 1.45. Because high values of turbulence generally make winds much more unpleasant for people, this definition includes a factor that amplifies the calculated velocity whenever the turbulence is greater than 0.15 or 15%, a low value.

Each R-Value is the calculated ratio of the equivalent wind speed measured at the height of one surface point of interest (*i.e.*, pedestrian level) to the equivalent wind speed measured at the free stream or reference height (approximately 30 inches, or a scale height of 1,500 feet) in the wind tunnel. This ratio provides a way to relate all of the surface measurements made in the wind tunnel.

The test point (location) numbers were arbitrarily assigned, and thus hold no significance to the analysis of wind results.

These existing buildings are shown as outlines between Cityside Avenue, Avenue C, 5th Street and 7th Street, on Figures 1a and 1b.

¹⁰ Street names were arbitrarily applied in this analysis for convenience in discussing wind conditions throughout the Proposed Project area.

Wind Evaluation and Criteria

Just as the wind tunnel testing was performed in accordance with the test protocols of Planning Code Section 148, as described earlier in the section Model and Wind Testing Protocols, the performance requirements of Code Section 148 were used to evaluate the results of the tests. Although compliance with the pedestrian-comfort criterion is not required, to inform the reader, the 10% exceeded wind speeds were compared to the Code's pedestrian-comfort criterion of 11 mph for areas of substantial pedestrian use.

Separate calculations evaluated compliance with the hazard criterion. As previously noted, the wind data upon which the criterion was based were not full hour average speeds as identified by the Code, so it is necessary to adjust the wind criterion speed to obtain a valid comparison with the available data and the equivalent wind speeds based on those data. When normalized to the equivalent wind speeds used here, the hazard criterion speed is equal to 36 mph, the value used in the tables.

Throughout the text, the wind speeds reported refer to the equivalent wind speeds that would be exceeded 10% of the time when referring to the Section 148 comfort criterion, and 1 hour per year when referring to the Section 148 hazard criterion.

Test Output

The basic wind-tunnel test data and the detailed outputs of the computer program were presented in tables of comfort criteria and hazard criteria evaluations for each of the two test scenarios, Existing and Project. These output tables, appended to this Memorandum, provide the detail of the data and the intermediate results described above. The wind-tunnel ratios and the wind profile adjustment factors for each wind direction were included. The results were evaluated in the discussions that follow.

Figures 3a and 3b identify the measurement point locations for the wind tunnel test.

Summary information about the wind-tunnel test results and evaluations of compliance with the comfort and hazard criteria were presented for the Existing and Project scenarios in summary Tables 1 and 2.

Table 1 presents the wind comfort analysis results, namely the measured 10% exceeded speed and the percentage of time that the comfort criterion would be exceeded for each test location and test scenario.

Table 2 presents the wind hazard analyses results, the equivalent wind speed, and the number of hours per year that the hazard criterion would be exceeded for each test location and test scenario.

TABLE 1
WIND COMFORT ANALYSIS

Reference	s	Existing			Proposed Project				
Test Location Number	Wind Comfort Criterion Speed, miles/hour	Equivalent Wind Speed Exceeded 10% of Time, miles/hour	Percent of Time Wind Speed Exceeds Criterion	S O U R C E	Equivalent Wind Speed Exceeded 10% of Time, miles/hour	Percent of Time Wind Speed Exceeds Criterion	Speed Change Relative to Existing, miles/hour	S O U R C E	
1	11	18	35	е					
2	11	16	26	е					
3	11	19	29	е					
4	11	16	24	е					
5	11	12	14	е					
6	11	16	27	е					
7	11	19	35	е	15	24	-4	е	
8	11	16	27	е	10	8	-5	-	
9	11	18	30	е	14	19	-4	е	
10	11	19	34	е	15	24	-4	е	
11	11	18	33	е	10	6	-8	-	
12	11	16	29	е	19	32	4	е	
13	11	20	32	е	9	6	-10	-	
14	11	17	26	е	12	16	-4	е	
15	11	16	24	е	9	3	-7	-	
16	11	16	30	е	10	8	-6	-	
17	11	14	21	е	8	2	-6	-	
18	11	15	24	е	15	27		е	
19	11	17	32	е	13	16	-4	е	
20	11	11	9		10	7			
21	11	19	36	е	11	11	-8	-	
22	11	14	21	е	10	7	-5	-	
23	11	16	25	е	11	9	-6	-	
24	11	17	33	е	15	28	-2	е	
25	11	18	33	е	16	27	-3	е	
26	11	16	27	е	14	23	-2	е	
27	11	17	33	е	12	12	-6	е	
28	11	15	28	е	12	13	-3	е	
29	11 	10	6		13	16	3	. р	
Ave. of 10%	Percent:	16.2 mph	27%		12.3 mph	15%	-3.9 mph	.	
Total Ex	Total Exceedances:		27			Total	13		
Subt	Subtotals by type:		27	e		Existing	12	e	
		-			New, due to Pro	posed Project	1	р	
					New, a	nt new location	0	n	
SOURCE: En	vironmental So	cience Associate	s		Eliminated by Pro	posed Project	9	-	

TABLE 2
WIND HAZARD ANALYSIS

References		Existing			Proposed Project				
Test Location Number	Wind Hazard Criterion Speed, miles/hour	1-hour/year Equivalent Wind Speed, miles/hour	Wind Hazard Criterion Exceeded, hours/year	SOURCE	1-hour/year Equivalent Wind Speed, miles/hour	Wind Hazard Criterion Exceeded, hours/year	Hazard Hours Change Relative to Existing	S O U R C E	
1	36	40	5	е					
2	36	41	7	e					
3	36	44	11	e					
4	36	37	1	e					
5	36	27	,	ŭ					
6	36	41	8	е					
7	36	41	6	e	34		-6	_	
8	36	41	4	e	23		-4	_	
9	36	42	7	e	32		-7	-	
10	36	42	7	е	34		-7	-	
11	36	39	3	е	22		-3	-	
12	36	34			45	15	15	р	
13	36	44	12	е	33		-12	-	
14	36	38	3	е	28		-3	-	
15	36	37	1	е	19		-1	-	
16	36	42	9	е	29		-9	-	
17	36	38	3	е	17		-3	-	
18	36	43	12	е	41	7	-5	е	
19	36	37	1	е	29		-1	-	
20	36	24			23				
21	36	41	10	е	25		-10	-	
22	36	37	2	е	22		-2	-	
23	36	37	8	е	23		-8	-	
24	36	37	2	е	36		-2	-	
25	36	41	7	е	35		-7	-	
26	36	34			30		-		
27	36	38	2	е	28		-2	-	
28	36	33			26				
29	36	35		-	28 20 mmh				
Ave. 1-hr:	Total hrs:	38 mph	131 hr	_	29 mph	22 hr	-77 hr	<u>.</u>	
Total F	Total Exceedances: Total 23					Total	2		
			23	- ૣ		Existing	1	ا ۾ ·	
Subi	Subtotals by type: Existing 23			е	Nous as	increased time	1	e	
			•				0	р	
SOLIBOE: E	nvironmontal S	cience Associate	ae.		New, Eliminated by Pr	at new location	0 17	n -	
GOUNGE. E	iiviioiiiieiitai o	CICITO ASSOCIATE		l	Lillinated by FI	oposeu Frojeci	17	-	

As a result, what may appear to be discrepancies in the tabular results, such as in the column sums or the differences between values for Project and existing conditions, are simply due to the rounding of results. However, the rounded values of the differences in wind speeds and the differences in hours of exceedances that are shown in Tables 1 and 2 are the best available representation of the measured changes in those quantities.

Also, throughout the following discussion the wind speeds reported refer to the equivalent wind speeds that would be exceeded 10% of the time when referring to the pedestrian-comfort criterion, and winds exceeded 1 hour per year when referring to the wind hazard criterion.

Test 1: Existing Setting

The north half of Treasure Island now contains primarily two-story buildings, the central part contains scattered buildings up to three and four stories in height, and the south end of the Island contains several five-story buildings and hangars that are the tallest structures on the island. Not all of these buildings were included in the test of the setting.

The existing setting consists of the existing major buildings on and in the vicinity of the Project site that would remain after site redevelopment. These include the existing elementary school in the north, the Job Corps buildings in the center, and Buildings 1, 2 and 3 in the south of the Island. In addition, the two existing four-story star-shaped structures west of the Job Corps site were also considered as part of the existing setting.

Existing Comfort Criterion Conditions

Treasure Island is located in San Francisco Bay, where conditions are typically very windy. The average of the 10% exceeded wind speeds that were calculated from measurements at the 29 existing test points is over 16 mph; wind speeds range from 10 to 20 mph. The highest wind speed measured (20 mph) occurs at Test Point 13, which is at the south end of the southern-most Job Corps building. Two (2) of the 29 points meet the pedestrian-comfort criterion of 11 mph; one of these (#20) is located at the north entrance to Building 3 and one in the yard of the existing school (#29). See Table 1.

Although measurements for the existing setting were not made at many locations on the Island, it is assured that wind conditions are similar over most of the area of the island. The sparse low-rise development, flat topography, and location in the Bay all result in relatively little resistance to the movement of the wind. For these reasons, one must conclude that wind conditions sampled at the 29 test point locations well represent the relatively uniform, general wind conditions that occur over most of the area of the Island. The exceptions would be for those locations near the existing buildings, and within stands of trees and vegetation, where local wind accelerations or sheltering would occur to alter the wind speed.

Existing Hazard Conditions

Under existing conditions, the Code's wind hazard criterion is exceeded at 23 of the 29 test locations, as shown in Table 2, which indicates a total duration of hazard of 131 hours per year. However, this statistic is misleading in that it is certain that the wind hazard criterion is exceeded at a large number of other locations on the Island, so this duration is most certainly a gross underestimate of the true total duration of wind hazards under existing conditions.

Test 2: Project

The Project scenario consists of a representative massing for the Proposed Project added to the existing buildings that would remain after site redevelopment. These include the existing elementary school in the north, the Job Corps buildings in the center, and Buildings 1, 2 and 3 in the south of the Island. Most of

the remaining existing buildings would be demolished. The Proposed Project would involve construction of many separate building clusters with buildings ranging in height from approximately 35 to 600 feet. The proposed Redevelopment Plan would include construction of approximately 19 high-rise towers, among a substantial base of low- and mid-rise buildings, on Treasure Island.

Because no specific building designs or park designs are available at this time, this study used a proposed representative height and massing design to determine the likely effects that the development as a whole would have on the wind conditions on the streets, in the identified existing recreation areas and in the proposed locations of planned parks and open spaces. A bulk model of this representative design was constructed and tested in the wind tunnel.

The Proposed Project would allow for some flexibility in the shape and precise location of the towers; the tower volumes may shift locations within a limited range, and the shapes of the low- and mid-rise buildings could change when the development program is implemented and specific building designs are proposed. Such changes would likely alter the wind speeds that would occur at nearby locations; in some cases, the changes in towers could cause wind hazards. However, as long as the design or location changes are not large, the general wind conditions that result from the proposed representative height and massing design should reasonably represent the wind conditions that would exist within and around the Proposed Project once the specific architectural designs of the buildings have been finalized.

Comparison With Existing Setting Measurements

Wind speeds were measured at 200 locations within the Project and vicinity. Of these 200 test point locations, 23 were the same as measured for the existing scenario. The following comparisons can be made between the existing and Project wind conditions for winds measured at these 23 locations.

Comfort Criterion Conditions

With the Project, wind conditions at the shoreline and at the exterior of the Project would remain very windy, essentially unchanged from the existing conditions, while wind speeds at locations within the interior of the development would generally decrease. As can be seen in Table 1, the average of the 10% exceeded wind speeds measured for the 23 common test points would be less than 12 mph, a decrease of nearly 5 mph. Wind speeds at the common test points would range from 8 to 19 mph, with 13 of the 23 points meeting the Planning Code's pedestrian-comfort criterion. Nine existing exceedances of the pedestrian-comfort criterion would be eliminated by the Project, one new one would be created, and 12 existing exceedances would remain.

Hazard Conditions

Under existing conditions, the Code's wind hazard criterion is currently exceeded at 23 of the 29 test locations, as shown in Table 2, which indicates a total duration of hazard of 131 hours per year. With the Project in place, one new wind hazard would be introduced, one existing hazard would be reduced in duration and 22 existing wind hazards would be eliminated by the Project.

Further Analysis and Comparison

During wind tunnel testing, each wind tunnel measurement generates a ratio that relates the speed of surface-level wind to the speed of the free-stream wind, which is measured in the wind tunnel at a scale height in excess of 1,500 feet, near the center of the wind tunnel. These wind speed ratios (referred to here

TABLE 3
MEASURED R-VALUES - EXISTING CONDITIONS

Existing Wind Conditions - Measured R-Values

Calculated Wind Speeds

#	NNW	NW	WNW	w	SSE	R-Value Average	10% Exceed	1-hr/yr Wind Speed
1	0.5532	0.7168	0.7012	0.5830	0.4490	0.6125	18	40
2	0.6651	0.5287	0.4538	0.3970	0.5924	0.4930	16	41
3	0.3933	0.4246	0.4773	0.6384	0.1930	0.4333	19	44
4	0.3482	0.3949	0.5345	0.5437	0.1750	0.4120	16	37
5	0.2012	0.2324	0.2894	0.3906	0.3904	0.3257	12	27
6	0.6013	0.4873	0.3977	0.4094	0.6215	0.4790	16	41
7	0.5907	0.6676	0.6838	0.5895	0.4366	0.5944	19	41
8	0.6913	0.5948	0.4470	0.4093	0.4613	0.4781	16	41
9	0.3574	0.5262	0.5032	0.6125	0.3230	0.4912	18	42
10	0.4604	0.5128	0.6366	0.6088	0.4337	0.5480	19	42
11	0.4458	0.5203	0.5179	0.5697	0.5061	0.5285	18	39
12	0.4344	0.4671	0.6265	0.4861	0.4672	0.5117	16	34
13	0.1783	0.2829	0.4511	0.6434	0.5134	0.4727	20	44
14	0.3666	0.3951	0.4535	0.5644	0.2364	0.4124	17	38
15	0.3258	0.3231	0.5090	0.5353	0.2405	0.4020	16	37
16	0.4631	0.5188	0.4783	0.4540	0.6401	0.5228	16	42
17	0.4008	0.5454	0.3056	0.3978	0.5764	0.4563	14	38
18	0.5001	0.4609	0.2550	0.3967	0.6588	0.4429	15	43
19	0.5395	0.6192	0.5686	0.4998	0.5283	0.5540	17	37
20	0.2228	0.2484	0.3142	0.3600	0.2179	0.2851	11	24
21	0.5514	0.5739	0.6015	0.5836	0.5898	0.5872	19	41
22	0.6279	0.3535	0.2797	0.3659	0.4842	0.3708	14	37
23	0.1821	0.1786	0.3196	0.5388	0.3722	0.3523	16	37
24	0.5232	0.6966	0.6819	0.5399	0.4916	0.6025	17	37
25	0.4092	0.6619	0.6339	0.6045	0.4596	0.5900	18	41
26	0.3872	0.5534	0.5074	0.4937	0.4355	0.4975	16	34
27	0.6025	0.5997	0.5093	0.4977	0.5409	0.5369	17	38
28	0.4998	0.4846	0.4862	0.4559	0.4465	0.4683	15	33
29	0.2400	0.3539	0.3498	0.4176	0.5333	0.4137	10	35
KEY	GREEN: Values less than 0.3 BLACK: Values between 0.3 and 0.5 RED: Values greater than 0.5 Meets 11 mph pedstrian criterion:					10		
	Exceeds Wind Hazard critrion: 37						37	

as R-values) are the primary output data of wind tunnel tests. R-values are usually substantially less than 1.0 because the speed of the lowest part of an air mass is slowed by friction as the air mass moves across buildings, vegetation, and the ground; as a result, wind speeds at pedestrian level are usually much less than the speed of the free-stream wind. In sheltered areas the R-values can be less than 0.1, indicating that wind near ground level is less than 10% of the wind high above the ground. Experience with wind testing of San Francisco buildings shows that R-values greater than 0.5 indicate very strong ground-level winds.

TABLE 4
MEASURED R-VALUES - PROJECT CONDITIONS

Project Wind Conditions - Measured R-Values

Calculated Wind Speeds

#	NNW	NW	WNW	W	SSE	R-Value Average	10% Exceed	1-hr/yr Wind Speed
1								
2								
3	Fxist	ing locations	covered by	Project build	linas			
4	LXIO	ing locations	covered by	r roject bane	iii igo.			
5								
6								
7	0.3246	0.3726	0.5364	0.4984	0.3489	0.4391	15	34
8	0.2183	0.3483	0.3639	0.3283	0.3470	0.3469	10	23
9	0.2119	0.2527	0.3399	0.4646	0.2185	0.3189	14	32
10	0.3787	0.5528	0.4990	0.4985	0.2571	0.4519	15	34
11	0.2783	0.2578	0.3775	0.2856	0.3333	0.3136	10	22
12	0.3262	0.4915	0.4476	0.6623	0.3724	0.4935	19	45
13	0.1529	0.1818	0.4474	0.2622	0.4967	0.3470	9	33
14	0.3226	0.2923	0.2811	0.4122	0.2354	0.3053	12	28
15	0.2988	0.3432	0.2318	0.2635	0.2468	0.2713	9	19
16	0.3679	0.3897	0.3873	0.2625	0.4469	0.3716	10	29
17	0.2757	0.2541	0.2969	0.2372	0.2101	0.2496	8	17
18	0.3556	0.5648	0.4667	0.4560	0.6229	0.5276	15	41
19	0.3688	0.4472	0.3956	0.3711	0.4405	0.4136	13	29
20	0.2618	0.3126	0.2501	0.3351	0.2284	0.2816	10	23
21	0.2686	0.2430	0.2603	0.3700	0.2582	0.2829	11	25
22	0.3402	0.2636	0.2889	0.3066	0.2358	0.2737	10	22
23	0.2023	0.1645	0.2807	0.3361	0.3230	0.2761	11	23
24	0.4395	0.5242	0.5387	0.4456	0.5373	0.5115	15	36
25	0.3647	0.5628	0.5684	0.5045	0.4332	0.5172	16	35
26	0.3220	0.4755	0.3841	0.4443	0.4148	0.4297	14	30
27	0.3979	0.3753	0.2654	0.3215	0.4322	0.3486	12	28
28	0.4188	0.3192	0.3217	0.3402	0.3758	0.3392	12	26
29	0.2222	0.3711	0.3498	0.4176	0.2936	0.3580	13	28
KEY						10		
	Meets 11 mph pedstrian criterion: Exceeds Wind Hazar							07
					Exc	eeas vvina Haz	ard critrion:	37

To calculate the wind speeds, the R-values are correlated to the actual wind speeds measured at the meteorological station for each wind direction, and then converted into representative values of wind speed at the Project test location, in the same way as is done to compute wind speeds that are compared with wind comfort and safety criteria under the Planning Code. However, the R-values themselves are useful for making relative comparisons of the wind speeds among directions or at any two locations in a given wind test.

TABLE 5
COMPARISON OF PROJECT AND EXISTING CONDITIONS

Project R-Values - as Percent of Existing

Calculated Wind Speed, as % of Existing

	747400 40	s reiceill c	xiouiig				EXIS	
#	NNW	NW	WNW	W	SSE	R-Value Average	10% Exceed	1-hr/yr Wind Speed
1								-
2								
3	Eviet	ing locations	covered by	Droject huil	dinge			
4	LAISI	ing locations	s covered by	i iojeci buli	uliigs.			
5								
6								
7	55%	56%	78%	85%	80%	75%	81%	83%
8	32%	59%	81%	80%	75%	74%	66%	57%
9	59%	48%	68%	76%	68%	65%	75%	76%
10	82%	108%	78%	82%	59%	82%	80%	82%
11	62%	50%	73%	50%	66%	60%	54%	56%
12	75%	105%	71%	136%	80%	98%	124%	133%
13	86%	64%	99%	41%	97%	75%	48%	74%
14	88%	74%	62%	73%	100%	77%	75%	73%
15	92%	106%	46%	49%	103%	76%	56%	52%
16	79%	75%	81%	58%	70%	71%	64%	70%
17	69%	47%	97%	60%	36%	60%	56%	46%
18	71%	123%	183%	115%	95%	129%	102%	95%
19	68%	72%	70%	74%	83%	75%	75%	80%
20	118%	126%	80%	93%	105%	101%	96%	93%
21	49%	42%	43%	63%	44%	48%	59%	61%
22	54%	75%	103%	84%	49%	78%	69%	58%
23	111%	92%	88%	62%	87%	82%	65%	63%
24	84%	75%	79%	83%	109%	87%	86%	96%
25	89%	85%	90%	83%	94%	88%	85%	84%
26	83%	86%	76%	90%	95%	87%	90%	90%
27	66%	63%	52%	65%	80%	65%	68%	74%
28	84%	66%	66%	75%	84%	73%	78%	80%
29	93%	105%	100%	100%	55%	90%	130%	81%
KEY	BLACK:	Values betwe	nan 30% of exi en 30% and 50 er than 110% o	0% of existing			000/	
						0% of existing:	60%	4000/
						More than 110%	or existing:	133%

The measured R-values and the calculated wind speed statistics (from Table 1 and Table 2) are combined in Tables 3 and 4, which present the R-Values for all five wind directions (NNW, NW, WNW, W and SSE) as well as the calculated wind speeds and statistics, which are based only on three of the wind directions – NNW, W and SSE. However, the R-values for NW and WNW winds can be compared to the R-values for W wind to understand the relative wind speeds that could result from those winds. Table 3

presents the measured R-values and the calculated wind speed information about the existing setting, while Table 4 presents the same information about the Project.

From inspection and comparison of Tables 3 and 4, it is evident that there are substantial differences in the wind conditions between the existing setting and the Project. Table 5 compares the percentage changes between measured R-values and the calculated wind speed statistics for the existing and Project scenarios. As is evident from Tables 1 through 5, general reductions in wind speed would occur at most of the 23 common wind measurement locations.

Analysis of Project Test Data

For the remainder of the 200 test point locations, where there are no paired measurements of existing setting and Project data, the analysis of these data yields basic information about the general wind conditions that would occur within the proposed Redevelopment. Note that while the general wind conditions and trends discussed here result partly from the overall configuration of the massing of development under the Redevelopment Plan, the specific wind speed and/or hazard that occurs at any test location is strongly influenced by the nearby structures as part of the overall development. The details of these results come from wind-tunnel testing of a specific model design - the representative massing model of the Proposed Project, as illustrated in Figures 1 and 2. Thus, the wind test produced results that are specific to that design. However, the Proposed Project would allow for some flexibility in the shape and precise location of the towers; tower volumes may change as specific building designs are proposed. Although different building configurations will result in different ground-level wind effects, some changes in building configurations would produce minor differences in wind conditions while others could produce major differences in wind conditions. It would be necessary to evaluate the changes in building configurations carefully.

General Discussion

With the Proposed Project, wind speeds would vary widely across the development area. Of course, higher wind speeds would still occur in the shoreline parks and open spaces, which are now, and would remain fully exposed to the winds approaching over the Bay. The Project buildings would face the shoreline and, although set back from the Bay itself, would intercept the approaching winds that would reach the Project generally unabated. Therefore, wind speeds would be higher along the Project edges and generally would diminish in the interior of the developed neighborhoods of the Project. Although the wind speeds exceeded 10% of the time would be 12 mph or more at nearly 2/3 of the 200 test locations, wind speeds at 74 test point locations would be at or less than the 11 mph pedestrian-comfort criterion of the Planning Code.

Wind speeds that would occur within the interior of the Project would be similar to those found in a number of San Francisco's windier areas.

The strong existing winds and their accompanying higher incidence of wind hazards would still occur in the exposed shoreline parks and open spaces. Wind hazards would continue to occur in the new Project open spaces, including a number of locations along the Cityside Waterfront Park, Cultural Park and Waterfront Plaza. These strong winds and accompanying wind hazards would not be caused by the Project, but would simply reflect the overall wind environment of Treasure Island.

Of all 200 locations that were tested in the wind tunnel, wind hazard conditions were detected at 49 of these locations. The locations of the wind hazards are shown in Figure 4. The image clearly shows the overall distribution of the wind hazards around and within the Proposed Project development area. This overall perspective is helpful in understanding the discussions that follow.

In general, the incidence of wind hazards would be higher along the Project edges and the relative frequency of wind hazards generally would diminish in the interior of the Project, except for the particular wind effects of open exposures to winds from the Bay, of the effects of tall buildings or of the effects of strong incident winds channeling between the building masses and along the street canyons.

Potential to Mitigate Wind Hazards

Whatever the fundamental causes of the individual wind hazards, substantive efforts should be made to reduce the wind hazards that would occur, or to limit the exposure to those hazardous winds by residents and visitors, in the developed areas of the Proposed Project.

Wind hazards due to Project towers or to wind channeling among the building masses and street canyons may be reduced, but may not be totally eliminated, by design measures adopted during development. Many of the smaller wind hazards that occur mid-block could be effectively eliminated by simple design measures and a combination of street furniture and landscaping that would protect pedestrian walkways and building entrances.

Addressing the hazards at large intersections and in open spaces would be more difficult – even problematic; given the open nature of these spaces, there may be no practical way to eliminate all wind hazards without completely changing the character of these open spaces.

Finally, wind hazards that occur at the developed edges of the Project are also problematic, since the Project must have edges where the buildings adjoin open space. Considerable effort may be necessary to develop an effective combination of measures that would reduce the occurrence of those hazards; they may prove intractable.

Treasure Island/Yerba Buena Island Redevelopment . 209672

SOURCE: ESA

Street-by-Street and Open Space Effects

The following summarizes the wind conditions that would exist within the Project, given the specific design tested. Because no building designs exist at this stage of development planning, this study used a proposed representative height and massing design to represent the Project in the wind-tunnel; a bulk model of this representative design was tested to evaluate likely effects that the Project would have on the street-level wind conditions on streets and within pedestrian areas of the development, in existing recreation areas, and in the proposed locations of planned parks and open spaces. Given this, it is not necessary to discuss all of the test points in order to understand the overall wind performance of the representative design.

Review of Project Wind Conditions - Street by Street

A street-by-street summary of Project wind conditions starts with the westernmost street, Cityside Avenue, and moves eastward along the parallel avenues and alleys to Eastside Avenue, as follows:

- Cityside Avenue (16 test points: #78, 79, 88, 89, 90, 98, 99, 108, 109, 117, 118, 119, 127, 128, 129, 139). Along Cityside Avenue, wind speeds would range from 11 to 19 mph at these locations at the western edge of the Project and directly exposed to winds from the Bay. Winds at only one (#127) of the 16 locations would meet the Pedestrian Criterion. Winds at 4 of the 16 locations (#78, 79, 98, 99) would exceed the wind hazard criterion. Their hazard durations would range from 1 to 10 hours per year.
- Cityside Alley (18 test points: 76, 77, 80, 81, 86, 87, 91, 92, 96, 97, 100, 101, 105, 106, 107, 110, 111, 112, 115, 116, 120, 130, 131, 135, 136, 137, 138). Along Cityside Alley, wind speeds would range from 8 to 17 mph, with wind speeds lower in mid-block sections. Wind speeds would be highest at 10th, near the north end of the development. The Cityside Neighborhood Parks at 5th Street (#115, 116), at 6th Street (#105, 106) and at 7th Street (#96, 97) would have 10% exceeded speeds ranging from 10 to 12 mph. Wind speeds would be 13 mph at the Cityside Neighborhood Park at 9th Street (#76, 77). Wind hazards would occur at 4 of the 18 locations along Cityside Alley (#80, 81, 135, 137); two wind hazards would occur at 10th Street, with durations 2 and 15 hours per year, and two would occur at the east side of Cultural Park, with durations of 1 and 10 hours per year.
- Avenue C (38 test points: #7, 8, 10-12, 14, 18, 45, 46, 55-57, 65, 66, 72, 74, 75, 82-85, 93-95, 102-104, 113, 114, 121-124, 132-134, 145-147). Along Avenue C, wind speeds would range from 8 to 19 mph. Winds at 11 of the 38 locations (#8, 11, 45, 65, 83, 95, 122, 123, 124, 132, 133) would meet the Pedestrian Criterion. Wind speeds would be higher at 10th Street, at the north end of the development, and in the central area, near California Avenue. Wind speeds would remain higher in the Job Corps areas, where existing wind speeds are already higher. Wind hazards would occur at 12 of the 38 test points (#12, 18, 46, 82, 93, 102, 123, 132, 133, 134, 145, 147) along Avenue C. These wind hazards would occur with individual durations ranging from 1 to 56 hours per year.
- Avenue C Alley (10 test points: #44, 47, 53, 54, 58, 63, 64, 67, 68, 69). Along Avenue C Alley, wind speeds would range from 7 to 14 mph. Winds at 6 of the 10 locations (#53, 58, 63, 64, 67, 68) would meet the Pedestrian Criterion. The two Cityside Neighborhood Parks located along this alley, one at 7th (#63, 64) and one at 8th Street (#53, 54) would have 10% exceeded

- speeds ranging from 8 to 12 mph. A single wind hazard, with a duration of 1 hour per year, would occur at 10th Street (#47).
- Avenue D (23 test points: #18, 32, 33, 34, 40, 41, 43, 49, 50, 51, 52, 60, 61, 62, 70, 142, 143, 144, 149, 153, 154, 200, 203). Along Avenue D, wind speeds would range from 8 to 20 mph. Wind speeds would vary along this roadway, with the highest wind speeds occurring at the south end, between 1st to 3rd streets, and relatively lower wind speeds occurring between 3rd and 9th Streets. Winds at 10 locations (#32, 33, 40, 41, 43, 50, 51, 61, 62, 70) would meet the Pedestrian Criterion. Wind hazards would occur at 8 of 23 test points along Avenue D. One wind hazard, with a duration of 1 hours per year, would occur at 8th Street (#52), the other seven, with individual durations ranging from 2 to 50 hours per year, would occur between 1st Street and 4th Street (#18, 142, 149, 153, 154, 200, 203).
- **Avenue D Alley** (4 test points: #35, 36, 39, 42). Along Avenue D Alley, wind speeds would range from 5 to 10 mph, so all locations would meet the Pedestrian Criterion. No wind hazard would occur.
- Avenue E (13 test points: #19, 30, 31, 37, 38, 150, 151, 156, 157, 158, 160, 161, 201). Along Avenue E, wind speeds would range from 8 to 18 mph. Winds at 4 of the 13 test point locations (#31, 37, 38, 150) would meet the Pedestrian Criterion. Wind hazards would occur at two locations, one at 8th Street (#30) and one between 3rd and 4th Streets (#157), with individual durations of 6 and 2 hours per year, respectively.
- Avenue H (8 test points: #20, 155, 159, 165, 166, 167, 170, 171). Along Avenue H, wind speeds would range from 10 to 15 mph. Winds at a total of 3 locations (#20, 167, 170) would meet the Pedestrian Criterion. Wind hazards would occur at 2 of the 8 test point locations on Avenue H, at 3rd Street, with individual durations of 1 hour per year (#165) and 17 hours per year (#171).
- Avenue I (11 test points: #21, 22, 163, 164, 168, 169, 174, 175, 178, 179, 199). Along Avenue I, wind speeds would range from 10 to 17 mph. Winds at 7 of these locations (#21, 22, 164, 169, 174, 178, 199) would meet the Pedestrian Criterion. A wind hazard, with a duration of 2 hours per year, would occur at Avenue I and 4th Street (#163).
- Avenue J (7 test points: #172, 173, 176, 177, 183, 184, 186, 187). Along Avenue J, wind speeds would range from 9 to 15 mph. Winds at 4 of the locations (#173, 176, 177, 186) would meet the Pedestrian Criterion. A wind hazard, with a duration of 1 hour per year, would occur on Avenue J between 3rd & 4th Streets (#184).
- Avenue K (8 test points: #180, 181, 182, 185, 192, 196, 197, 198). Along Avenue K, wind speeds would range from 9 to 18 mph. Winds at 3 of the locations (#181, 185, 196) would meet the Pedestrian Criterion. Wind hazards would occur at 5 of the test point locations (180, 182, 192, 196, 198) along Avenue K between 2nd and 4th Streets, with individual durations of 1 to 6 hours per year.
- Eastside Avenue (6 test points: #189, 190, 191, 193, 194, 195). Along Eastside Avenue, which is at the eastern edge of the Project and is directly exposed to winds from the north and south, wind speeds would range from 10 to 18 mph. Winds at 3 locations (#190, 191, 193) would meet

the Pedestrian Criterion. Wind hazards would occur at the other 3 test point locations along Eastside Avenue, at both the north and the south ends of the street, with individual durations of 1, 4 and 4 hours per year. Specific measures should be developed to reduce or eliminate these wind hazards and to reduce wind speeds at both ends of Eastside Avenue.

Review of Project Wind Conditions - Parks and Open Spaces

Since the strong existing winds and their accompanying higher incidence of wind hazards would still occur in the exposed shoreline parks and open spaces, only those parks and open spaces that are within the interior of the Project development area show any wind effect that can be attributed to the Project. The following summarizes wind conditions in some of the Parks and Open Spaces, as well as in the Job Corps area, with Project development:

- **Building 1 Plaza** (3 test points: #26, 27, 141). The wind speeds exceeded 10% of the time at the 3 test points would range from 14 to 16 mph. No wind hazard would occur at these locations.
- Building 2 (3 test points: #18, 19, 203). Wind speeds at these 3 test points would range from 13 to 15 mph. Wind hazards would occur at 2 of the 3 locations, with individual durations of 7 hours per year (#18) and 50 hours per year (#203). Specific measures should be developed to reduce or eliminate these wind hazards.
- **Building 3** (4 test points: #20, 21, 22, 23). Wind speeds at these 4 locations would range from 10 to 11 mph; winds at all of these locations would meet the Pedestrian Criterion. No wind hazards would occur.
- Cityside Neighborhood Park (12 test points: # 53, 54, 63, 64, 76, 77, 96, 97, 105, 106, 115, 116). Wind speeds at these 12 test points would range from 8 to 13 mph. Winds at 5 of the 12 locations (#53, 63, 64, 97, 105) would meet the Pedestrian Criterion. No wind hazards would occur.
- Cultural Park (4 test points: #135, 136, 137, 138). Wind speeds at these 4 test points would range from 13 to 17 mph. Wind hazards would occur at 2 of the 4 locations, with durations of 1 hour per year (#135) and 10 hours per year (#137).
- Cityside Waterfront Park (2 test points: #205, 206). The wind speeds exceeded 10% of the time would range from 16 to 17 mph. Winds at both locations would exceed the wind hazard criterion. The durations of the individual hazards would be 3 hours per year and 4 hours per year, at locations #206 and 205, respectively.
- Clipper Cove Promenade (2 test points: #202, 204). Wind speeds would range from 11 to 15 mph. Wind at one of the two locations (#202) would meet the Pedestrian Criterion. No wind hazard would occur.
- Eastside Commons (21 test points: #151-153, 156, 161, 162, 164-166, 168, 171, 173, 174, 176, 182, 183, 187, 191, 193, 198, 201). Wind speeds would range from 10 to 20 mph. Winds at 6 of the 21 locations would meet the Pedestrian Criterion (164, 173, 174, 176, 191, 193). Wind speeds would vary by block along the Eastside Commons winds would be higher between Avenue D and Avenue H, lower between Avenues I and J, higher at Avenue K, and lower at Eastside Avenue.

Winds at 5 of the 21 test points (#153, 165, 171, 182, 198) in the Eastside Commons would exceed the wind hazard criterion. Hazards would occur: at two locations at Avenue H and 3rd for durations of 1 hours per year (#165) and 17 hours per year (#171); at two locations at Avenue K and 3rd (#182, 198) for durations of 2 hours per year each; and, at one location at 3rd, California Avenue and Avenue D (#153) for a duration of 14 hours per year.

- Marina Plaza (2 test points: #24, 25). Wind speeds would range from 15 to 16 mph. No wind hazard would occur.
- **School Open Space** (1 test point: #29). Wind speed would be 13 mph. No wind hazard would occur.
- Waterfront Plaza (3 test points: #125, 126, 140). Wind speeds in this exposed waterfront location would range from 13 to 19 mph. Winds at all 3 test points would exceed the wind hazard criterion. The hazard durations would range from 1 to 10 hours per year.
- **Pier 1** (1 test point: #188). Near the Pier, wind speed would be 11 mph, meeting the Pedestrian Criterion. No wind hazard would occur.
- Job Corps (11 test points: #8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28). Wind speeds would range from 7 to 19 mph; wind speeds at 6 of the 11 test points (#8, 11, 13, 15, 16, 17) would meet the Pedestrian Criterion. One wind hazard, with a duration of 15 hours per year, would occur (#12) on the east side of Avenue C.

Compared to existing conditions, with the Project 10% exceeded wind speeds would be: reduced by 4 to 8 mph at the four test points (#8 – 11) at the two northern-most Job Corps buildings: increased by 4 mph at one test point (#12) at south end of the Job Corps building, at 5th Street and Avenue C; decreased by 4 to 10 mph at the five test points (#13 - 17) at the two southern-most Job Corps buildings; and, decreased by 3 mph at the one test point (#28) at the eastern-most Job Corps building. Overall, wind speeds would decrease by 3 to 10 mph at 10 of those 11 test points, and would increase by 4 mph at the one remaining test point.

The Project would eliminate 9 existing wind hazards, with total duration of 49 hours per year, and create one new hazard, with a duration of 15 hours per year, at Job Corps test points. The Project would: eliminate existingwind hazards at the four test points (#8-11) at the two northern-most Job Corps buildings: create a new hazard at one test point (#12) at south end of the Job Corps building, at 5th Street and Avenue C; and, eliminate existing hazards at the five test points (#13-17) at the two southern-most Job Corps buildings. An existing wind hazard does not occur at test point (#28) at the eastern-most Job Corps building, and the Project would not create one there.

Point-by-Point - Project R-values and Wind Conditions

The wind test data for the 200 Project measurements are summarized in Table 6, which presents the measured R-values for all five tested wind directions (NNW, NW, WNW, W and SSE) as well as the calculated 10% exceeded wind speed and the hours per year duration of wind hazard. Note that the wind speeds and hazard durations are calculated only using three of the wind directions – NNW, W and SSE. However, the R-values for NW and WNW winds can be compared to the R-values for W wind to understand the relative wind speeds that could result from winds from those directions, as well.

TABLE 6
SUMMARY OF MEASURED R-VALUES AND CALCULATED WINDS - PROJECT CONDITIONS

oject Co	nditions -	Measured	R-Values				Calcu Wind S	Speeds	Test Point Loc	ation - Narra	tive Description		
#	NNW	NW	WNW	w	SSE	R-Value Average	10% Exceed	Hazard hr/yr	Avenues	Streets	California Avenue	Edges	Identifier or Name
1												open	Existing "star"
2 3												open open	Existing "star" Existing "star"
4	Existi	ng locations	covered by	Project build	lings.				Avenue C			орсп	Existing "star"
5												open	Existing "star"
6 7	0.32	0.37	0.54	0.50	0.35	0.42	15		Avenue C			open	Existing "star"
8	0.32	0.35	0.36	0.33	0.35	0.42	10		Avenue C				Existing "star" Job Corps
9	0.21	0.25	0.34	0.46	0.22	0.30	14					open	Job Corps
10	0.38	0.55	0.50	0.50	0.26	0.44	15		Avenue C Avenue C				Job Corps
11 12	0.28 0.33	0.26 0.49	0.38 0.45	0.29 0.66	0.33 0.37	0.31 0.46	10 19	15	Avenue C Avenue C				Job Corps Job Corps
13	0.15	0.18	0.45	0.26	0.50	0.31	9					open	Job Corps
14	0.32	0.29	0.28	0.41	0.24	0.31	12		Avenue C				Job Corps
15	0.30	0.34	0.23	0.26	0.25	0.28	9					open	Job Corps Job Corps
16 17	0.37 0.28	0.39 0.25	0.39	0.26 0.24	0.45 0.21	0.37 0.25	10					open open	Job Corps Job Corps
18	0.36	0.56	0.47	0.46	0.62	0.49	15	7	Avenue C		California Avenue	орол	Building 2
19	0.37	0.45	0.40	0.37	0.44	0.40	13		Avenue E		California Avenue		Building 2
20	0.26	0.31	0.25	0.34	0.23	0.28	10		Avenue H		California Avenue		Building 3
21 22	0.27 0.34	0.24 0.26	0.26 0.29	0.37 0.31	0.26 0.24	0.28 0.29	11 10		Avenue I	02-03 alley	California Avenue		Building 3
23	0.34	0.26	0.29	0.31	0.24	0.29	11		Avenue I Avenue E Alley	02-03 alley 02-03 alley			Building 3 Building 3
24	0.44	0.52	0.54	0.45	0.54	0.50	15			- 2 00 andy		Shoreline	Marina Plaza
25	0.36	0.56	0.57	0.50	0.43	0.49	16			1st		Shoreline	Marina Plaza
26	0.32	0.48	0.38	0.44	0.41	0.41	14					open	Building 1 Plaza
27 28	0.40 0.42	0.38 0.32	0.27 0.32	0.32 0.34	0.43 0.38	0.36 0.36	12 12					open	Building 1 Plaza Job Corps
29	0.42	0.32	0.35	0.42	0.36	0.36	13		Avenue D - E	8th - 9th		open	School Open Space
30	0.40	0.46	0.78	0.60	0.11	0.47	18	6	Avenue E	8th			
31	0.49	0.35	0.30	0.13	0.30	0.31	8		Avenue E	7th			
32	0.14	0.15	0.25	0.28	0.30	0.22	9		Avenue D	7th			
33 34	0.33 0.53	0.24 0.49	0.21 0.31	0.22	0.31 0.44	0.26 0.43	8 14		Avenue D Avenue D	7th - 8th 8th			
35	0.57	0.43	0.49	0.23	0.31	0.43	10		Avenue D Alley	7th - 8th			
36	0.12	0.17	0.33	0.15	0.14	0.18	5		Avenue D Alley	7th - 8th			
37	0.35	0.24	0.23	0.30	0.19	0.26	10		Avenue E	7th			
38	0.54	0.30	0.24	0.16	0.40	0.33	10		Avenue E	6th - 7th			
39 40	0.27 0.33	0.43 0.41	0.20 0.30	0.19 0.20	0.45 0.39	0.31 0.33	8		Avenue D Alley Avenue D	6th - 7th 6th - 7th			
41	0.31	0.24	0.30	0.28	0.42	0.33	10		Avenue D	7th			
42	0.29	0.24	0.24	0.29	0.21	0.25	9		Avenue D Alley	7th			
43	0.32	0.32	0.31	0.17	0.38	0.30	8		Avenue D	9th			
44	0.48	0.43	0.39	0.33	0.28	0.38	12		Avenue C Alley	9th			
45 46	0.35	0.47	0.40	0.31	0.30	0.36 0.56	10 14	3	Avenue C Avenue C	9th 9th - 10th			
47	0.62	0.58	0.61	0.36	0.33	0.50	13	1	Avenue C Alley	10th			
48	0.29	0.37	0.52	0.47	0.10	0.35	14		Avenue C - D	10th			
49	0.29	0.56	0.68	0.43	0.28	0.45	13		Avenue D	9th			
50 51	0.36	0.23	0.36	0.26	0.30	0.30	9		Avenue D	8th - 9th			
52	0.60 0.62	0.56 0.51	0.28 0.25	0.22 0.35	0.33	0.40 0.41	10 13	1	Avenue D Avenue D	8th - 9th 8th			
53	0.39	0.43	0.25	0.36	0.26	0.34	11		Avenue C Alley	8th			Cityside Neighborhood Park
54	0.36	0.28	0.25	0.41	0.24	0.31	12		Avenue C Alley	8th			Cityside Neighborhood Park
55	0.41	0.55	0.50	0.38	0.35	0.44	12		Avenue C	8th			
56	0.37	0.42	0.34	0.37	0.38	0.38	12		Avenue C	8th - 9th			
57 58	0.31 0.25	0.25 0.32	0.26 0.41	0.45 0.16	0.32 0.38	0.32 0.30	14 7		Avenue C Avenue C Alley	9th 8th - 9th			
59	0.35	0.53	0.44	0.32	0.17	0.36	10		Avenue C - D	9th			
60	0.39	0.36	0.56	0.40	0.14	0.37	12		Avenue D	8th			
61	0.20	0.25	0.28	0.33	0.21	0.25	10		Avenue D	7th - 8th			
62	0.41	0.32	0.20	0.16	0.27	0.27	8		Avenue D	7th			Oit wide Neighbort and Deal
63 64	0.24 0.28	0.23	0.31 0.29	0.22 0.22	0.30 0.29	0.26 0.28	8		Avenue C Alley Avenue C Alley	7th 7th			Cityside Neighborhood Park Cityside Neighborhood Park
65	0.29	0.31	0.37	0.22	0.39	0.31	8		Avenue C	7th - 8th			,
66	0.31	0.43	0.39	0.41	0.36	0.38	13		Avenue C	8th			
67	0.48	0.33	0.25	0.34	0.22	0.32	11		Avenue C Alley	8th			
68 69	0.33 0.58	0.45 0.52	0.34 0.54	0.33 0.37	0.39 0.43	0.37 0.49	11		Avenue C Alley Avenue C Alley	7th - 8th 7th - 8th			
70	0.25	0.20	0.23	0.29	0.43	0.49	9		Avenue D	7th			
71	0.11	0.11	0.16	0.22	0.24	0.17	7		1			open	Job Corps
72	0.26	0.41	0.20	0.43	0.23	0.31	13		Avenue C				
73	0.25	0.24	0.26	0.28	0.13	0.23	8		Avenue C - D	7th			
74	0.50 0.57	0.72 0.46	0.64 0.28	0.50 0.41	0.34 0.29	0.54 0.40	16 14		Avenue C Avenue C	10th 9th			
			0.20	0.41	0.29	0.40	14				Vill. Block and Street N	lame Man 04	May 2009. Unmarked alleys
75	Values less th.												
75 GREEN:	Values less the Values between		i								ed immediately to the		
75 GREEN: BLACK:		en 0.3 and 0.5	i							ne avenue locat	ed immediately to the		,

TABLE 6
SUMMARY OF MEASURED R-VALUES AND CALCULATED WINDS - PROJECT CONDITIONS

77 0.50 0.34 0.45 0.40 0.20 0.40 0.20 0.40 0.20 0.40 0.41 0.45	Project Co	onditions -	Measured	R-Values					ulated Speeds	Test Point Loca	tion - Narra	ative Description		
77 0.50 0.34 0.45 0.40 0.29 0.40 0.29 0.40 0.29 0.40 0.41 0.41 0.41 0.42 0.43 0.45	#	NNW	NW	WNW	w	SSE				Avenues	Streets		Edges	Identifier or Name
The color The	76	0.25	0.35	0.45	0.44	0.27	0.35	13		Cityside Alley	9th			Cityside Neighborhood Park
Property									40					Cityside Neighborhood Park
Bo 0, 0.44														
ST 0.75														
88 0.51 0.54 0.18 0.21 0.20 0.25 0.25 0.24 0.25										Cityside Alley	8th - 9th			
88 0.42 0.41 0.40 0.40 0.50 0.28 0.41 0.51 0.55 0.28 0.41 0.51 0.55 0.28 0.41 0.51 0.55 0.51 0.52 0.45 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.46 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52									13					
88														
BF 0.35														
88 0.23 0.56 0.56 0.51 0.52 0.48 16 8														
89 0 27 0.83 0.84 0.39 0.45 0.47 1.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
90														
92 0.29 0.25 0.45 0.27 0.50 0.60 0.39 0.60 0.39 0.60 0.39 0.60 0.39 0.60 0.39 0.60 0.39 0.60 0.39 0.60 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.3		0.37	0.63											
93 0.30 0.34 0.53 0.52 0.16 0.39 18 8 9 Nermus C														
98 0 28 0 24 0 22 0 37 0 50 0 25 0 32 0 35 0 31 0 32 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 36 0 37 0 37														
96									0					
98 0.52 0.53 0.41 0.29 0.59 0.47 0.51 0.50 0.47 0.51 0.50 0.47 0.51 0.50 0.44 0.24 0.34 0.25 0.38 0.19 0.39 0.40 0.62 0.42 0.38 0.49 0.39 0.40 0.65 0.48 0.28 0.48 0.49 0.39 0.39 0.40 0.65 0.48 0.28 0.48 0.49 0.39 0.39 0.40 0.65 0.48 0.29 0.40 0.40 0.40 0.34 0.53 0.38 0.49 0.39 0.39 0.24 0.40 0.40 0.49 0.49 0.49 0.49 0.49 0.4														
98 0 0.52 0.53 0.41 0.29 0.59 0.47 0.30 0.56 0.47 0.30 0.56 0.47 0.30 0.55 0.56 0.49 0.30 0.29 0.30 0.47 0.30 0.55 0.41 0.39 0.34 0.30 0.29 0.30 0.47 0.30 0.29 0.35 0.41 0.39 0.34 0.30 0.29 0.30 0.40 0.35 0.41 0.37 0.21 0.31 0.30 0.40 0.35 0.40 0.30 0.40 0.35 0.40 0.30 0.3														Cityside Neighborhood Park
99 0 0.40 0.52 0.42 0.33 0.56 0.44 0.39 0.34 0.51 0.51 0.51 0.52 0.49 0.34 0.52 0.41 0.39 0.34 0.55 0.47 0.52 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45														Cityside Neighborhood Park
100														
101														
103	101	0.30		0.35				13		Cityside Alley	8th - 9th			
104									1					
106														
106														Cityside Neighborhood Park
108		0.26	0.43	0.70	0.39			12		Cityside Alley				Cityside Neighborhood Park
109														
111														
111														
113	111			0.29	0.24	0.35	0.28	8						
114														
115														
116														Cityside Neighborhood Park
118														Cityside Neighborhood Park
119														
120									2					
121														
123														
124														
125									6					
126									7	Avenue C			Shoreline	Waterfront Plaza
128														
129														
130														
131														
133	131	0.43	0.36	0.30	0.29	0.35	0.35	11		Cityside Alley	4th - 5th			
134														
135											4th			
136												Jamonna Avenue		Cultural Park
138	136	0.59	0.44	0.40	0.43	0.45	0.46	15		Cityside Alley		California Avenue		Cultural Park
139									10	Cityside Alley	4th			
140											Ath			Cultural Park
141 0.38 0.50 0.61 0.51 0.40 0.48 16 18 9 Avenue D California Avenue Avenue D M1 Avenue D M2 M2 M2 M2 M2 M2 M2									1	Gityside Averide	- u1		Shoreline	Waterfront Plaza
142 0.33 0.52 0.49 0.58 0.60 0.50 18 9 143 0.34 0.31 0.23 0.52 0.50 0.38 16 144 0.59 0.46 0.26 0.31 0.47 0.42 13 145 0.49 0.53 0.62 0.64 0.46 0.55 20 12 147 0.49 0.40 0.31 0.42 0.80 0.48 16 56 148 0.39 0.36 0.29 0.57 0.32 0.38 17 3 149 0.44 0.57 0.41 0.31 0.56 0.36 12 2 150 0.56 0.33 0.22 0.19 0.40 0.34 12 2 16 0.56 0.33 0.22 0.19 0.40 0.34 12 2 18 0.56 0.33 0.22 0.19 0.40 0.34 12 2 19 0.56 0.33 0.22 0.19 0.40 0.34 12 2 10 0.56 0.33 0.22 0.19 0.40 0.34 12 2 10	141	0.38	0.50	0.61	0.51	0.40	0.48	16						
144									9			California Avenue		
145 0.49 0.53 0.62 0.64 0.46 0.45 0.47 146 0.43 0.57 0.40 0.49 0.43 0.48 16 56 148 0.39 0.36 0.29 0.57 0.32 0.38 17 3 149 0.44 0.57 0.41 0.31 0.56 0.46 150 0.56 0.33 0.22 0.19 0.40 0.34 10 0.34 10 0.56 0.48 10 0.56 0.33 0.22 0.19 0.40 0.34 10 0.34 10 0.56 0.48 0.59 0.57 0.41 0.54 0.5														
146 0.43 0.57 0.40 0.49 0.43 0.47 16 8 6 147 0.49 0.40 0.31 0.42 0.80 0.48 149 0.44 0.57 0.32 0.38 149 0.44 0.57 0.41 0.31 0.56 0.46 150 0.56 0.33 0.22 0.19 0.40 0.34 0.34 GREEN: Values less than 0.3 BLACK: Values petween 0.3 and 0.5 RED: Values greater than 0.5 Meets 11 mph pedstrian criterion: 10									12					
148	146	0.43	0.57	0.40	0.49	0.43	0.47	16		Avenue C				
149														
150 0.56 0.33 0.22 0.19 0.40 0.34 10											1et	California Avenue		
GREEN: Values less than 0.3 BLACK: Values between 0.3 and 0.5 RED: Values greater than 0.5 Meets 11 mph pedstrian criterion: 10 Street name reference: Perkins + Will, Block and Street Name Map, 04 May 2009. Unmarked alle are referenced to the avenue located immediately to the west. Parks and Open Space Names reference: TIDA									2					
BLACK: Values between 0.3 and 0.5 RED: Values greater than 0.5 Meets 11 mph pedstrian criterion: 10 Meets 11 mph pedstrian criterion: 10				V.LL	0.10	0.10	' ""			Street name reference	e: Perkins + 1	Will, Block and Street N	lame Map, 0	4 May 2009. Unmarked alleys
Meets 11 mph pedstrian criterion: 10										are referenced to the	avenue loca	ted immediately to the	west.	•
	RED:	Values greater	r than 0.5				ļ			Parks and Open Spa	ce Names ref	erence: TIDA		
									37					

TABLE 6 SUMMARY OF MEASURED R-VALUES AND CALCULATED WINDS - PROJECT CONDITIONS

Project Co	onditions -	Measured	R-Values					ulated Speeds	Test Point Loca	ition - Narra	tive Description		
#	NNW	NW	WNW	w	SSE	R-Value Average	10% Exceed	Hazard hr/yr	Avenues	Streets	California Avenue	Edges	Identifier or Name
151	0.56	0.47	0.52	0.27	0.46	0.46	12		Avenue E	3rd			Eastside Commons
152	0.30	0.31	0.36	0.43	0.37	0.35	13			3rd	California Avenue		Eastside Commons
153	0.42	0.69	0.57	0.65	0.55	0.58	20	14	Avenue D	3rd	California Avenue		Eastside Commons
154	0.43	0.42	0.31	0.25	0.70	0.42	12	20	Avenue D	3rd - 4th			
155 156	0.49	0.61	0.43	0.41	0.39	0.46 0.51	14 16		Avenue H Avenue E	4th 3rd			Eastside Commons
157	0.40	0.46	0.89	0.48	0.56	0.42	12	2	Avenue E	3rd - 4th			Easiside Commons
158	0.40	0.27	0.40	0.23	0.43	0.37	13	-	Avenue E	4th			
159	0.54	0.44	0.22	0.41	0.37	0.40	14		Avenue H		California Avenue		
160	0.16	0.46	0.58	0.41	0.48	0.42	13		Avenue E		California Avenue		
161	0.44	0.43	0.49	0.32	0.46	0.43	12		Avenue E	3rd			Eastside Commons
162	0.40	0.28	0.33	0.49	0.25	0.35	15		Avenue E - H	3rd			Eastside Commons
163	0.55	0.67	0.54	0.54	0.21	0.50	17	2	Avenue I	4th			
164	0.53	0.48	0.37	0.23	0.47	0.42	11		Avenue I	3rd			Eastside Commons
165	0.43	0.47	0.44	0.46	0.55	0.47	15	1	Avenue H	3rd			Eastside Commons
166 167	0.59 0.46	0.62	0.43 0.27	0.32 0.27	0.49	0.49 0.39	13		Avenue H	3rd - 4th 4th			Eastside Commons
168	0.46	0.49 0.29	0.27	0.27	0.47 0.34	0.39	11 14		Avenue H Avenue I	3rd			Eastside Commons
169	0.38	0.12	0.12	0.42	0.37	0.26	11		Avenue I	Siu	California Avenue		Lasiside Commons
170	0.37	0.52	0.29	0.35	0.31	0.37	11		Avenue H		California Avenue		
171	0.42	0.45	0.40	0.36	0.69	0.46	14	17	Avenue H	3rd			Eastside Commons
172	0.43	0.52	0.54	0.47	0.14	0.42	14		Avenue J	4th			
173	0.51	0.41	0.43	0.28	0.40	0.41	11		Avenue J	3rd			Eastside Commons
174	0.33	0.47	0.38	0.27	0.39	0.37	10		Avenue I	3rd			Eastside Commons
175	0.60	0.62	0.50	0.31	0.39	0.49	13		Avenue I	3rd - 4th			
176	0.48	0.45	0.39	0.24	0.44	0.40	11		Avenue J	3rd			Eastside Commons
177	0.44	0.34	0.33	0.19	0.39	0.34	9		Avenue J	2nd			
178 179	0.21 0.54	0.21 0.28	0.31 0.34	0.18 0.39	0.52 0.51	0.29 0.41	8 14		Avenue I Avenue I	2nd 3rd			
180	0.53	0.63	0.62	0.59	0.19	0.51	18	6	Avenue K	4th			
181	0.44	0.38	0.40	0.27	0.55	0.41	11		Avenue K	3rd - 4th			
182	0.57	0.53	0.44	0.37	0.55	0.49	15	2	Avenue K	3rd			Eastside Commons
183	0.43	0.52	0.56	0.47	0.46	0.49	15		Avenue J	3rd			Eastside Commons
184	0.60	0.60	0.55	0.37	0.35	0.50	14	1	Avenue J	3rd - 4th			
185	0.42	0.28	0.27	0.15	0.47	0.32	9		Avenue K	2nd			
186	0.30	0.23	0.32	0.27	0.51	0.33	10		Avenue J	2nd			
187	0.46	0.52	0.41	0.33	0.47	0.44	13		Avenue J	3rd			Eastside Commons
188 189	0.51 0.47	0.34 0.48	0.27 0.57	0.23 0.58	0.54 0.33	0.38 0.49	11 17	4	Fastoida Avanua	4th		Shoreline	Pier 1
190	0.47	0.40	0.37	0.38	0.33	0.49	10	4	Eastside Avenue Eastside Avenue	3rd - 4th			
191	0.45	0.39	0.35	0.16	0.47	0.39	11		Eastside Avenue	3rd			Eastside Commons
192	0.62	0.62	0.65	0.44	0.40	0.54	15	1	Avenue K	3rd - 4th			Labiolae Commone
193	0.48	0.54	0.44	0.23	0.52	0.44	11		Eastside Avenue	3rd			Eastside Commons
194	0.62	0.48	0.33	0.22	0.58	0.45	13	4	Eastside Avenue	2nd - 3rd			
195	0.61	0.44	0.17	0.21	0.47	0.38	12	1	Eastside Avenue	2nd			
196	0.36	0.25	0.34	0.26	0.56	0.35	11	1	Avenue K	2nd			
197	0.36	0.18	0.31	0.42	0.48	0.35	14		Avenue K	2nd - 3rd			E 0
198 199	0.54 0.51	0.29 0.38	0.42	0.44	0.56 0.51	0.45	16	2	Avenue K	3rd			Eastside Commons
199 200	0.51	0.38	0.25 0.28	0.23	0.51	0.37 0.46	11 13	29	Avenue I Avenue D	1st 3rd - 4th			
201	0.36	0.49	0.24	0.45	0.73	0.46	14	25	Avenue E	3rd - 4u1			Eastside Commons
202	0.30	0.23	0.47	0.34	0.42	0.35	11					Shoreline	Clipper Cove Promenade
203	0.38	0.57	0.33	0.42	0.78	0.50	15	50	Avenue D	1st - 2nd			Building 2 / Bus stop
204	0.38	0.49	0.47	0.47	0.52	0.47	15					Shoreline	Clipper Cove Promenade
205	0.50	0.56	0.51	0.46	0.58	0.52	16	4				Shoreline	Cityside Waterfront Park
206	0.61	0.57	0.53	0.48	0.55	0.55	17	3				Shoreline	Cityside Waterfront Park
	Values less th												May 2009. Unmarked alleys
	Values between)								ed immediately to the v	vest.	
RED:	Values greate	r than 0.5							Parks and Open Spa	ace Names refe	erence: TIDA		
						edstrian criterio		07					
				mours per year	ir (nat wind ex	ceeds Wind Ha	zara critrion:	37					

Project plus Cumulative

Due to factors discussed earlier in the Model and Wind Testing Protocols, no wind interaction is anticipated between the Proposed Project and any cumulative development on Treasure Island. The Project plus cumulative scenario would result in wind conditions that could not be distinguished from those wind conditions under the Project.

ATTACHMENT – PLANNING CODE SECTION 148

San Francisco Planning Code Section 148, Reduction of Ground-level Wind Currents in C-3 Districts

(a) **Requirement and Exception.** In C-3 Districts, buildings and additions to existing buildings shall be shaped, or other wind-baffling measures shall be adopted, so that the developments will not cause ground-level wind currents to exceed, more than 10 percent of the time year round, between 7:00 a.m. and 6:00 p.m., the comfort level of 11 m.p.h. equivalent wind speed in areas of substantial pedestrian use and seven m.p.h. equivalent wind speed in public seating areas.

When preexisting ambient wind speeds exceed the comfort level, or when a proposed building or addition may cause ambient wind speeds to exceed the comfort level, the building shall be designed to reduce the ambient wind speeds to meet the requirements. An exception may be granted, in accordance with the provisions of Section 309, allowing the building or addition to add to the amount of time that the comfort level is exceeded by the least practical amount if (1) it can be shown that a building or addition cannot be shaped and other wind-baffling measures cannot be adopted to meet the foregoing requirements without creating an unattractive and ungainly building form and without unduly restricting the development potential of the building site in question, and (2) it is concluded that, because of the limited amount by which the comfort level is exceeded, the limited location in which the comfort level is exceeded, or the limited time during which the comfort level is exceeded, the addition is insubstantial.

No exception shall be granted and no building or addition shall be permitted that causes equivalent wind speeds to reach or exceed the hazard level of 26 miles per hour for a single hour of the year.

- (b) **Definition.** The term "equivalent wind speed" shall mean an hourly mean wind speed adjusted to incorporate the effects of gustiness or turbulence on pedestrians.
- (c) **Guidelines.** Procedures and Methodologies for implementing this section shall be specified by the Office of Environmental Review of the Department of City Planning. (Added by Ord. 414-85, App. 9/17/85)

ATTACHMENT – LISTINGS OF WIND-TUNNEL DATA AND CALCULATED RESULTS

Pedestrian Comfort Analysis

10% Exceeded Winds

In the following tables for the Comfort Criterion tests, the output for each location is presented in three-line groups. The ratios of pedestrian-level wind speeds to the 22-feet height reference wind speeds at the NAS Alameda meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. Section 148 of the Planning Code sets comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

The third line of output for each location shows the criterion speed and the percentage of the time the criterion would be exceeded. The rows labeled CONTRIB tabulate the percentage contribution to the total or the exceedence from each wind direction. The SUMs are the equivalent number of events.

Wind Hazard Analysis

1 Hour per Year Exceeded Winds

In the following tables for the Hazard Criterion tests, the output for each location is presented in three-line groups. The ratios of pedestrian-level wind speeds to the 22-feet height reference wind speeds at the NAS Alameda meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (approximately 0.01141552512% of the time) for each measurement location tested. Section 148 of the Planning Code sets a wind hazard criterion that an hourly average speed of 26 mph for a full hour (a one-minute average speed of 36 mph) not be reached or exceeded one hour per year.

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	LO.0% Exc. Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
			Profile	Ratios:	1.9610	1.9610	1.9610	1.9610	
1	18.4	11.0	34.63	RATIOS CONTRIB CONTRIB	1.0848 9.93% 13.35%	1.1433 73.58% 67.23%	0.8805 9.89% 9.59%	1.0362 6.60% 9.83%	4,380 15,168
2	15.9	11.0	26.32	RATIOS CONTRIB CONTRIB	1.3043 33.14% 24.54%	0.7785 24.89% 44.94%	1.1617 28.00% 16.63%	1.0815 13.97% 13.89%	4,380 11,528
3	18.6	11.0	29.29	RATIOS CONTRIB CONTRIB	0.7713 0.95% 6.61%	1.2519 97.22% 86.86%	0.3785 0.00% 0.30%	0.8005 1.84% 6.23%	4,380 12,830
4	15.9	11.0	24.03	RATIOS CONTRIB CONTRIB	0.6828 1.30% 5.01%	1.0662 96.66% 90.51%	0.3432 0.00% 0.11%	0.6974 2.04% 4.37%	4,380 10,524
5	12.3	11.0	14.45	RATIOS CONTRIB CONTRIB	0.3946 0.09% 0.17%	0.7660 74.67% 77.08%	0.7656 20.33% 17.53%	0.6420 4.90% 5.22%	4,380 6,328
6	15.9	11.0	26.80	RATIOS CONTRIB CONTRIB	1.1791 24.11% 20.07%	0.8028 31.90% 49.46%	1.2188 30.81% 17.13%	1.0669 13.18% 13.34%	4,380 11,737
7	18.6	11.0	35.44	RATIOS CONTRIB CONTRIB	1.1584 12.18% 14.69%	1.1560 72.97% 66.41%	0.8562 8.08% 8.97%	1.0568 6.77% 9.93%	4,380 15,523
8	15.7	11.0	26.90					1.0210 11.57% 12.34%	
9	18.0	11.0	29.76					0.8451 2.90% 7.61%	
10	18.5	11.0	33.85					0.9824 5.12% 9.20%	
11	17.9	11.0	32.81					0.9946 6.18% 9.69%	
12	15.7	11.0	28.53					0.9071 7.32% 9.55%	
13	19.5	11.0	32.00					0.8727 2.24% 7.98%	
14	16.5	11.0	26.06					0.7631 2.64% 5.78%	
15	15.7	11.0	24.11	RATIOS CONTRIB	0.6389 0.83%			0.7201 2.59% 4.95%	

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
16	16.0	11.0	29.61	RATIOS CONTRIB CONTRIB	0.9081 8.50% 11.30%	0.8903 48.54% 61.57%	1.2552 32.31% 15.96%	1.0179 10.65% 11.16%	4,380 12,969
17	14.1	11.0	20.94	RATIOS CONTRIB CONTRIB	0.7860 7.98% 9.96%	0.7801 47.86% 56.89%	1.1303 33.33% 20.34%	0.8988 10.82% 12.81%	4,380 9,173
18	15.1	11.0	23.81	RATIOS CONTRIB CONTRIB	0.9807 14.43% 16.17%	0.7779 36.62% 49.54%	1.2919 35.53% 20.43%	1.0168 13.43% 13.85%	4,380 10,427
19	16.8	11.0	31.69	RATIOS CONTRIB CONTRIB	1.0580 12.83% 13.94%	0.9801 58.22% 63.20%	1.0360 19.88% 12.32%	1.0247 9.07% 10.54%	4,380 13,881
20	10.7	11.0	8.87	RATIOS CONTRIB CONTRIB	0.4369 0.86% 0.73%	0.7060 92.00% 92.76%	0.4273 3.54% 3.03%	0.5234 3.59% 3.48%	4,380 3,887
21	19.1	11.0	36.18	RATIOS CONTRIB CONTRIB	1.0813 8.49% 12.70%	1.1444 64.38% 64.42%	1.1566 19.17% 12.04%	1.1274 7.97% 10.83%	4,380 15,846
22	14.4	11.0	21.17	RATIOS CONTRIB CONTRIB	1.2313 35.66% 27.48%	0.7175 28.51% 41.30%	0.9495 22.68% 16.92%	0.9661 13.16% 14.30%	4,380 9,272
23	16.1	11.0	25.02	RATIOS CONTRIB CONTRIB	0.3571 0.00% 0.04%	1.0566 90.19% 86.15%	0.7299 7.61% 9.19%	0.7145 2.20% 4.63%	4,380 10,959
24	17.4	11.0	32.71	RATIOS CONTRIB CONTRIB	1.0260 9.76% 12.77%	1.0587 66.92% 66.04%	0.9640 15.84% 11.12%	1.0163 7.49% 10.07%	4,380 14,325
25	18.4	11.0	32.79	RATIOS CONTRIB CONTRIB	0.8024 1.46% 6.90%	1.1854 82.85% 73.55%	0.9013 10.85% 10.37%	0.9630 4.84% 9.18%	4,380 14,364
26	15.5	11.0	27.21	RATIOS CONTRIB CONTRIB	0.7593 3.91% 6.70%	0.9681 74.22% 72.73%	0.8540 15.72% 11.62%	0.8605 6.16% 8.95%	4,380 11,918
27	17.2	11.0	32.95	CONTRIB	17 95%	0.9760 52.34% 60.54%	1.0607 19.84% 12.13%	1.0727 9.87% 10.95%	4,380 14,431
28	15.2	11.0	28.23	CONTRIB	14.07%	59.98%	17.30%	0.9166 8.66% 9.82%	4.380
29	9.6	11.0	6.17	CONTRIB	3.85%	0.4942 35.92% 19.58%		0.6702 15.24% 14.52%	4,380 2,704

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion						
	Ground Speed		% Time Exc.		NNW	W	SSE	OTHER	SUM
			Profile	Ratios:	1.9610	1.9610	1.9610	1.9610	
1	40.0		0.0552249	RATIOS	1.0848	1.1433	0.8805	1.0362	5
	40.0	36.0	0.0552249	CONTRIB	5.62%	89.85%	0.41%	4.13%	24
2	41.3			RATIOS	1.3043	0.7785	1.1617	1.0815 4.21% 5.89%	5
	41.3	36.0	0.0811947	CONTRIB	33.82%	0.16%	60.12%	5.89%	36
3	43.6			RATIOS	0.7713	1.2519	0.3785	0.8005	5
	43.6	36.0	0.1244210	CONTRIB	0.01%	99.97%	0.00%	0.02%	54
4	37.1			RATIOS	0.6828	1.0662	0.3432	0.6974 0.00% 0.01%	5
	37.1	36.0	0.0168619	CONTRIB	0.00%	99.99%	0.00%	0.01%	7
5	27.1		0.0001160	RATIOS	0.3946	0.7660	0.7656	0.6420	5
	27.1	36.0	0.0001160	CONTRIB	0.00%	87.28%	12.72%	0.00%	0
6	41.3		0.0905760	RATIOS	1.1791	0.8028	1.2188	1.0669	5
	41.3	36.0	0.0905760	CONTRIB	11.81%	0.23%	83.79%	4.18%	40
7	40.7			RATIOS	1.1584	1.1560	0.8562	1.0568	5
	40.7	36.0	0.0712381	CONTRIB	12.63%	82.68%	0.18%	1.0568 3.66% 4.50%	31
8	40.9			RATIOS	1.3556	0.8026	0.9046 0.26%	1.0210	5
	40.5	36.0	0.0417683	CONTRIB	94.37%	0.50%	0.91%	4.22%	18
9	41.8			RATIOS	0.7009	1.2011	0.6334	0.8451	5
	41.0	36.0	0.0852281	CONTRIB	0.00%	99.92%	0.00%	0.08%	37
10	41.6			RATIOS	0.9028	1.1939	0.8505	0.9824	
	41.6	36.0	0.0817441	CONTRIB	0.14% 0.19%	99.09%	0.07% 0.14%	0.9824 0.70% 1.11%	4 36
11	20.0			RATIOS	0.8742	1.1172	0.9925	0.9946	-
	39.0	36.0	0.0382548	CONTRIB	0.23% 0.24%	92.69% 90.77%	4.50% 6.06%	2.58%	5 17
12	22.7			RATIOS	0.8519	0.9532	0.9162	0.9071	-
	33.7	36.0	0.0037591	CONTRIB	1.63%	75.74% 79.35%	16.11% 12.98%	0.9071 6.51% 6.04%	5 2
13	42.0			RATIOS	0.3496	1.2617	1.0068	0.8727	-
	43.9	36.0	0.1367630	CONTRIB	0.00% 0.00%	99.36% 97.67%	0.60% 2.24%	0.03% 0.08%	5 60
14	20.4			RATIOS	0.7189	1.1068	0.4636	0.7631	-
	38.4	36.0	0.0300644	CONTRIB	0.00% 0.01%	99.9/%	0.00% 0.00%	0.03% 0.04%	5 13
15	36.5			RATIOS	0.6389	1.0497	0.4716	0.7201 0.03% 0.03%	-
				CONTRIR	0 00%	99 9/%	0 00%	0 0 3%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

Loca-		Speed	iterion % Time Exc.		NNW	W	SSE	OTHER	SUM	
16				RATIOS	0.9081	0.8903	1.2552	1.0179		
	42.2	36.0	0.1024230	CONTRIB CONTRIB	0.13% 0.17%	0.85% 1.01%	97.99% 97.18%	1.0179 1.03% 1.63%	5 45	
17										
	37.8	36.0	0.0295639	CONTRIB CONTRIB	0.07% 0.06%	0.55% 0.45%	98.65% 98.83%	0.8988 0.73% 0.65%	5 13	
18				RATIOS	0.9807	0.7779	1.2919	1.0168	_	
	43.3	36.0	0.1321070	CONTRIB CONTRIB	0.28% 0.46%	0.04% 0.10%	99.07% 98.20%	1.0168 0.61% 1.24%	5 58	
19				RATIOS	1.0580	0.9801	1.0360	1.0247	_	
	36.5	36.0	0.0138783	CONTRIB	15.12% 14.88%	33.94% 33.04%	37.41% 38.55%	13.54% 13.53%	6	
20	24.4			RATIOS	0.4369	0.7060	0.4273	0.5234	5	
	24.4	36.0	0.0000287	CONTRIB	0.00%	100.00%	0.00%	0.5234 0.12% 0.00%	0	
21	44. 3			RATIOS	1.0813	1.1444	1.1566	1.1274	5	
	41.3	36.0	0.1089230	CONTRIB	2.70%	46.28%	41.98%	1.1274 8.76% 9.04%	48	
22	27.4			RATIOS	1.2313	0.7175	0.9495	0.9661	-	
	37.4	36.0	0.0177240	CONTRIB	90.45%	0.16%	5.52%	0.9661 2.89% 3.82%	8	
23	36.8			RATIOS	0.3571	1.0566	0.7299	0.7145 0.02% 0.02%	-	
	30.0	36.0	0.0146654	CONTRIB	0.00%	99.94%	0.04%	0.02%	6	
24	37.2			RATIOS	1.0260	1.0587	0.9640	1.0163 8.03% 8.42%	5	
	37.2	36.0	0.0193240	CONTRIB	6.49%	78.28%	6.81%	8.42%	8	
25	41.2			RATIOS	0.8024	1.1854	0.9013	0.9630 0.57% 0.84%	c	
	41.2	36.0	0.0765288	CONTRIB	0.03%	98.67%	0.46%	0.84%	34	
26	33.8			RATIOS	0.7593	0.9681	0.8540	0.8605 2.52% 2.27%	5	
	33.0	36.0	0.0040162	CONTRIB	0.24%	94.41%	3.09%	2.27%	2	
27	38.2			RATIOS	1.1815	0.9760	1.0607	1.0727	5	
	30.2	36.0	0.0278155	CONTRIB	39.17%	15.44%	30.45%	1.0/2/ 14.02% 14.94%	12	
28	32.6			RATIOS	0.9801	0.8940 46.50%	0.8756 12.65%	0.9166 13.76%	5	
		36.0	0.0021766	CONTRIB	27.42%	50.81%	9.27%	12.49%	1	
29			0.0064283	RATIOS	0.4706	0.4942	1.0458	0.6702	_	
	35.1	36.0	0.0064283	CONTRIB CONTRIB	0.00% 0.00%	0.00% 0.00%	100.00% 100.00%	0.00% 0.00%	5 3	

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	LO.0% Exc. Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
			Profile	Ratios:	1.9610	1.9610	1.9610	1.9610	
1	18.4	11.0	34.63	RATIOS CONTRIB CONTRIB	1.0848 9.93% 13.35%	1.1433 73.58% 67.23%	0.8805 9.89% 9.59%	1.0362 6.60% 9.83%	4,380 15,168
2	15.9	11.0	26.32	RATIOS CONTRIB CONTRIB	1.3043 33.14% 24.54%	0.7785 24.89% 44.94%	1.1617 28.00% 16.63%	1.0815 13.97% 13.89%	4,380 11,528
3	18.6	11.0	29.29	RATIOS CONTRIB CONTRIB	0.7713 0.95% 6.61%	1.2519 97.22% 86.86%	0.3785 0.00% 0.30%	0.8005 1.84% 6.23%	4,380 12,830
4	15.9	11.0	24.03	RATIOS CONTRIB CONTRIB	0.6828 1.30% 5.01%	1.0662 96.66% 90.51%	0.3432 0.00% 0.11%	0.6974 2.04% 4.37%	4,380 10,524
5	12.3	11.0	14.45	RATIOS CONTRIB CONTRIB	0.3946 0.09% 0.17%	0.7660 74.67% 77.08%	0.7656 20.33% 17.53%	0.6420 4.90% 5.22%	4,380 6,328
6	15.9	11.0	26.80	RATIOS CONTRIB CONTRIB	1.1791 24.11% 20.07%	0.8028 31.90% 49.46%	1.2188 30.81% 17.13%	1.0669 13.18% 13.34%	4,380 11,737
7	18.6	11.0	35.44	RATIOS CONTRIB CONTRIB	1.1584 12.18% 14.69%	1.1560 72.97% 66.41%	0.8562 8.08% 8.97%	1.0568 6.77% 9.93%	4,380 15,523
8	15.7	11.0	26.90					1.0210 11.57% 12.34%	
9	18.0	11.0	29.76					0.8451 2.90% 7.61%	
10	18.5	11.0	33.85					0.9824 5.12% 9.20%	
11	17.9	11.0	32.81					0.9946 6.18% 9.69%	
12	15.7	11.0	28.53					0.9071 7.32% 9.55%	
13	19.5	11.0	32.00					0.8727 2.24% 7.98%	
14	16.5	11.0	26.06					0.7631 2.64% 5.78%	
15	15.7	11.0	24.11	RATIOS CONTRIB	0.6389 0.83%			0.7201 2.59% 4.95%	

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
16	16.0	11.0	29.61	RATIOS CONTRIB CONTRIB	0.9081 8.50% 11.30%	0.8903 48.54% 61.57%	1.2552 32.31% 15.96%	1.0179 10.65% 11.16%	4,380 12,969
17	14.1	11.0	20.94	RATIOS CONTRIB CONTRIB	0.7860 7.98% 9.96%	0.7801 47.86% 56.89%	1.1303 33.33% 20.34%	0.8988 10.82% 12.81%	4,380 9,173
18	15.1	11.0	23.81	RATIOS CONTRIB CONTRIB	0.9807 14.43% 16.17%	0.7779 36.62% 49.54%	1.2919 35.53% 20.43%	1.0168 13.43% 13.85%	4,380 10,427
19	16.8	11.0	31.69	RATIOS CONTRIB CONTRIB	1.0580 12.83% 13.94%	0.9801 58.22% 63.20%	1.0360 19.88% 12.32%	1.0247 9.07% 10.54%	4,380 13,881
20	10.7	11.0	8.87	RATIOS CONTRIB CONTRIB	0.4369 0.86% 0.73%	0.7060 92.00% 92.76%	0.4273 3.54% 3.03%	0.5234 3.59% 3.48%	4,380 3,887
21	19.1	11.0	36.18	RATIOS CONTRIB CONTRIB	1.0813 8.49% 12.70%	1.1444 64.38% 64.42%	1.1566 19.17% 12.04%	1.1274 7.97% 10.83%	4,380 15,846
22	14.4	11.0	21.17	RATIOS CONTRIB CONTRIB	1.2313 35.66% 27.48%	0.7175 28.51% 41.30%	0.9495 22.68% 16.92%	0.9661 13.16% 14.30%	4,380 9,272
23	16.1	11.0	25.02	RATIOS CONTRIB CONTRIB	0.3571 0.00% 0.04%	1.0566 90.19% 86.15%	0.7299 7.61% 9.19%	0.7145 2.20% 4.63%	4,380 10,959
24	17.4	11.0	32.71	RATIOS CONTRIB CONTRIB	1.0260 9.76% 12.77%	1.0587 66.92% 66.04%	0.9640 15.84% 11.12%	1.0163 7.49% 10.07%	4,380 14,325
25	18.4	11.0	32.79	RATIOS CONTRIB CONTRIB	0.8024 1.46% 6.90%	1.1854 82.85% 73.55%	0.9013 10.85% 10.37%	0.9630 4.84% 9.18%	4,380 14,364
26	15.5	11.0	27.21	RATIOS CONTRIB CONTRIB	0.7593 3.91% 6.70%	0.9681 74.22% 72.73%	0.8540 15.72% 11.62%	0.8605 6.16% 8.95%	4,380 11,918
27	17.2	11.0	32.95	CONTRIB	17 95%	0.9760 52.34% 60.54%	1.0607 19.84% 12.13%	1.0727 9.87% 10.95%	4,380 14,431
28	15.2	11.0	28.23	CONTRIB	14.07%	59.98%	17.30%	0.9166 8.66% 9.82%	4.380
29	9.6	11.0	6.17	CONTRIB	3.85%	0.4942 35.92% 19.58%		0.6702 15.24% 14.52%	4,380 2,704

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion						
	Ground Speed		% Time Exc.		NNW	W	SSE	OTHER	SUM
			Profile	Ratios:	1.9610	1.9610	1.9610	1.9610	
1	40.0		0.0552249	RATIOS	1.0848	1.1433	0.8805	1.0362	5
	40.0	36.0	0.0552249	CONTRIB	5.62%	89.85%	0.41%	4.13%	24
2	41.3			RATIOS	1.3043	0.7785	1.1617	1.0815 4.21% 5.89%	5
	41.3	36.0	0.0811947	CONTRIB	33.82%	0.16%	60.12%	5.89%	36
3	43.6			RATIOS	0.7713	1.2519	0.3785	0.8005	5
	43.6	36.0	0.1244210	CONTRIB	0.01%	99.97%	0.00%	0.02%	54
4	37.1			RATIOS	0.6828	1.0662	0.3432	0.6974 0.00% 0.01%	5
	37.1	36.0	0.0168619	CONTRIB	0.00%	99.99%	0.00%	0.01%	7
5	27.1		0.0001160	RATIOS	0.3946	0.7660	0.7656	0.6420	5
	27.1	36.0	0.0001160	CONTRIB	0.00%	87.28%	12.72%	0.00%	0
6	41.3		0.0905760	RATIOS	1.1791	0.8028	1.2188	1.0669	5
	41.3	36.0	0.0905760	CONTRIB	11.81%	0.23%	83.79%	4.18%	40
7	40.7			RATIOS	1.1584	1.1560	0.8562	1.0568	5
	40.7	36.0	0.0712381	CONTRIB	12.63%	82.68%	0.18%	1.0568 3.66% 4.50%	31
8	40.9			RATIOS	1.3556	0.8026	0.9046 0.26%	1.0210	5
	40.5	36.0	0.0417683	CONTRIB	94.37%	0.50%	0.91%	4.22%	18
9	41.8			RATIOS	0.7009	1.2011	0.6334	0.8451	5
	41.0	36.0	0.0852281	CONTRIB	0.00%	99.92%	0.00%	0.08%	37
10	41.6			RATIOS	0.9028	1.1939	0.8505	0.9824	
	41.6	36.0	0.0817441	CONTRIB	0.14% 0.19%	99.09%	0.07% 0.14%	0.9824 0.70% 1.11%	4 36
11	20.0			RATIOS	0.8742	1.1172	0.9925	0.9946	-
	39.0	36.0	0.0382548	CONTRIB	0.23% 0.24%	92.69% 90.77%	4.50% 6.06%	2.58%	5 17
12	22.7			RATIOS	0.8519	0.9532	0.9162	0.9071	-
	33.7	36.0	0.0037591	CONTRIB	1.63%	75.74% 79.35%	16.11% 12.98%	0.9071 6.51% 6.04%	5 2
13	42.0			RATIOS	0.3496	1.2617	1.0068	0.8727	-
	43.9	36.0	0.1367630	CONTRIB	0.00% 0.00%	99.36% 97.67%	0.60% 2.24%	0.03% 0.08%	5 60
14	20.4			RATIOS	0.7189	1.1068	0.4636	0.7631	-
	38.4	36.0	0.0300644	CONTRIB	0.00% 0.01%	99.9/%	0.00% 0.00%	0.03% 0.04%	5 13
15	36.5			RATIOS	0.6389	1.0497	0.4716	0.7201 0.03% 0.03%	-
				CONTRIR	0 00%	99 9/%	0 00%	0 0 3%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

Loca-		Speed	iterion % Time Exc.		NNW	W	SSE	OTHER	SUM	
16				RATIOS	0.9081	0.8903	1.2552	1.0179		
	42.2	36.0	0.1024230	CONTRIB CONTRIB	0.13% 0.17%	0.85% 1.01%	97.99% 97.18%	1.0179 1.03% 1.63%	5 45	
17										
	37.8	36.0	0.0295639	CONTRIB CONTRIB	0.07% 0.06%	0.55% 0.45%	98.65% 98.83%	0.8988 0.73% 0.65%	5 13	
18				RATIOS	0.9807	0.7779	1.2919	1.0168	_	
	43.3	36.0	0.1321070	CONTRIB CONTRIB	0.28% 0.46%	0.04% 0.10%	99.07% 98.20%	1.0168 0.61% 1.24%	5 58	
19				RATIOS	1.0580	0.9801	1.0360	1.0247	_	
	36.5	36.0	0.0138783	CONTRIB	15.12% 14.88%	33.94% 33.04%	37.41% 38.55%	13.54% 13.53%	6	
20	24.4			RATIOS	0.4369	0.7060	0.4273	0.5234	5	
	24.4	36.0	0.0000287	CONTRIB	0.00%	100.00%	0.00%	0.5234 0.12% 0.00%	0	
21	44. 3			RATIOS	1.0813	1.1444	1.1566	1.1274	5	
	41.3	36.0	0.1089230	CONTRIB	2.70%	46.28%	41.98%	1.1274 8.76% 9.04%	48	
22	27.4			RATIOS	1.2313	0.7175	0.9495	0.9661	-	
	37.4	36.0	0.0177240	CONTRIB	90.45%	0.16%	5.52%	0.9661 2.89% 3.82%	8	
23	36.8			RATIOS	0.3571	1.0566	0.7299	0.7145 0.02% 0.02%	-	
	30.0	36.0	0.0146654	CONTRIB	0.00%	99.94%	0.04%	0.02%	6	
24	37.2			RATIOS	1.0260	1.0587	0.9640	1.0163 8.03% 8.42%	5	
	37.2	36.0	0.0193240	CONTRIB	6.49%	78.28%	6.81%	8.42%	8	
25	41.2			RATIOS	0.8024	1.1854	0.9013	0.9630 0.57% 0.84%	c	
	41.2	36.0	0.0765288	CONTRIB	0.03%	98.67%	0.46%	0.84%	34	
26	33.8			RATIOS	0.7593	0.9681	0.8540	0.8605 2.52% 2.27%	5	
	33.0	36.0	0.0040162	CONTRIB	0.24%	94.41%	3.09%	2.27%	2	
27	38.2			RATIOS	1.1815	0.9760	1.0607	1.0727	5	
	30.2	36.0	0.0278155	CONTRIB	39.17%	15.44%	30.45%	1.0/2/ 14.02% 14.94%	12	
28	32.6			RATIOS	0.9801	0.8940 46.50%	0.8756 12.65%	0.9166 13.76%	5	
		36.0	0.0021766	CONTRIB	27.42%	50.81%	9.27%	12.49%	1	
29			0.0064283	RATIOS	0.4706	0.4942	1.0458	0.6702	_	
	35.1	36.0	0.0064283	CONTRIB CONTRIB	0.00% 0.00%	0.00% 0.00%	100.00% 100.00%	0.00% 0.00%	5 3	

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

1	0.0% Exc.	Cr	iterion						
	Ground Speed	•	% Time Exc.	NNW	W	SSE	OTHER	SUM	
			Profile Rat	tios: 1.9610	1.9610	1.9610	1.9610		

7	15.0	11.0	24.43	RATIOS CONTRIB CONTRIB	0.6365 1.17% 3.75%	0.9774 86.73% 81.74%	0.6842 7.71% 8.25%	0.7660 4.39% 6.26%	4,380 10,702
8	10.5	11.0	8.41	RATIOS CONTRIB CONTRIB	0.4281 0.86% 0.64%	0.6438 70.69% 69.53%	0.6805 22.11% 23.68%	0.5841 6.34% 6.14%	4,380 3,686
9	13.6	11.0	19.48	RATIOS CONTRIB CONTRIB	0.4155 0.04% 0.21%	0.9111 97.74% 95.71%	0.4285 0.33% 1.42%	0.5850 1.89% 2.67%	4,380 8,534
10	14.8	11.0	23.78	RATIOS CONTRIB CONTRIB	0.7426 4.70% 7.03%	0.9776 90.57% 83.99%	0.5042 0.78% 3.34%	0.7415 3.95% 5.64%	4,380 10,417
11	9.6	11.0	6.22	RATIOS CONTRIB CONTRIB	0.5457 8.58% 7.04%	0.5601 58.05% 54.98%	0.6536 24.27% 29.53%	0.5865 9.10% 8.45%	4,380 2,724
12	19.4	11.0	32.25	RATIOS CONTRIB CONTRIB	0.6397 0.11% 2.90%	1.2988 95.39% 81.79%	0.7303 1.97% 7.13%	0.8896 2.53% 8.18%	4,380 14,124
13	9.4	11.0	5.91	RATIOS CONTRIB CONTRIB	0.2998 0.08% 0.01%	0.5142 46.15% 28.41%	0.9740 43.10% 62.10%	0.5960 10.66% 9.48%	4,380 2,591
14	12.4	11.0	15.72	RATIOS CONTRIB CONTRIB	0.6326 5.65% 5.69%	0.8083 88.00% 86.46%	0.4616 1.86% 3.29%	0.6342 4.49% 4.57%	4,380 6,887
15	8.8	11.0	3.39	RATIOS CONTRIB CONTRIB	0.5859 15.97% 19.56%	0.5167 59.71% 51.65%	0.4840 15.76% 19.18%	0.5289 8.56% 9.60%	4,380 1,485

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
16	10.3	11.0	7.59	RATIOS CONTRIB CONTRIB	0.7215 19.64% 19.68%	0.5148 30.43% 22.36%	0.8764 35.46% 43.57%	0.7042 14.47% 14.39%	4,380 3,324
17	7.9	11.0	1.51	RATIOS CONTRIB CONTRIB	0.5406 17.65% 26.76%	0.4651 59.91% 48.34%	0.4120 14.10% 12.71%	0.4726 8.34% 12.19%	4,380 662
18	15.4	11.0	27.10	RATIOS CONTRIB CONTRIB	0.6973 1.99% 4.83%	0.8942 56.32% 67.57%	1.2215 32.84% 16.98%	0.9377 8.85% 10.63%	4,380 11,869
19	12.5	11.0	15.53	RATIOS CONTRIB CONTRIB	0.7232 9.06% 9.71%	0.7277 56.79% 59.32%	0.8638 24.82% 20.84%	0.7716 9.34% 10.14%	4,380 6,803
20	10.2	11.0	7.35	RATIOS CONTRIB CONTRIB	0.5134 4.95% 3.56%	0.6571 83.52% 85.90%	0.4479 6.44% 5.64%	0.5395 5.09% 4.90%	4,380 3,219
21	11.2	11.0	10.77	RATIOS	0.5267	0.7256	0.5063		
22	9.9	11.0	6.65					0.5769 7.51% 7.39%	
23	10.5	11.0	8.58						
24	15.1		27.70					0.9298 9.39% 10.25%	
25	15.7		27.12					0.8513 5.63% 8.60%	
26	14.0	11.0	23.18	RATIOS	0.6314	0.8713	0.8134		
27	11.6	11.0	11.98	RATIOS	0.7803	0.6305	0.8475		
28	11.8		12.84	RATIOS CONTRIB	0.8213 18.66%	0.6671 51.05%	0.7369	0.7418 10.06%	
29	12.5	11.0	16.36					0.6101 3.48% 3.76%	4,380 7.167
30	17.6								

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	10.0% Exc. Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
31				RATIOS	0.9538	0.2492	0.5793	0.5941	
	8.4			CONTRIB	59.23%	0.16%	24.63%	15.98%	4,380
		11.0	5.65	CONTRIB	64.77%	0.00%	25.43%	0.5941 15.98% 9.80%	2,475
32				RATIOS	0.2741	0.5420	0.5805	0.4655 5.18% 4.05%	
	8.8			CONTRIB	0.06%	71.85%	22.91%	5.18%	4,380
		11.0	4.22	CONTRIB	0.00%	61.75%	34.20%	4.05%	1,848
33				RATIOS			0.6167	0.5636	
	8.5			CONTRIB	26.52%	33.05%	27.72%	12.71% 13.18%	4,380
		11.0	3.40	CONTRIB	28.22%	10.63%	47.98%	13.18%	1,490
34				RATIOS	1.0456	0.7507	0.8634	0.8866	
	13.9			CONTRIB		43.54%	20.12%	10.79%	4,380
		11.0	20.52	CONTRIB	21.08%		15.76%		8,986
35				RATIOS	1.1193	0.4579	0.5983	0.7252	
	10.3			CONTRIB	55.23%	11.16%	17.57%	16.04%	4,380
		11.0	8.30	CONTRIB	58.97%	7.73%	18.49%	16.04% 14.80%	3,634
36				RATIOS	0.2322	0.2883	0.2806	0.2670	
	4.7			CONTRIB	4.31%	70.22%	18.63%	6.84%	4,380
		11.0	0.00		0.30%				1
37				RATIOS	0.6958	0.5952	0.3720	0.5543 6.92% 6.70%	
	9.7			CONTRIB	21.13%	69.57%	2.38%	6.92%	4,380
		11.0	6.16	CONTRIB	21.05%	71.03%	1.22%	6.70%	2,697
38				RATIOS	1.0515	0.3079		0.7118	
	10.0			CONTRIB	51.71% 53.80%	0.30%	31.46%	16.54%	4,380
		11.0	8.12	CONTRIB	53.80%	0.09%	32.07%	14.04%	3,556
39				RATIOS	0.5330	0.3675	0.8758	0.5921	
	7.9			CONTRIB	16.82%	16.45%	46.03%	20.70% 12.71%	4,380
		11.0	4.30	CONTRIB	8.36%	2.01%	76.93%	12.71%	1,881
40					0.6430				
	8.4			CONTRIB	27.37%	17.17%	38.16%	17.30% 13.72%	4,380
		11.0	4.28	CONTRIB	22.28%	3.76%	60.25%	13.72%	1,874
41					0.6112				
	10.1			CONTRIB	11.00%	43.35%	33.79%	11.86% 11.58%	4,380
		11.0	7.22	CONTRIB	10.84%	37.19%	40.40%	11.58%	3,161
42				RATIOS	0.5703	0.5707	0.4038	0.5149 6.56% 5.94%	
	9.1			CONTRIB	12.31%	74.48%	6.65%	6.56%	4,380
		11.0	4.78	CONTRIB	12.47%	78.25%	3.34%	5.94%	2,095
43				RATIOS	0.6244	0.3324	0.7475	0.5681	
	7.7			CONTRIB	32.26%	8.50%	40.16%	19.08% 12.34%	4,380
		11.0	3.75	CONTRIB	22.67%	0.61%	64.37%	12.34%	1,642
44				RATIOS	0.9478	0.6461	0.5454	0.7131 9.31% 9.68%	
	11.6			CONTRIB	32.88%	48.81%	9.00%	9.31%	4,380
		11.0	11.86	CONTRIB	30.50%	50.01%	9.81%	9.68%	5,194
45				RATIOS	0.6893	0.6028	0.5826	0.6249 8.80% 8.50%	
	10.3			CONTRIB	16.14%	58.45%	16.61%	8.80%	4.380
				CONTRIB					.,

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

oca-	10.0% Exc. Ground Speed				NNW	W	SSE	OTHER	SUM
46				RATIOS	1.3405	0.6438	0.8201	0.9348	
	13.5			CONTRIB	46.61%	19.47%	19.11%	14.81%	4,380
		11.0	18.42	CONTRIB	36.86%	31.77%	15.81%	15.56%	8,067
7				RATIOS	1.2086	0.7154	0.6422	0.8554	
	13.5			CONTRIB	38.94%	40.85%	9.62%	10.58% 12.91%	4,380
		11.0	18.42	CONTRIB	30.53%	46.94%	9.62%	12.91%	8,068
8				RATIOS	0.5605	0.9148	0.1961	0.5571	
	13.6				0.91%			1.38%	
		11.0	19.69	CONTRIB	2.78%	95.07%	0.00%	2.15%	8,626
9					0.5722	0.8487	0.5491	0.6567 4.24% 4.37%	
	13.0			CONTRIB	1.64%	88.70%	5.41%	4.24%	4,380
		11.0	18.92	CONTRIB	3.20%	86.08%	6.35%	4.37%	8,286
9				RATIOS	0.7101		0.5820	0.6026	
	9.5			CONTRIB	25.08%	44.66%	19.63%	10.62%	
		11.0	5.16	CONTRIB	27.18%	33.38%	28.09%	11.34%	2,261
l				RATIOS	1.1690	0.4263	0.6530	0.7494	
	10.5			CONTRIB	57.71%	5.17%	20.18%	16.94%	4,380
		11.0	8.86	CONTRIB	59.73%	3.78%	20.68%	15.81%	3,882
!				RATIOS			0.6454		
	13.2		44.00	CONTRIB	41.40%	36.34%	11.04%	11.21% 13.60%	4,380
		11.0	16.87	CONTRIB	33.9/%	41.82%	10.61%	13.60%	7,389
				RATIOS	0.7567	0.7079	0.5075	0.6574	
	11.5				15.25%	71.09%	6.67%	7.00%	4,380
		11.0	11.77	CONTRIB	15.29%	70.69%	6.96%	7.05%	5,153
ļ				RATIOS	0.6967		0.4755	0.6599	
	12.5		44.55	CONTRIB	7.96%	84.72%	2.25% 3.67%	5.08%	4,380
		11.0	16.27	CONTRIB	8.01%	83.15%	3.6/%	5.17%	7,128
5				RATIOS	0.8089	0.7407			
	12.5	11.0	45 54	CONTRIB	14.35%	61.98% 63.40%	15.44%	8.23% 8.73%	4,380
		11.0	15.51	CONTRIB	15.04%	63.40%	12.83%	8./3%	6,794
5					0.7293				
	12.3	11 0	14 03	CONTRIB	9.98%				
		11.0	14.82	CONTRIB	10.51%	64.23%	16.38%	8.88%	6,492
							0.6350		
	13.7				1.71%	85.24%	8.37%		4,380
		11.0	21.81	CONTRIB	3.51%	83.37%	7.94%	5.18%	9,551
3				RATIOS	0.4983	0.3153	0.7387	0.5174	
	6.9			CONTRIB	21.58%	13.72%			4,380
		11.0	2.86	CONTRIB	7.13%	0.36%	82.33%	10.19%	1,253
				RATIOS	0 6867	0 6310	0.3265	0 5479	
9	10.0				17.53%				4.380
	20.0	11.0	7.06		17.39%		0.14%		3,092
^				DATIOS	0.7570	0.7060	0.3600	0.6046	
0	12.2			RATIOS		0.7868 84.06%	0.2698		4,380
	12.2	11 0	14.70	CONTRIB CONTRIB	12.12% 12.31%		0.00% 0.00%	3.82% 4.04%	6,440

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground	Speed	iterion % Time		NNW	W	SSE	OTHER	SUM
tion	Speed	Exc.	Exc.						
61				RATIOS	0.4014	0.6467	0.4020	0.4834	
01	9.8			CONTRIB	0.4614	91.04%	4.41%		4,380
	3.0	11.0	6.34	CONTRIB	0.46%	93.86%	2.42%	3.26%	2,777
		11.0	0.34	CONTRIB	0.40%	33.00%	2.42/0	3.20%	2,777
62				RATIOS	0.8117		0.5355		
	7.7			CONTRIB	52.65%	4.40%	25.55%	17.40%	4,380
		11.0	3.84	CONTRIB	61.64%	0.17%	27.75%	10.44%	1,680
63				RATIOS	0.4799	0.4349	0.5803	0.4984	
05	7.8				11.58%				4.380
	7.0	11.0	2.23		6.65%	18.03%	64.53%	10.79%	978
64	0.0			RATIOS	0.5465	0.4302		0.5182	4 222
	8.0				17.71%			11.58%	4,380
		11.0	2.53	CONTRIB	17.52%	14.41%	56.47%	11.60%	1,108
65				RATIOS	0.5624	0.4271	0.7595	0.5830	
	8.4			CONTRIB	15.81%			14.73%	4,380
		11.0	3.91		14.43%	8.72%	63.73%	13.12%	1,713
				DATTOS	0 (0)(0 7070	0 7110	0 7041	
66	12 0			RATIOS	0.6026			0.7041	4 200
	12.8	11 0	16 07		2.90%		16.16%		4,380
		11.0	16.97	CONTRIB	4.36%	76.35%	12.86%	6.43%	7,434
57				RATIOS	0.9354	0.6687	0.4336	0.6792	
	11.5			CONTRIB	32.65%	57.34%	2.06%	7.95%	4,380
		11.0	11.52	CONTRIB	30.66%	58.46%	2.67%	8.21%	5,045
58				RATIOS	0.6397	0.6463	0.7615	0.6825	
,,,	11.1			CONTRIB	8.98%	57.22%	24.55%		4,380
		11.0	10.34	CONTRIB	9.03%	57.42%	24.23%	9.32%	4,529
69				RATIOS	1.1442			0.9030	
	14.0			CONTRIB	32.96%	36.80%	18.92%		4,380
		11.0	19.82	CONTRIB	25.70%	45.11%	15.54%	13.65%	8,679
70				RATIOS	0.4826	0.5601	0.2406	0.4278	
	8.6			CONTRIB	8.22%				4,380
		11.0	3.66	CONTRIB	4.25%			2.38%	1,604
71				DATTOS	0 2175	0 4210	0 4003	0 2762	
/ 1	7.0			RATIOS	0.2175	0.4310			4 200
	7.0	11.0	1.02	CONTRIB	0.05%	70.07%	24.49%		4,380 449
		11.0	1.02	CONTRIB	0.00%	36.18%	61.14%	2.68%	449
72				RATIOS	0.5165	0.8507	0.4597	0.6090	
	12.8			CONTRIB	0.77%	94.75%	1.34%	3.13%	4,380
		11.0	17.82	CONTRIB	1.55%	92.18%	2.84%	3.43%	7,804
73				RATIOS	0.4920	0.5518	0.2524	0.4321	
, ,	8.5			CONTRIB	9.22%	86.34%	0.2324		4,380
	0.5	11.0	3.30	CONTRIB	5.55%	91.56%	0.10%	2.88%	1,446
		11.0	3.30	COMINID	٥٠ . د	J1.J0/0	0.00%	2.00%	1,440
74				RATIOS	0.9783	0.9772	0.6748	0.8768	
	15.6			CONTRIB	12.51%	75.06%	5.97%		4,380
		11.0	28.33	CONTRIB	13.52%	70.48%	6.91%	9.09%	12,410
7.5				DATIOS	1 1212	0.7063	0 5701	0 0202	
75	13.8			RATIOS CONTRIB	1.1213 32.31%		0.5701 4.58%		4,380
	13.0	11 A	21.25	CONTRIB	23.10%	60.48%	6.54%	9.88%	9,307
		11.0	21.23	CONTRIB	23.10%	00.40%	0.34%	3.00%	3,307

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground	Speed	iterion % Time		NNW	W	SSE	OTHER	SUM
tion	Speed	Exc.	Exc.						
76				RATIOS	0 4816	0 8707	O 5314	0 6279	
, 0	13.1			CONTRIB	0.4010	92 64%	3 89%	0.6279 3.16%	4 380
	13.1	11.0	19.71	CONTRIB	0.78%	90.52%	5.20%	3.50%	8,632
77				RATIOS	0.9764	0.7785	0.5701	0.7750 7.91% 8.60%	
	13.1			CONTRIB	24.43%	61.54%	6.11%	7.91%	4,380
		11.0	18.64	CONTRIB	20.49%	63.46%	7.46%	8.60%	8,163
78				RATIOS	0.4863	1.2427	0.7473	0.8254	
	18.7			CONTRIB	0.00%	94.31%	3.55%	0.8254 2.13%	4,380
		11.0	29.90	CONTRIB	0.56%	84.48%	8.06%	6.90%	13,096
79				DATIOS	1 0154	0.0136	1 1260	0.0003	
/9	15 1			RATIOS		0.8126		0.9883	4 300
	15.1	11 0	25.39	CONTRIB	10.2/%	44.41% E4 60%	43.33% 16 97%	11.79% 12.39%	4,300
		11.0	23.39	CONTRIB	10.15%	ე4.0⊍%	10.8/%	12.39%	11,122
30								0.9786	
	17.1							7.04%	
		11.0	31.20	CONTRIB	9.32%	68.24%	12.52%	9.91%	13,667
1				RATIOS	1.5260	0.8513	1.1487	1.1752	
-	17.3								
		11.0	33.58	CONTRIB	25.58%	49.03%	12.88%	13.80% 12.51%	14,710
_									
32				RATIOS	0.7968	1.2713	0.2569	0.7750	
	18.9	11.0	20.63	CONTRIB	1.10%	97.51%	0.00%	1.39% 5.41%	4,380
		11.0	29.63	CONTRIB	7.42%	87.17%	⊎.00%	5.41%	12,978
3							0.5857		
	9.4			CONTRIB	53.50%	9.87%	20.14%	16.49% 13.35%	4,380
		11.0	6.64	CONTRIB	60.76%	3.77%	22.12%	13.35%	2,910
4				RATIOS	0 8573	0 9736	0 5587	0.7966	
	15.1			CONTRIB	8 59%	84 56%	1 76%	5 09%	4 380
	23.2	11.0	25.92	CONTRIB	11.29%	76.76%	5.05%	5.09% 6.90%	11,354
_									
35	12.3			RATIOS	1.0252	0.6779	0.5756 8.89%	0.7596	4 200
	12.5	11.0	14.15	CONTRIB	34.23% 29.48%	47.32% 50.06%	8.89%	9.56%	6,199
		11.0	17.13	CONTINIED	25.40%	30.00%	20.02/0	20.77/0	0,155
6				RATIOS			0.3814		
	11.0			CONTRIB	16.69%	76.39%	0.96%	5.97% 5.96%	4,380
		11.0	9.95	CONTRIB	16.69%	76.40%	0.95%	5.96%	4,356
37				RATIOS	0.6814	0.7897	0.4340	0.6350	
	12.2			CONTRIB	8.07%	85.87%	1.23%	4.83%	4,380
	. =	11.0	14.70		8.13%			4.91%	6,437
_									
8	16.1				0.4514			0.8260	
	10.1	11 6	26.48	CONTETE	0.01%	74.10% 77.77%	21.23% 1/ EQW	4.56% 7.81%	4,300
		11.0	20.40	CONIKIB	U.33%	//.2/76	14.33%	7.01%	11,33/
39				RATIOS	0.4861		1.0097		
	16.2			CONTRIB	0.03%	75.08%	20.26%	4.63%	
		11.0	26.84	CONTRIB	0.62%	77.10%			
90				PATTOS	A 7379	0.7620	0.9527	A 2150	
U	13.2								4.380
	15.2	11 A	18.07	CONTRIB	8.78%	60.46%	19.88%	9.47% 10.88%	7.917
		11.0	10.07	COMINID	0.70%	00.40/0	15.00%	10.00%	,,,,,,,

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

	l0.0% Exc. Ground		iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.	Exc.					JIIILK	JUN
L				RATIOS	0.6430	0.4797	0.5355	0.5527	
	8.7			CONTRIB	23.53%	46.39%	19.61%	10.47%	4,380
		11.0	3.37	CONTRIB	28.29%	28.02%	31.61%	12.08%	1,475
2				RATIOS	0.5756	0.8750	0.4183	0.6229	
	13.1			CONTRIB	1.56%	94.99%	0.40%	3.06%	4,380
		11.0	19.43	CONTRIB	3.18%	92.24%	1.14%	3.44%	8,512
3				RATIOS	0.5840	1.2086	0.3089	0.7005	
	17.9			CONTRIB	0.10%	98.99%	0.00%	0.91%	4,380
		11.0	26.31	CONTRIB	2.49%	93.44%	0.01%	4.06%	11,523
4				RATIOS	0.4783	0.9709	0.4879	0.6457	
•	14.5			CONTRIB	0.12%	96.93%	0.73%	2.23%	4,380
		11.0	21.44	CONTRIB	0.67%	92.57%	3.16%	3.60%	9,389
				DATTO:	0 6077	0 5001	0 5565	0.6150	
5	10 7			RATIOS	0.6977	0.5991	0.5505	0.6158	4 200
	10.2	11.0	7.65	CONTRIB CONTRIB	17.48% 17.14%	58.90% 58.60%	15.05% 15.91%	8.58% 8.35%	4,380 3,350
		11.0	7.00	CONTRIB	17.14%	30.00%	13.31%	0.33%	3,350
6				RATIOS	0.4216	0.7677	0.5144	0.5679	
	11.7			CONTRIB	0.26%	89.78%	6.52%	3.44%	4,380
		11.0	12.62	CONTRIB	0.37%	89.03%	6.93%	3.66%	5,525
7				RATIOS	0.6511	0.6850	0.5722	0.6361	
	11.1			CONTRIB	9.49%	70.00%	13.63%	6.89%	4,380
		11.0	10.49	CONTRIB	9.54%	70.18%	13.36%	6.93%	4,595
				D.T	1 0100	0.551	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.6113	
8	12.6			RATIOS	1.0160	0.5644	1.1537	0.9113	4 200
	12.6	11.0	14.79	CONTRIB CONTRIB	32.15% 27.75%	11.93% 24.29%	38.02% 29.39%	17.89% 18.57%	4,380 6,478
		11.0	17./3	COMINID	21.13/0	∠ ¬ .∠J/0	23.3370	10.3//0	0,470
9				RATIOS	0.7881	0.6403	1.0913	0.8399	
	12.4			CONTRIB	13.17%	36.69%	36.48%	13.65%	4,380
		11.0	14.16	CONTRIB	14.88%	40.48%	29.04%	15.60%	6,204
00				RATIOS	0.7105	1.0325	0.3795	0.7075	
	15.5			CONTRIB	2.29%	95.18%	0.00%	2.53%	4,380
		11.0	23.68	CONTRIB	5.94%	88.98%	0.38%	4.70%	10,373
1				RATIOS	0.5975	0.7981	0.7626	0.7194	
. 1	12.9			CONTRIB	2.53%	72.79%	18.30%	6.38%	4,380
	5	11.0	17.39	CONTRIB	4.12%	74.59%	14.45%	6.84%	7,616
_							_		
92				RATIOS	0.5461	1.0629	0.4561	0.6884	
	15.8	11 0	22 61	CONTRIB	0.18%	97.79%	0.06%	1.97%	4,380
		11.0	23.61	CONTRIB	1.87%	91.84%	2.06%	4.22%	10,339
3				RATIOS	0.4761	0.9958	0.5493	0.6737	
	14.9			CONTRIB	0.08%	95.85%	1.67%	2.39%	4,380
		11.0	22.60	CONTRIB	0.62%	90.01%	5.33%	4.05%	9,899
				DATIOS	0.6607	0.7470	0.2010	0 5000	
)4	11 5			RATIOS	0.6697	0.7479	0.3818	0.5998	4 200
	11.5	11.0	11.98	CONTRIB CONTRIB	9.26% 9.32%	85.38% 85.09%	0.61% 0.80%	4.75% 4.80%	4,380 5,248
		11.0	11.70	COMINID	J. 34 N	03.03/0	0.00%	4.00%	3,240
)5				RATIOS	0.5430	0.7193	0.4191	0.5605	
	11.0			CONTRIB	4.28%	89.00%	2.30%	4.42%	4,380
		11.0	9.90	CONTRIB	4.24%	89.08%	2.27%	4.41%	4,338

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

1 oca-	l0.0% Exc. Ground		iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.	Exc.						
6				RATIOS	0.5075	0.7652	0.4695	0.5807	
	11.6			CONTRIB	1.50%	90.66%	3.87%	3.96%	4,380
		11.0	12.40	CONTRIB	1.92%	89.48%	4.52%	4.07%	5,430
,				RATIOS	1.0389	0.7354	0.7036	0.8260	
	13.3			CONTRIB	29.18%	46.86%	14.41%	9.55%	4,380
		11.0	18.05	CONTRIB	23.68%	53.05%	11.82%	11.45%	7,906
3				RATIOS	0.5967	0.8823	1.0274	0.8354	
	14.6			CONTRIB	0.86%	66.17%	25.96%	7.01%	4,380
		11.0	24.82	CONTRIB	2.87%	72.81%	15.61%	8.72%	10,871
)				RATIOS	0.7593	0.8105	0.9646	0.8448	
	13.9			CONTRIB	7.40%	58.31%	25.32%	8.97%	4,380
		11.0	21.45	CONTRIB	8.50%	64.00%	16.96%	10.54%	9,395
)				RATIOS	0.5301	0.9270	0.4051	0.6207	
	13.8			CONTRIB	0.47%	97.14%	0.08%	2.31%	4,380
		11.0	20.13	CONTRIB	1.70%	94.20%	0.82%	3.28%	8,818
L				RATIOS	0.4624	0.4691	0.6895	0.5403	
	8.5			CONTRIB	7.35%	47.97%	33.84%	10.84%	4,380
		11.0	3.30	CONTRIB	3.29%	23.74%	61.99%	10.98%	1,446
				RATIOS	0.4893	0.7938	0.4240	0.5690	
	11.9			CONTRIB	0.89%	94.75%	1.21%	3.16%	4,380
		11.0	13.60	CONTRIB	1.29%	93.45%	1.84%	3.42%	5,958
				RATIOS	0.4685	0.8695	0.4706	0.6029	
	13.0			CONTRIB	0.26%	95.64%	1.40%	2.70%	4,380
		11.0	19.09	CONTRIB	0.64%	93.32%	2.97%	3.07%	8,360
				RATIOS	0.6003	0.8689	0.6048	0.6913	
	13.4			CONTRIB	1.88%	86.06%	7.42%	4.64%	4,380
		11.0	21.08	CONTRIB	3.46%	84.29%	7.44%	4.81%	9,232
5				RATIOS	0.6234	0.7530	0.5585	0.6450	
	11.9			CONTRIB	6.29%	79.00%	9.04%	5.68%	4,380
		11.0	13.37	CONTRIB	6.31%	78.17%	9.76%	5.75%	5,858
				RATIOS	0.4522	0.8232	0.4646	0.5800	
	12.3			CONTRIB	0.30%	94.80%	2.00%	2.89%	4,380
		11.0	15.67	CONTRIB	0.57%	92.82%	3.40%	3.21%	6,864
				RATIOS	0.6673	0.9403	0.8517	0.8198	
	15.0			CONTRIB	1.76%	75.66%	16.76%	5.82%	4,380
		11.0	25.48	CONTRIB	4.32%	75.47%	12.34%	7.87%	11,162
				RATIOS	0.6603	0.8219	1.1180	0.8667	
	14.2			CONTRIB	2.52%	55.99%	32.49%	9.00%	4,380
		11.0	22.23	CONTRIB	4.75%	65.03%	18.95%	11.27%	9,737
				RATIOS	0.6540	0.7554	1.0517	0.8204	
	13.2			CONTRIB	4.22%	53.23%	32.96%	9.58%	4,380
		11.0	17.57	CONTRIB	5.79%	60.20%	22.56%	11.45%	7,696
9				RATIOS	0.5463	0.6110	0.6591	0.6055	
	10.2			CONTRIB	6.74%	63.50%	21.72%	8.04%	4,380
	20.2	11.0	7.73	CONTRIB	5.72%	62.39%	24.16%	7.72%	3,385

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

oca-			iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.	Exc.			•		311121	5511
1				RATIOS	0.6197	0.7428	0.4806	0.6144	
-	11.5			CONTRIB	6.82%	83.01%	4.96%	5.21%	4,380
		11.0	12.03	CONTRIB	6.86%	82.65%	5.23%	5.26%	5,268
2				RATIOS	0.9268	0.5140	0.8126	0.7511	
	10.8			CONTRIB	35.85%	19.36%	29.63%	15.16%	4,380
		11.0	9.42	CONTRIB	36.87%	17.78%	30.35%	15.01%	4,126
3				RATIOS	0.7948	0.4263	1.2152	0.8121	
	10.6			CONTRIB	25.25%	4.74%	47.53%	22.48%	4,379
		11.0	9.02	CONTRIB	24.14%	3.72%	50.73%	21.41%	3,952
4				RATIOS	0.8303	0.5522	0.9930	0.7919	
	11.3			CONTRIB	23.33%	24.46%	36.48%	15.73%	4,380
		11.0	11.11	CONTRIB	23.24%	27.36%	33.69%	15.71%	4,868
5				RATIOS	0.8750	1.1974	0.9236	0.9987	
	18.7			CONTRIB	2.62%	80.86%	11.28%	5.24%	4,380
		11.0	34.17	CONTRIB	9.16%	71.28%	10.19%	9.36%	14,968
5				RATIOS	1.0497	0.6022	1.0764	0.9094	
	12.9			CONTRIB	32.62%	16.67%	34.63%	16.08%	4,380
		11.0	15.72	CONTRIB	27.71%	29.07%	25.81%	17.41%	6,884
				RATIOS	0.6059	0.7260	0.4463	0.5927	
	11.2			CONTRIB	6.98%	84.64%	3.33%	5.05%	4,379
		11.0	10.84	CONTRIB	6.98%	84.26%	3.71%	5.06%	4,746
				RATIOS	0.6214	0.8022	0.5328	0.6522	
	12.4			CONTRIB	4.73%	84.54%	5.77%	4.96%	4,380
		11.0	15.89	CONTRIB	5.25%	83.16%	6.53%	5.05%	6,962
)				RATIOS	0.6438	0.6809	0.9656	0.7634	
	12.1		45	CONTRIB	6.55%	50.19%	33.05%	10.22%	4,380
		11.0	13.31	CONTRIB	7.20%	54.10%	27.37%	11.34%	5,828
9				RATIOS	0.8907	0.6695	0.5224	0.6942	
	11.6			CONTRIB	27.95%	56.20%	7.40%	8.45%	4,380
		11.0	11.97	CONTRIB	27.00%	56.51%	7.88%	8.62%	5,243
1				RATIOS	0.8438	0.5644	0.6901	0.6994	
	10.8			CONTRIB	29.31%	38.15%	21.19%	11.34%	4,380
		11.0	9.46	CONTRIB	29.09%	37.99%	21.68%	11.24%	4,142
2				RATIOS	0.7495	0.2528	1.4139	0.8054	
	10.5			CONTRIB	21.13%	0.01%	55.97%	22.89%	4,380
		11.0	8.92	CONTRIB	19.42%	0.00%	59.64%	20.94%	3,908
				RATIOS	0.8044	0.2592	1.2554	0.7730	
	10.3			CONTRIB	29.22%	0.01%	50.35%	20.42%	4,380
		11.0	8.60	CONTRIB	26.55%	0.01%	54.99%	18.45%	3,766
4				RATIOS	0.8381	0.6473	1.1015	0.8623	
	12.7		40	CONTRIB	15.35%	34.77%	36.01%	13.87%	4,380
		11.0	15.26	CONTRIB	17.56%	39.14%	27.21%	16.09%	6,683
5				RATIOS	0.6652	1.0660	0.8501	0.8604	
	16.7			CONTRIB	0.68%	81.33%	13.36%	4.62%	4,380
		11.0	28.40	CONTRIB	3.83%	76.57%	11.03%	8.57%	12,438

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

оса-	Ground	Speed	iterion % Time		NNW	W	SSE	OTHER	SUM
ion	Speed	Exc.	Exc.						
5				RATIOS	1.1648	0.8338	0.8856	0.9614	
	15.3			CONTRIB	26.96%	45.32%	17.49%	10.23%	4,380
		11.0	26.86	CONTRIB	19.59%	56.79%	12.44%	11.18%	11,763
7				RATIOS	0.9436	0.6293	1.2797	0.9509	
	13.1			CONTRIB	21.26%	20.54%	40.37%	17.82%	4,380
		11.0	16.73	CONTRIB	21.45%	32.14%	28.80%	17.62%	7,329
8				RATIOS	1.0566	0.7977	0.7677	0.8740	
	14.2			CONTRIB	24.65%	50.71%	15.23%	9.42%	4,380
		11.0	22.46	CONTRIB	19.62%	57.64%	11.34%	11.40%	9,837
9				RATIOS	0.4344	1.0366	0.5726	0.6812	
	15.5			CONTRIB	0.01%	96.21%	1.71%	2.08%	4,380
		11.0	23.58	CONTRIB	0.26%	89.73%	5.95%	4.06%	10,327
				RATIOS	1.0756	1.0101		1.0174	
	17.0			CONTRIB	12.98%	61.89%	16.79%	8.34%	4,380
		11.0	32.13	CONTRIB	14.17%	64.21%	11.35%	10.28%	14,071
1				RATIOS	0.7467	0.9968	0.7940	0.8458	
	15.7			CONTRIB	3.04%	78.76%	12.74%	5.45%	4,380
		11.0	27.07	CONTRIB	6.31%	75.22%	10.08%	8.40%	11,856
				RATIOS	0.6511	1.1421	1.1799	0.9910	
	18.4			CONTRIB	0.22%	72.84%	21.46%	5.48%	4,380
		11.0	31.86	CONTRIB	3.14%	73.00%	13.95%	9.92%	13,956
				RATIOS	0.6660	1.0242	0.9819	0.8907	
	16.4			CONTRIB	0.81%	74.80%	18.70%	5.69%	4,380
		11.0	28.35	CONTRIB	3.85%	73.76%	13.06%	9.32%	12,416
				RATIOS	1.1611	0.6142	0.9170	0.8974	
	12.9			CONTRIB	39.08%	19.39%	26.37%	15.16%	4,380
		11.0	16.28	CONTRIB	32.12%	30.19%	21.25%	16.44%	7,131
5				RATIOS	0.9548	1.2609	0.8999	1.0385	
	19.6			CONTRIB	3.76%	83.10%	8.01%	5.13%	4,380
		11.0	36.10	CONTRIB	10.16%	70.98%	9.40%	9.46%	15,812
				RATIOS	0.8517	0.9638	0.8505	0.8887	
	15.6			CONTRIB	7.21%	70.70%	15.32%	6.76%	4,380
		11.0	28.32	CONTRIB	10.07%	69.56%	11.07%	9.30%	12,406
7				RATIOS	0.9676	0.8175	1.5733	1.1195	
	16.1			CONTRIB	10.64%	33.59%	40.53%	15.23%	4,380
		11.0	27.72	CONTRIB	13.55%	51.14%	21.35%	13.97%	12,143
				RATIOS	0.7618	1.1213	0.6209	0.8347	
	16.9			CONTRIB	1.94%	92.76%	1.59%	3.71%	4,380
		11.0	28.50	CONTRIB	6.48%	80.15%	5.80%	7.56%	12,483
				RATIOS	0.8556	0.6012	1.1036	0.8535	
	12.2			CONTRIB	19.67%	26.88%	37.65%	15.80%	4,380
		11.0	13.96	CONTRIB	20.80%	32.53%	29.79%	16.88%	6,115
9				RATIOS	1.0987	0.3765	0.7783	0.7512	
	10.5			CONTRIB CONTRIB	51.90% 53.33%	1.71% 1.21%	29.05% 29.52%	17.34%	4,380 3,886
		11.0	8.87					15.94%	

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

Loca-	Ground	Speed	iterion % Time		NNW	W	SSE	OTHER	SUM
10n	Speed	Exc.	Exc.						
1				RATIOS	1.1036	0.5275	0.9048	0.8453	
	11.9			CONTRIB	41.59%	11.12%	30.52%	16.77%	4,380
		11.0	12.53	CONTRIB	38.07%	16.59%	27.24%	18.10%	5,488
2				RATIOS	0.5859	0.8368	0.7238	0.7155	
	13.3			CONTRIB	1.66%	77.37%	15.46%	5.52%	4,380
		11.0	19.54	CONTRIB	3.39%	79.08%	11.56%	5.96%	8,557
3				RATIOS	0.8262	1.2756	1.0811	1.0610	
	20.1			CONTRIB	0.90%	79.05%	15.00%	5.05%	4,380
		11.0	36.06	CONTRIB	7.03%	71.86%	11.30%	9.82%	15,796
1				RATIOS	0.8411	0.4920	1.3737	0.9023	
	11.7			CONTRIB	21.37%	6.99%	48.63%	23.01%	4,380
		11.0	11.75	CONTRIB	23.11%	9.92%	43.99%	22.98%	5,148
5				RATIOS	0.9536	0.7985	0.7577	0.8366	
	13.8			CONTRIB	18.55%	56.80%	15.75%	8.90%	4,380
		11.0	21.31	CONTRIB	17.17%	60.98%	11.64%	10.21%	9,332
6				RATIOS	0.7920	0.9358	1.0221	0.9166	
	15.6			CONTRIB	5.37%	64.39%	22.45%	7.79%	4,380
		11.0	27.92	CONTRIB	7.70%	68.57%	13.80%	9.93%	12,228
7				RATIOS	1.1158	0.4571	1.0940	0.8890	
	12.1			CONTRIB	40.91%	2.65%	37.50%	18.94%	4,380
		11.0	12.26	CONTRIB	39.70%	5.16%	33.64%	21.50%	5,368
8				RATIOS	0.7811	0.7316	0.8371	0.7833	
	12.7			CONTRIB	11.77%	55.87%	22.83%	9.53%	4,380
		11.0	16.14	CONTRIB	12.61%	58.22%	18.82%	10.36%	7,070
9				RATIOS	1.0544	0.7969	0.7344	0.8619	
	14.1			CONTRIB	25.06%	51.71%	14.09%	9.14%	4,380
		11.0	22.07	CONTRIB	19.90%	58.45%	10.55%	11.11%	9,665
50				RATIOS	0.3159	0.8032	0.9483	0.6892	
	13.2			CONTRIB	0.00%	68.02%	27.11%	4.87%	4,380
		11.0	17.86	CONTRIB	0.01%	74.35%	20.03%	5.61%	7,822
1				RATIOS	0.8632	0.6285	0.9107	0.8008	
	12.1			CONTRIB	20.61%	37.39%	29.60%	12.40%	4,380
		11.0	13.62	CONTRIB	22.07%	39.30%	25.22%	13.41%	5,966
62				RATIOS	0.7799	0.9572	0.4879	0.7416	
	14.6			CONTRIB	6.65%	88.43%	0.66%	4.26%	4,380
		11.0	23.61	CONTRIB	8.57%	82.88%	2.86%	5.69%	10,342
3				RATIOS	1.0699	1.0564	0.4208	0.8490	
	16.5			CONTRIB	14.22%	81.24%	0.00%	4.54%	4,380
		11.0	28.60	CONTRIB	15.76%	75.35%	0.82%	8.07%	12,527
54				RATIOS	1.0472	0.4573	0.9248	0.8098	
	11.2			CONTRIB	42.16%	5.53%	34.36%	17.95%	4,380
		11.0	10.37	CONTRIB	41.82%	6.12%	33.65%	18.42%	4,541
55				RATIOS	0.8487	0.8923	1.0697	0.9369	
	15.3			CONTRIB	7.75%	57.60%	25.53%	9.12%	4,380
		11.0	27.99	CONTRIB	10.05%	65.27%	14.40%	10.27%	12,261

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

oca-	l0.0% Exc. Ground		iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.	Exc.						
6				RATIOS	1.1560	0.6309	0.9572	0.9147	
	13.2			CONTRIB	37.26%	20.22%	27.53%	14.99%	4,380
		11.0	16.99	CONTRIB	30.54%	31.95%	21.25%	16.26%	7,441
57				RATIOS	0.8926	0.5244	0.9177	0.7783	
	11.1			CONTRIB	31.86%	18.21%	34.28%	15.65%	4,380
		11.0	10.31	CONTRIB	31.46%	19.18%	33.57%	15.80%	4,517
58				RATIOS	0.9136	0.8281	0.6640	0.8019	
	13.7			CONTRIB	15.95%	65.99%	10.42%	7.64%	4,380
		11.0	21.99	CONTRIB	15.39%	67.63%	8.62%	8.35%	9,630
59				RATIOS	0.7354	0.6285	0.7173	0.6937	
	11.1			CONTRIB	15.71%	52.33%	21.91%	10.04%	4,380
		11.0	10.21	CONTRIB	15.76%	52.43%	21.73%	10.08%	4,471
Θ				RATIOS	0.7336	0.6775	0.6128	0.6746	
	11.4			CONTRIB	14.06%	62.76%	15.09%	8.09%	4,380
		11.0	11.19	CONTRIB	14.24%	63.15%	14.39%	8.22%	4,903
1				RATIOS	0.8152	0.6983	1.3464	0.9533	
	13.7			CONTRIB	10.15%	34.04%	40.67%	15.14%	4,380
		11.0	18.34	CONTRIB	13.11%	43.11%	27.63%	16.14%	8,033
2				RATIOS	0.8413	0.9313	0.2806	0.6844	
	14.3			CONTRIB	9.78%	87.03%	0.00%	3.19%	4,380
		11.0	22.75	CONTRIB	11.95%	83.76%	0.00%	4.28%	9,963
				RATIOS	0.9976	0.5471	0.7883	0.7777	
	11.3			CONTRIB	37.74%	22.33%	25.40%	14.53%	4,380
		11.0	11.10	CONTRIB	35.77%	25.37%	24.22%	14.64%	4,861
1				RATIOS	0.6460	0.5293	0.7693	0.6482	
	9.9		_	CONTRIB	14.61%	41.79%	31.66%	11.93%	4,380
		11.0	6.45	CONTRIB	15.04%	33.14%	39.66%	12.16%	2,825
5				RATIOS	1.1756	0.6163	0.7668	0.8529	
	12.6			CONTRIB	41.95%	24.93%	19.35%	13.76%	4,380
		11.0	15.22	CONTRIB	35.15%	32.72%	16.69%	15.44%	6,666
6				RATIOS	0.9468	0.4708	0.8664	0.7613	
	10.6			CONTRIB	38.39%	10.71%	33.81%	17.08%	4,380
		11.0	9.17	CONTRIB	39.38%	8.82%	35.52%	16.27%	4,015
7				RATIOS	0.8695	0.3775	0.7701	0.6724	
	9.3		_	CONTRIB	42.23%	5.28%	34.48%	18.01%	4,380
		11.0	6.67	CONTRIB	46.34%	1.65%	38.40%	13.60%	2,923
3				RATIOS	0.4165	0.3559	1.0187	0.5971	
	7.7			CONTRIB	6.98%	15.05%	54.65%	23.31%	4,380
		11.0	4.51	CONTRIB	0.92%	1.43%	85.14%	12.51%	1,976
9				RATIOS	1.0495	0.7717	0.9936	0.9383	
	14.5			CONTRIB	22.19%	41.59%	24.69%	11.54%	4,380
		11.0	22.43	CONTRIB	19.41%	51.03%	16.70%	12.86%	9,824
80				RATIOS	1.0438	1.1666	0.3661	0.8589	
	17.9			CONTRIB	9.46%	87.31%	0.00%	3.23%	4,380
		11.0	30.54	CONTRIB	14.11%	77.76%	0.21%	7.91%	13,376

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

oca-	l0.0% Exc. Ground		iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.	Exc.		ми	"	JJL	JIILK	Jun
81				RATIOS	0.8677	0.5379	1.0750	0.8269	
.01	11.5			CONTRIB	26.13%	17.37%	38.89%	17.61%	4,380
		11.0	11.64	CONTRIB	26.36%	21.00%	34.81%	17.83%	5,099
82				RATIOS	1.1170	0.7271	1.0825	0.9755	
	14.5			CONTRIB	27.82%	29.80%	29.13%	13.25%	4,380
		11.0	21.22	CONTRIB	22.98%	43.29%	19.23%	14.50%	9,293
83				RATIOS	0.8456	0.9293	0.8977	0.8909	
	15.3			CONTRIB	7.64%	67.02%	17.88%	7.46%	4,380
		11.0	27.82	CONTRIB	9.97%	68.35%	12.18%	9.50%	12,184
34				RATIOS	1.1858	0.7277	0.6891	0.8675	
	13.7			CONTRIB	36.42%	40.73%	12.43%	10.42%	4,380
		11.0	19.21	CONTRIB	28.29%	47.97%	10.65%	13.10%	8,412
35				RATIOS	0.8187	0.3032	0.9152	0.6790	
	9.2			CONTRIB	38.48%	0.77%	41.31%	19.43%	4,380
		11.0	6.85	CONTRIB	35.71%	0.08%	50.42%	13.79%	2,999
86				RATIOS	0.5834	0.5238	1.0015	0.7029	
	10.2			CONTRIB	8.73%	35.96%	40.68%	14.63%	4,380
		11.0	7.47	CONTRIB	8.73%	26.23%	50.54%	14.51%	3,273
7				RATIOS	0.9105	0.6538	0.9219	0.8287	
	12.6			CONTRIB	21.93%	37.69%	28.13%	12.25%	4,380
		11.0	15.13	CONTRIB	22.23%	40.94%	22.98%	13.84%	6,627
8				RATIOS	1.0017	0.4516	1.0633	0.8389	
	11.4			CONTRIB	37.69%	4.21%	38.80%	19.30%	4,380
		11.0	10.77	CONTRIB	37.12%	5.27%	37.20%	20.41%	4,719
9				RATIOS	0.9291	1.1309	0.6497	0.9032	
	17.4			CONTRIB	6.73%	86.64%	1.89%	4.74%	4,380
		11.0	31.04	CONTRIB	11.24%	74.20%	5.84%	8.71%	13,598
90				RATIOS	0.9605	0.3585	0.9168	0.7452	
	10.2			CONTRIB	42.63%	1.39%	37.34%	18.64%	4,380
		11.0	8.60	CONTRIB	43.08%	0.80%	40.20%	15.92%	3,768
1				RATIOS	1.0784	0.3114	0.8999	0.7632	
	10.7			CONTRIB	48.11%	0.13%	34.91%	16.85%	4,380
		11.0	9.48	CONTRIB	48.22%	0.09%	35.80%	15.89%	4,154
92				RATIOS	1.2068	0.8572	0.7771	0.9470	
	15.4			CONTRIB	29.77%	48.37%	12.61%	9.26%	4,380
		11.0	28.04	CONTRIB	20.00%	60.24%	9.31%	10.44%	12,282
3				RATIOS	0.9374	0.4481	1.0146	0.8000	
	10.9			CONTRIB	36.26%	5.91%	38.72%	19.11%	4,380
		11.0	9.72	CONTRIB	36.48%	5.44%	39.36%	18.72%	4,257
94				RATIOS	1.2225	0.4271	1.1280	0.9259	
	12.7			CONTRIB	44.09%	0.90%	36.77%	18.23%	4,380
		11.0	13.15	CONTRIB	43.66%	2.59%	32.31%	21.44%	5,761
				RATIOS	1.1895	0.4061	0.9211	0.8389	
95									
95	11.7	11.0	11.35	CONTRIB CONTRIB	48.93% 48.13%	1.23% 1.89%	32.59% 30.60%	17.25% 19.37%	4,380 4,973

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded 10% of the time for each measurement location. This assumes wind comfort criteria of 11 mph for areas of substantial public pedestrian use and 7 mph for public seating areas. These criteria are not to be exceeded more than 10% of the time.

: - Loca tion	Ground		% Time Exc.		NNW	W	SSE	OTHER	SUM
. 1011		LXC.	LAC.						
96				RATIOS	0.7103	0.5148	1.0986	0.7745	
50	10.6			CONTRIB	16.10%	22.67%	42.86%	18.37%	4,380
	10.0	11.0	8.84	CONTRIB	15.89%	19.19%	46.83%	18.08%	3,872
97				RATIOS	0.7001	0.8217	0.9470	0.8229	
37	13.8								4 200
	13.0	11 0	21.38	CONTRIB	5.22% 6.21%	62.05%	24.54%	8.18% 9.53%	4,380
		11.0	21.30	CONTRIB	0.21%	67.56%	16.71%	9.55%	9,364
98				RATIOS	1.0584	0.8672	1.1029	1.0095	
	15.7			CONTRIB	16.47%	46.82%	25.69%	11.01%	4,380
		11.0	29.47	CONTRIB	15.00%	59.84%	14.10%	11.06%	12,907
99				RATIOS	1.0042	0.4546	0.9905	0.8164	
-	11.2			CONTRIB	39.18%	5.31%	36.84%	18.67%	4,380
		11.0	10.33	CONTRIB	38.90%	5.84%	36.16%	19.10%	4,524
									.,
00				RATIOS	0.9764	0.5869	1.4274	0.9969	
	13.2			CONTRIB	23.60%	10.83%	44.67%	20.90%	4,380
		11.0	16.53	CONTRIB	23.09%	25.12%	32.49%	19.30%	7,242
91				RATIOS	0.7124	0.8785	0.6395	0.7435	
	13.8			CONTRIB	5.89%	80.19%	8.41%	5.50%	4,380
		11.0	22.53	CONTRIB	6.31%	79.87%	7.80%	6.02%	9,868
92				RATIOS	0.5852	0.6646	0.8248	0.6915	
02	11.4			CONTRIB	5.77%	57.92%	27.47%	8.85%	4,380
	11.4	11.0	11.20	CONTRIB	5.89%	58.75%	26.30%	9.06%	4,907
03	15 5			RATIOS	0.7540	0.8250	1.5388	1.0393	4 300
	15.5	11 0	25.64	CONTRIB	3.81%	41.62%	41.27%	13.30%	4,380
		11.0	25.64	CONTRIB	6.92%	57.17%	22.57%	13.34%	11,232
04				RATIOS	0.7397	0.9301	1.0172	0.8957	
	15.4			CONTRIB	3.39%	66.24%	22.86%	7.50%	4,380
		11.0	27.18	CONTRIB	6.06%	70.02%	14.11%	9.82%	11,903
95				RATIOS	0.9854	0.9015	1.1448	1.0106	
	16.0			CONTRIB	11.73%	51.03%	26.85%	10.39%	4,380
	- · · -	11.0	29.92	CONTRIB	12.98%	61.69%	14.42%	10.91%	13,103
				DATIOS	1 1000	0.0330	1 0054	1 0607	
06	16.0			RATIOS	1.1899	0.9338	1.0854	1.0697	4 200
	16.8	11 0	22.25	CONTRIB	19.94%	47.84%	21.65%	10.57%	4,380
		11.0	32.25	CONTRIB	16.95%	59.23%	12.68%	11.13%	14,126

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

1414% ExcCriterion Ground Speed % Time			NNW	w	SSE	OTHER	SUM	
Speed								
		Profile Ratios	: 1.9610	1.9610	1.9610	1.9610		

7	34.0	36.0 0.004402	RATIOS CONTRIB CONTRIB	0.6365 0.00% 0.00%	0.9774 99.65% 99.72%	0.6842 0.05% 0.00%	0.7660 0.31% 0.28%	5 2
8	23.4	36.0 0.000004	RATIOS CONTRIB CONTRIB	0.4281 0.00% 0.00%	0.6438 44.39% 100.00%	0.6805 54.02% 0.00%	0.5841 1.59% 0.00%	5 0
9	31.6	36.0 0.001481	RATIOS CONTRIB CONTRIB	0.4155 0.00% 0.00%	0.9111 100.00% 100.00%	0.4285 0.00% 0.00%	0.5850 0.00% 0.00%	5 1
10	34.0	36.0 0.004417	RATIOS CONTRIB CONTRIB	0.7426 0.16% 0.15%	0.9776 99.67% 99.69%	0.5042 0.00% 0.00%	0.7415 0.17% 0.16%	5 2
11	22.0	36.0 0.000000	RATIOS CONTRIB CONTRIB	0.5457 1.07% 0.00%	0.5601 13.19% 0.00%	0.6536 80.84% 0.00%	0.5865 4.90% 0.00%	5 0
12	45.0	36.0 0.1742570	RATIOS CONTRIB CONTRIB	0.6397 0.00% 0.00%	1.2988 99.97% 99.90%	0.7303 0.00% 0.00%	0.8896 0.03% 0.09%	5 76
13	32.6	36.0 0.001608	RATIOS CONTRIB CONTRIB	0.2998 0.00% 0.00%	0.5142 0.00% 0.00%	0.9740 100.00% 100.00%	0.5960 0.00% 0.00%	5 1
14	28.0	36.0 0.000232	RATIOS CONTRIB CONTRIB	0.6326 0.25% 0.00%	0.8083 99.43% 100.00%	0.4616 0.00% 0.00%	0.6342 0.31% 0.00%	5 0
15	18.9	36.0 0.000000	RATIOS CONTRIB CONTRIB	0.5859 41.83% 0.00%	0.5167 41.67% 0.00%	0.4840 4.64% 0.00%	0.5289 11.86% 0.00%	5 0

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

Loca-	.414% Exc. Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
16	20. 4			RATIOS	0.7215	0.5148	0.8764	0.7042	-
	29.4	36.0	0.0002123	CONTRIB	1.02%	0.00%	96.73%	0.7042 0.87% 1.33%	9
17									
	17.3	36.0	0.0000000	CONTRIB CONTRIB	53.68% 0.00%	36.21% 0.00%	1.28% 0.00%	0.4726 8.83% 0.00%	5 0
18									
	41.0	36.0	A A789977	CONTRIB	0.00%	1.39%	98.22%	0.9377 0.40% 0.51%	5 35
									33
19	29.0			RATIOS	0.7232	0.7277	0.8638	0.7716	5
	23.0	36.0	0.0002190	CONTRIB	1.96%	20.94%	70.82%	0.7716 4.68% 6.28%	0
20									
	22.7			CONTRIB	0.25%	99.04%	0.03%	0.5395 0.69% 0.00%	5
									0
21				RATIOS	0.5267	0.7256	0.5063	0.5862	_
	25.1	36.0	0.0000438	CONTRIB CONTRIB	0.07% 0.00%	99.36% 100.00%	0.05% 0.00%	0.5862 0.52% 0.00%	5 0
22									
	21.5			CONTRIB	39.51%	55.00%	0.14%	0.5769 5.34% 0.00%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	Θ
23				RATIOS	0.3967	0.6591	0.6334	0.5631	
	23.2	36.0	0.0000070	CONTRIB	0.00% 0.00%	81.35% 100.00%	17.56% 0.00%	0.5631 1.09% 0.00%	5 0
24									
24	35.7			CONTRIB	0.83%	8.70%	86.50%	0.9298 3.97% 4.04%	5
		36.0	0.0086347	CONTRIB	0.86%	9.00%	86.11%	4.04%	4
25				RATIOS	0.7152	0.9893	0.8495	0.8513	
	34.5	36.0	0 0054900	CONTRIB	0.07% 0.07%	96.05% 96.52%	2.40%	0.8513 1.48% 1.38%	5 2
									-
26	30.5			KATIOS CONTRIB	0.6314 0.06%	⊎.8713 86.73%	⊍.8134 10.99%	0.7720 2.22% 1.73%	5
		36.0	0.0008044	CONTRIB	0.00%	92.30%	5.98%	1.73%	0
27				RATIOS	0.7803	0.6305	0.8475	0.7528	
	28.4	26.6	0 0001334	CONTRIB	5.63%	1.59%	88.33%	0.7528 4.44% 6.72%	5
		30.0	0.0001334						0
28	26.2			RATIOS	0.8213	0.6671	0.7369	0.7418	5
	20.2	36.0	0.0000569	CONTRIB	59.40%	16.07%	12.33%	12.20%	9
									•
29	28.3			RATIOS CONTRIP	0.4357 0.66%	0.8189 99.87%	0.5757 0.65%	0.6101 0.13%	5
	20.3	36.0	0.0002847	CONTRIB	0.00%	100.00%	0.00%	0.13%	0
30				RATIOS	0 7869	1 1788	0 2190	Θ 7282	
50	41.0			CONTRIB	0.00%	100.00%	0.00%	0.7282 0.00% 0.01%	5
		36.0	0.0717368	CONTRIB	0.02%	99.97%	0.00%	0.01%	31

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

Loca-		Speed	% Time Exc.		NNW	W	SSE	OTHER	SUM
31				RATIOS	0.9538	0.2492	0.5793	0.5941	
	28.7			CONTRIB	99.90%	0.00%	0.04%	0.06%	5
		36.0	0.0003839	CONTRIB	100.00%	0.00%	0.00%	0.5941 0.06% 0.00%	Θ
32				RATIOS	0.2741	0.5420	0.5805	0.4655 0.54% 0.00%	
	19.8			CONTRIB	0.00%	39.42%	60.04%	0.54%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	Θ
33				RATIOS	0.6442	0.4299	0.6167	0.5636	
	21.3			CONTRIB	33.11%	0.45%	61.10%	5.35%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
34				RATIOS	1.0456	0.7507	0.8634	0.8866	
	32.6			CONTRIB	79.08%	3.18%	9.84%	7.89%	5
		36.0	0.0020867	CONTRIB	81.76%	3.55%	7.37%	7.32%	1
35				RATIOS	1.1193	0.4579	0.5983	0.7252	
	34.3			CONTRIB	99.89%	0.00%	0.00%	0.11%	5
		36.0	0.0051630	CONTRIB	99.91%	0.00%	0.00%	0.7252 0.11% 0.09%	2
36								0.2670	
	10.1			CONTRIB	0.30%	74.70%	20.93%	4.08%	5
	10.1	36.0	0.0000000					0.00%	Õ
37				RATIOS	0 6958	0 5952	0 3720	0 5543	
	22.0			CONTRIB	60 77%	37 20%	0 00%	2 03%	5
		36.0	0.0000023	CONTRIB	100.00%	0.00%	0.00%	0.00%	0
38								0.7118	
50	32.2			CONTRIB	98.20%	0.00%	1.58%	0.22%	5
		36.0	0.0018916	CONTRIB	98.80%	0.00%	1.02%	0.18%	1
39				RATIOS	0.5330	0.3675	0.8758	0.5921	
	29.1			CONTRIB	0.00%	0.00%	99.96%	0.04%	5
		36.0	0.0002027	CONTRIB	0.00%	0.00%	100.00%	0.5921 0.04% 0.00%	Θ
40				RATIOS	0.6430	0.3934	0.7722	0.6029	
	25.8			CONTRIB	1.21%	0.00%	98.27%	0.52%	5
		36.0	0.0000175	CONTRIB	0.00%	0.00%	100.00%	0.00%	0
41				RATIOS	0.6112	0.5440	0.8205	0.6586	
	27.4			CONTRIB	0.20%	0.29%	98.66%	0.85%	5
		36.0	0.0000569	CONTRIB	0.00%	0.00%	100.00%	0.85% 0.00%	0
42				RATIOS	0.5703	0.5707	0.4038	0.5149	
	19.8			CONTRIB	11.47%	85.46%	0.05%	3.02%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
43				RATIOS	0.6244	0.3324	0.7475	0.5681	
-	25.0			CONTRIB	1.28%	0.00%	98.39%	0.33%	5
		36.0	0.0000093	CONTRIB	0.00%	0.00%	100.00%	0.5681 0.33% 0.00%	0
44				RATIOS	0.9478	0.6461	0.5454	0.7131	
	28.7			CONTRIB	96.52%	2.01%	0.00%	1.47%	5
		36.0	0.0003541	CONTRIB	97.73%	1.28%	0.00%	0.7131 1.47% 0.99%	0
45				RATIOS	0.6893	0.6028	0.5826	0.6249	
45	22.3	36.0		RATIOS CONTRIB	0.6893 42.46%	0.6028 37.22%	0.5826 7.35%	0.6249 12.97% 0.00%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

oca-	.414% Exc. Ground Speed	Speed			NNW	W	SSE	OTHER	SUM
46				RATIOS	1.3405	0.6438	0.8201	0.9348	
	41.1			CONTRIB	99.59%	0.00%	0.04%	0.37%	5
		36.0	0.0359381	CONTRIB	98.77%	0.01%	0.16%	1.06%	16
47				RATIOS	1.2086	0.7154	0.6422	0.8554	
	37.1		0.0135821	CONTRIB	99.30%	0.22%	0.00%	0.48%	5
		36.0	0.0135821	CONTRIB	99.14%	0.26%	0.00%	0.60%	6
48				RATIOS	0.5605	0.9148	0.1961	0.5571 0.00%	
	31.7			CONTRIB	0.00%	100.00%	0.00%	0.00%	5
		36.0	0.0015781	CONTRIB	0.00%	100.00%	0.00%	0.00%	1
19			0.0004948	RATIOS	0.5722	0.8487	0.5491	0.6567	
	29.4			CONTRIB	0.02%	99.73%	0.00%	0.25%	5
		36.0	0.0004948	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
50			0.0000032	RATIOS	0.7101	0.5157	0.5820	0.6026	_
	21.9	26.6	0.0000033	CONTRIB	/8.51%	3.92%	9.15%	8.42%	5
		36.0	⊎.⊎⊎00032	CONTRIB	100.00%	Θ.00%	⊎.00%	0.00%	Θ
51				RATIOS	1.1690	0.4263	0.6530	0.7494	
	35.7		0.0098676	CONTRIB	99.91%	0.00%	0.00%	0.09%	5
									4
2				RATIOS	1.2211	0.6771	0.6454	0.8479 0.35% 0.47%	
	37.4			CONTRIB	99.60%	0.05%	0.00%	0.35%	5
		36.0	0.0149143	CONTRIB	99.44%	0.08%	0.00%	0.47%	7
3				RATIOS	0.7567	0.7079	0.5075	0.6574	
	25.1			CONTRIB	27.23%	68.85%	0.05%	3.87%	5
		36.0	0.0000389	CONTRIB	23.04%	76.96%	0.00%	0.00%	0
4			0.0002308	RATIOS	0.6967	0.8073	0.4755	0.6599	
	28.0			CONTRIB	1.22%	98.15%	0.00%	0.63%	5
									Θ
5				RATIOS	0.8089	0.7407	0.6799	0.7432 11.36% 7.65%	
	26.6			CONTRIB	30.03%	54.18%	4.44%	11.36%	5
		36.0	0.0000938	CONTRIB	28.17%	64.18%	0.00%	7.65%	Θ
6				RATIOS	0.7293	0.7342	0.7499	0.7378	
	26.4		0.0000737	CONTRIB	5.99%	50.49%	32.71%	10.81%	5
		36.0	⊎.0000737	CONTRIB	6.67%	71.36%	13.38%	8.59%	Θ
7						0.8877	0.6350	0.7101	
	30.8				0.03%		0.07%	0.44%	5
		36.0	0.0009951	CONTRIB	0.00%	99.67%	0.00%	0.33%	Θ
8				RATIOS	0.4983	0.3153	0.7387	0.5174	
	24.8		0.0000074						5
		36.0	0.0000074	CONTRIB	0.00%	0.00%	100.00%	0.00%	Θ
9	22.4							0.5479	-
	22.4			CONTRIB	33.87%	64.99%	0.00% 0.00%	1.14%	5
		36.0	0.0000027	CONTRIB	0.00%	100.00%	0.00%	0.00%	0
9				RATIOS	0.7579	0.7868	0.2698	0.6048	
)	27.5		0.0001624	RATIOS CONTRIB	0.7579 6.85%	0.7868 92.95%	0.2698 0.00%	0.6048 0.20%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion % Time		NNW	W	SSE	OTHER	SUM
	Speed	Exc.							
61				RATIOS	0.4014	0.6467	0.4020	0.4834	
	22.3			CONTRIB	0.00%	99.86%	0.00%	0.14%	5
		36.0	0.0000046	CONTRIB	0.00%	100.00%	0.00% 0.00%	0.00%	0
62				RATIOS	0.8117	0.3059	0.5355	0.5510	
	24.8			CONTRIB	99.57%	0.00%	0.19%	0.24%	5
		36.0	0.0000279	CONTRIB	100.00%	0.00%	0.00%	0.00%	Θ
63				RATIOS	0.4799	0.4349	0.5803	0.4984	
	19.4			CONTRIB	1.04%	1.89%	94.43%	2.64%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
64				RATIOS	0.5465	0.4302	0.5777	0.5182	
	19.4		0.0000000	CONTRIB	8.50%	1.57%	84.84%	5.09%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
65					0.5624	0.4271	0.7595		
	25.5			CONTRIB			99.41%		5
		36.0	0.0000126	CONTRIB	0.00%	0.00%	100.00%	0.00%	0
66							0.7116		
	27.8		0.0001969	CONTRIB	0.13%	92.75%	4.90%	2.22%	5
		36.0	0.0001969	CONTRIB	0.00%	96.77%	1.81%	1.43%	0
57							0.4336		
	28.7					3.82%		0.71%	5
		36.0	0.0002893	CONTRIB	96.67%	3.33%	0.00%	0.00%	Θ
68						0.6463			
	25.8			CONTRIB	1.23%	11.89%	81.93%	4.95%	5
		36.0	0.0000179	CONTRIB	0.00%	25.64%	74.36%	0.00%	0
69				RATIOS			0.8428		
	35.3			CONTRIB	95.14%	0.54%	1.40%	2.92%	5
		36.0	0.0077199	CONTRIB	95.51%	0.52%	1.24%	2.72%	3
70							0.2406		_
	19.3						0.00%		5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
71						0.4310			_
	16.4	26.5	0.000000				73.59%	0.44%	5
		36.0	0.0000000	CONTRIB	⊎.00%	⊎.00%	0.00%	0.00%	Θ
72							0.4597		_
	29.4	26.5	0.000=13=			99.94%		0.06%	5
		36.0	0.0005128	CONTRIB	0.00%	100.00%	0.00%	0.00%	0
73	10.6			RATIOS	0.4920	0.5518	0.2524		-
	19.1	26.5				97.64%		0.30%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
74				RATIOS		0.9772			_
	34.3			CONTRIB		85.52%		2.69%	5
		36.0	0.0050820	CONTRIB	11.41%	86.12%	0.00%	2.48%	2
75				RATIOS		0.7962	0.5701	0.8292	
	34.5				95.59%	3.44%	0.00%	0.97%	5
		26 0	0.0055390	CONTRIB	95 81%	3.32%	0.00%	0.86%	2

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion % Time		NNW	w	SSE	OTHER	SUM
tion	Speed	Exc.	Exc.						
76				RATIOS	0.4816	0.8707	0.5314	0.6279	
	30.3			CONTRIB	0.00%	0.8707 99.93%	0.00%	0.07%	5
		36.0	0.0007347	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
				DATIOS	0.0764	0 7705	0 5701	0.7750	
77	20 5			RATIOS	0.9764	0.7785	0.5/01	0.7750	_
	30.5	26.0	0.0007061	CONTRIB	80.92%	16.51%	0.00%	2.5/%	5
		36.0	0.000/061	CONTRIB	79.46%	18.44%	0.00%	2.10%	0
78				RATIOS	0.4863	1.2427	0.7473	0.8254	
	43.2			CONTRIB	0.00%	100.00%	0.00%	0.8254 0.00%	5
		36.0	0.1163090					0.04%	51
0				DATIOS	1 0154	0 0176	1 1260	0.0003	
79	38.2			CONTETE	2.0154	0.8126	1.1368	0.9883	5
	38.2	26.0	0.0349742	CONTRIB	3.04%	0.91%	92.23%	3.22%	5 15
		36.0	U.U349/42	CONTRIB	3.03%	⊎./2%	93.38%	2.8/%	15
9								0.9786	
	37.3					68.52%			5
		36.0	0.0183797	CONTRIB	0.36%	65.71%	29.33%	4.60%	8
1				RATIOS	1.5260	0.8513	1.1482	1.1752	
	46.9								5
	- · -	36.0	0.1748840	CONTRIB	66.72%	0.30%	22.67%	10.32%	77
2				DATIOS	0.7069	1 2712	0 2560	0.7750	
_	44.3							0.7750	5
	44.3	36.0	0.1432210	CONTRIB	0.00%	99.98%	0.00%	0.01%	63
3	20 5					0.4130			_
	30.5	26.6	0.0009229	CONTRIB	99.82%	0.00%	0.00%	⊎.18%	5
		36.0	ช. ๒๒๒५८२९	CONTRIB	100.00%	0.00%	⊎.00%	ย. ยย%	Θ
ļ				RATIOS	0.8573	0.9736	0.5587	0.7966	
	33.9					97.69%		0.63%	5
		36.0	0.0042301	CONTRIB	1.61%	97.83%	0.00%	0.56%	2
5				RATIOS	1.0252	0.6779	0.5756	0.7596	
	31.4			CONTRIB	97.76%	0.6779	0.00%	1.05%	5
		36.0	0.0012626	CONTRIB	98.14%	1.03%	0.00%	0.83%	1
5				RATIOS	0 7/12	0.6909	0.3814	0.6045	
J	24.4				70 100	60.0303	0.3014		5
	24.4	36.0	0.0000260	CONTRIB	24.59%	75.41%	0.00%	0.00%	9
_									
7				RATIOS	0.6814	0.7897	0.4340	0.6350	_
	27.5	20.0	0 000115			98.31%			5
		36.0	0.0001623	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
3				RATIOS	0.4514	1.0017	1.0248	0.8260	
	36.1					59.66%	39.92%		5
		36.0	0.0107961	CONTRIB	0.00%	59.47%	40.12%	0.41%	5
9				RATIOS	0.4861	1.0136	1.0097	0.8365	
	36.1					70.17%		0.51%	5
	55.1	36 A	0.0110134					0.51%	5
		30.0	0110154						_
_				RATIOS	0.7328	0.7620			
9									_
)	32.0		0.0011791	CONTRIB	0.32%	5.14%	92.06%	2.48%	5 1

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

ca- ion	0.011414% Exc. .oca- Ground								
	Speed	Exc.	% Time Exc.		NNW	W	SSE	OTHER	SUM
	·								
1				RATIOS	0.6430	0.4797	0.5355	0.5527	
	20.1	26.0		CONTRIB	74.40%	5.43%	10.79%	9.38%	5
		36.0	0.0000000	CONTRIB	0.00%	0.00%	0.00%	0.00%	0
2				RATIOS	0.5756	0.8750	0.4183	0.6229	
	30.3			CONTRIB	0.00%	99.94%	0.00%	0.06%	5
		36.0	0.0007930	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
3				RATIOS	0.5840	1.2086	0.3089	0.7005	
	42.1			CONTRIB	0.00%	100.00%	0.00%	0.00%	5
		36.0	0.0901180	CONTRIB	0.00%	100.00%	0.00%	0.00%	39
4				RATIOS	0.4783	0.9709	0.4879	0.6457	
4	33.8			CONTRIB	0.4783	100.00%	0.4879	0.00%	5
	33.0	36.0	0.0039613		0.00%	100.00%	0.00%	0.00%	2
				-					
5				RATIOS	0.6977	0.5991	0.5505	0.6158	
	22.3			CONTRIB	52.78%	34.47%	2.49%	10.26%	5
		36.0	0.0000024	CONTRIB	100.00%	0.00%	0.00%	0.00%	Θ
5				RATIOS	0.4216	0.7677	0.5144	0.5679	
	26.5			CONTRIB	0.00%	99.86%	0.02%	0.11%	5
		36.0	0.0001049		0.00%	100.00%	0.00%	0.00%	Θ
				D. T. T. C. C	0.6511	0.6050	0 5733	0.6361	
7	22.0			RATIOS	0.6511	0.6850	0.5722	0.6361	-
	23.9	36 P	0.0000163	CONTRIB CONTRIB	5.25% 0.00%	88.33% 100.00%	1.30% 0.00%	5.12% 0.00%	5 0
		٥. ٥٠	0.0000103	COMINID	0.00%	100.00%	0.00%	0.00%	U
				RATIOS	1.0160	0.5644	1.1537	0.9113	
	38.7			CONTRIB	2.99%	0.00%	96.38%	0.64%	5
		36.0	0.0448251	CONTRIB	2.39%	0.00%	97.06%	0.55%	20
)				RATIOS	0.7881	0.6403	1.0913	0.8399	
	36.6			CONTRIB	0.12%	0.02%	99.44%	0.42%	5
		36.0	0.0148177		0.12%	0.03%	99.45%	0.40%	6
)	35.6			RATIOS	0.7105	1.0325	0.3795	0.7075	_
	35.9	26.6	0 0102605	CONTRIB	0.03%	99.94%	0.00%	0.03%	5
		30.0	0.0102605	CONTRIB	0.03%	99.94%	0.00%	0.03%	4
				RATIOS	0.5975	0.7981	0.7626	0.7194	
	28.0			CONTRIB	0.10%	81.11%	16.01%	2.78%	5
		36.0	0.0002090	CONTRIB	0.00%	91.50%	6.55%	1.96%	Θ
				RATIOS	0.5461	1.0629	0.4561	0.6884	
2	37.0			CONTRIB	0.00%	100.00%	0.4361	0.00%	5
	2	36.0	0.0160623		0.00%	100.00%	0.00%	0.00%	7
3	24 -			RATIOS	0.4761	0.9958	0.5493	0.6737	_
	34.7	36.0	0.0050610	CONTRIB	0.00%	99.98%	0.00%	0.02%	5
		30.0	0.0058610	CONTRIB	0.00%	100.00%	0.00%	0.00%	3
ļ				RATIOS	0.6697	0.7479	0.3818	0.5998	
	25.9			CONTRIB	2.20%	97.35%	0.00%	0.45%	5
		36.0	0.0000700	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
5				RATIOS	0.5430	0.7193	0.4191	0.5605	
•	24.9			CONTRIB	0.14%	99.58%	0.4191	0.28%	5
					0.00%	100.00%	0.00%	0.00%	0

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

oca-	Ground	Speed	% Time		NNW	w	SSE	OTHER	SUM
ion	Speed	Exc.	Exc.						
96				RATIOS	0.5075	0.7652	0.4695	0.5807	
	26.4			CONTRIB	0.00%	99.82%	0.00%	0.18%	5
		36.0	0.0000996	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
7				RATIOS	1.0389	0.7354	0.7036	0.8260	
	32.0			CONTRIB	93.27%	3.17%	0.27%	3.29%	5
		36.0	0.0016393	CONTRIB	93.81%	3.29%	0.17%	2.73%	1
98				RATIOS	0.5967	0.8823	1.0274	0.8354	
	34.7			CONTRIB	0.00%	14.49%	84.57%	0.94%	5
		36.0	0.0055015	CONTRIB	0.00%	16.38%	82.63%	0.99%	2
09				RATIOS	0.7593	0.8105	0.9646	0.8448	
	32.5			CONTRIB	0.44%		85.78%	3.42%	5
		36.0	0.0016497		0.57%	14.70%	80.71%	4.01%	1
10				RATIOS	0.5301	0.9270	0.4051	0.6207	
-	32.2			CONTRIB	0.00%	100.00%	0.00%	0.00%	5
		36.0	0.0019357		0.00%	100.00%	0.00%	0.00%	1
11				RATIOS	0.4624	0.4691	0.6895	0.5403	
	23.0				0.94%	0.44%	98.97%	0.56%	5
		36.0	0.000000		0.00%	0.00%	0.00%	0.00%	9
12				RATIOS	B 4893	0.7938	0.4240	0.5690	
12	27.6			CONTRIB	0.4093	99.93%	0.4240	0.3030	5
	27.0	36.0	0.0001759		0.00%	100.00%	0.00%	0.00%	9
12				DATIOS	0 4605	0.0005	0.4706	0.6020	
13	30.2			RATIOS		0.8695	0.4706	0.6029	5
	30.2	36.0	0 0007105	CONTRIB			0.00%	0.04%	0
		36.0	0.0007195	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
14				RATIOS	0.6003	0.8689	0.6048	0.6913	
	30.2			CONTRIB	0.03%	99.53%	0.04%	0.40%	5
		36.0	0.0007120	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
15				RATIOS	0.6234	0.7530	0.5585	0.6450	
	26.1			CONTRIB	0.62%	97.82%	0.15%	1.41%	5
		36.0	0.0000778	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
16				RATIOS	0.4522	0.8232	0.4646	0.5800	
	28.5			CONTRIB	0.00%	99.95%	0.00%	0.05%	5
		36.0	0.0003088	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
17				RATIOS	0.6673	0.9403	0.8517	0.8198	
	32.8			CONTRIB	0.05%	91.72%	6.46%	1.77%	5
		36.0	0.0025712	CONTRIB	0.00%	93.90%	4.58%	1.53%	1
18				RATIOS	0.6603	0.8219	1.1180	0.8667	
	37.5			CONTRIB	0.00%	1.47%	98.07%	0.47%	5
		36.0	0.0239925		0.00%	1.25%	98.32%	0.43%	10
19				RATIOS	0.6540	0.7554	1.0517	0.8204	
-	35.4			CONTRIB	0.00%	1.04%	98.43%	0.53%	5
	-5	36.0	0.0072919		0.00%	1.12%	98.33%	0.55%	3
20				RATIOS	0.5463	0.6110	0.6591	0.6055	
-0	22.5			CONTRIB	0.73%	34.71%	58.99%	5.57%	5
	44.3	36 P	0.0000000		0.73%	0.00%	0.00%	0.00%	0
		50.0				0.00%			J

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

oca-	Ground	Speed	% Time		NNW	W	SSE	OTHER	SUM
tion	Speed	Exc.	Exc.						
.21				RATIOS	0.6197	0.7428	0.4806	0.6144	
	25.8			CONTRIB	0.71%	98.52%	0.00%	0.77%	5
		36.0	0.0000630	CONTRIB	0.00%	100.00%	0.00%	0.00%	Θ
22				RATIOS	0.9268	0.5140	0.8126	0.7511	
	29.2			CONTRIB	69.71%	0.03%	27.11%	3.15%	5
		36.0	0.0002964	CONTRIB	81.17%	0.00%	15.92%	2.91%	Θ
23				RATIOS	0.7948	0.4263	1.2152	0.8121	
	40.8			CONTRIB	0.02%	0.00%	99.94%	0.04%	5
		36.0	0.0739457	CONTRIB	0.03%	0.00%	99.93%	0.05%	32
24				RATIOS	0.8303	0.5522	0.9930	0.7919	
	33.3			CONTRIB	1.30%	0.00%	97.94%	0.76%	5
		36.0	0.0024070	CONTRIB	1.68%	0.00%	97.43%	0.90%	1
25				RATIOS	0.8750	1.1974	0.9236	0.9987	
	41.7			CONTRIB			0.31%	0.89%	5
		36.0	0.0846418				0.68%	1.42%	37
26				RATIOS	1.0497	0.6022	1.0764	0.9094	
	36.5				14.13%			1.82%	5
		36.0	0.0133293		13.64%	0.00%	84.57%	1.78%	6
27				RATIOS	0.6059	0.7260	0.4463	0.5927	
	25.1			CONTRIB		98.66%	0.00%	0.62%	5
		36.0	0.0000442				0.00%	0.00%	Θ
28				RATIOS	0.6214	0.8022	0.5328	0.6522	
-	27.8					99.21%		0.58%	5
		36.0	0.0002071			100.00%	0.00%	0.00%	Θ
29				RATIOS	0.6438	0.6809	0.9656	0.7634	
	32.4			CONTRIB		0.78%	98.52%	0.66%	5
		36.0	0.0013838			1.03%	98.14%	0.83%	1
30				RATIOS	0.8907	0.6695	0.5224	0.6942	
	27.5				90.26%	7.57%	0.00%	2.18%	5
		36.0	0.0001361		92.74%	7.26%	0.00%	0.00%	Θ
31				RATIOS	0.8438	0.5644	0.6901	0.6994	
	26.0				83.48%			5.98%	5
		36.0	0.0000550	CONTRIB	95.44%	0.00%	0.00%	4.56%	Θ
32				RATIOS	0.7495	0.2528	1.4139	0.8054	
	47.4			CONTRIB			100.00%	0.00%	5
		36.0	0.2975500	CONTRIB	0.00%	0.00%	99.99%	0.01%	130
33				RATIOS	0.8044	0.2592	1.2554	0.7730	
	42.1			CONTRIB	0.00%	0.00%	100.00%	0.00%	5
		36.0	0.0997212		0.02%	0.00%	99.96%	0.01%	44
34				RATIOS	0.8381	0.6473	1.1015	0.8623	
	37.0			CONTRIB	0.29%	0.02%	99.13%	0.56%	5
		36.0	0.0178100		0.26%	0.03%	99.18%	0.53%	8
35				RATIOS	0.6652	1.0660	0.8501	0.8604	
23	37.2			CONTRIB	0.0032	98.91%	0.59%	0.50%	5
	J L	36.0	0.0170160		0.00%	98.80%	0.55%	0.53%	7

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

0.011 oca-	414% Exc. Ground		iterion % Time		NNW	w	SSE	OTHER	SUM
tion		Exc.	Exc.		ММ		335	OTHER	3011
26				RATIOS	1.1648	0.8338	0.8856	0.9614	
.36	36.1			CONTRIB	88.61%	3.44%	2.28%	5.67%	5
	30.1	36.0	0.0107895		88.41%	3.49%	2.33%	5.77%	5
									•
.37				RATIOS	0.9436	0.6293	1.2797	0.9509	
	42.9			CONTRIB	0.17%	0.00%	99.60%	0.23%	5
		36.0	0.1197630	CONTRIB	0.27%	0.00%	99.30%	0.43%	52
.38				RATIOS	1.0566	0.7977	0.7677	0.8740	_
	32.7	26.0	0.0022462	CONTRIB	85.60%	7.68%	0.93%	5.79%	5
		36.0	0.0023462	CONTRIB	86.16%	8.09%	0.66%	5.08%	1
.39				RATIOS	0.4344	1.0366	0.5726	0.6812	
	36.1			CONTRIB	0.00%	100.00%	0.00%	0.00%	5
	· · · ·	36.0	0.0109051		0.00%	100.00%	0.00%	0.00%	5
40				RATIOS	1.0756	1.0101	0.9666	1.0174	
	36.4			CONTRIB	20.70%	56.44%	10.28%	12.59%	5
		36.0	0.0130559	CONTRIB	20.69%	55.98%	10.61%	12.72%	6
41				DATIOC	0 7467	0 0000	0.7040	0.0450	
41	34.7			RATIOS CONTRIB	0.7467 0.12%	0.9968 98.12%	0.7940 0.57%	0.8458 1.19%	5
	34.7	36 A	0.0060560		0.12%	98.27%	0.50%	1.13%	3
		30.0	0.0000300	CONTRIB	0.12%	30.27%	0.30%	1.12%	,
42				RATIOS	0.6511	1.1421	1.1799	0.9910	
	41.2			CONTRIB	0.00%	54.86%	44.22%	0.92%	5
		36.0	0.1062270	CONTRIB	0.00%	45.97%	53.04%	0.99%	47
43				RATIOS	0.6660	1.0242	0.9819	0.8907	
	36.2			CONTRIB	0.00%	81.82%	16.69%	1.48%	5
		36.0	0.0111061	CONTRIB	0.00%	81.57%	16.94%	1.49%	5
44				RATIOS	1.1611	0.6142	0.9170	0.8974	
	35.8			CONTRIB	92.84%	0.0142	5.20%	1.96%	5
		36.0	0.0099425		93.11%	0.00%	4.99%	1.90%	4
45				RATIOS	0.9548	1.2609	0.8999	1.0385	
	43.9			CONTRIB	0.15%	99.07%	0.07%	0.72%	5
		36.0	0.1359320	CONTRIB	0.29%	97.72%	0.25%	1.74%	60
4.0				D.T	0 0=1-	0.000	0 0=0=	0.000=	
46	22 7			RATIOS	0.8517	0.9638	0.8505	0.8887	
	33.7	36 P	0.0038732	CONTRIB	1.63%	90.02% 91.36%	3.78% 2.96%	4.57% 4.11%	5 2
		٥. ٥	0.0030/32	COMINID	1.3//0	J1.30%	2.30%	7.11/0	4
47				RATIOS	0.9676	0.8175	1.5733	1.1195	
	52.8			CONTRIB	0.00%	0.00%	99.89%	0.11%	5
		36.0	0.6388400	CONTRIB	0.08%	0.04%	98.52%	1.36%	280
48	20.6			RATIOS	0.7618	1.1213	0.6209	0.8347	_
	39.0	26.0	0.0360103	CONTRIB	0.03%	99.85%	0.00%	0.13%	5
		36.0	0.0368192	CONTRIB	0.03%	99.83%	0.00%	0.15%	16
49				RATIOS	0.8556	0.6012	1.1036	0.8535	
. , ,	37.1			CONTRIB	0.33%	0.0012	99.16%	0.8535	5
		36.0	0.0184955		0.36%	0.00%	99.22%	0.43%	8
50				RATIOS	1.0987	0.3765	0.7783	0.7512	
	33.6			CONTRIB	98.98%	0.00%	0.74%	0.27%	5
		36 0	0.0038448	CONTRE	99.25%	0.00%	0.53%	0.22%	2

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

oca-	Ground	Speed	% Time		NNW	W	SSE	OTHER	SUM
ion	Speed	Exc.	Exc.						
151				RATIOS	1.1036	0.5275	0.9048	0.8453	
	34.2			CONTRIB	88.42%	0.00%	10.02%	1.56%	5
		36.0	0.0045514	CONTRIB	90.12%	0.00%	8.41%	1.47%	2
52				RATIOS	0.5859	0.8368	0.7238	0.7155	
	29.2			CONTRIB	0.04%	95.85%	2.78%	1.33%	5
		36.0	0.0004060	CONTRIB	0.00%	97.87%	1.22%	0.92%	Θ
.53				RATIOS	0.8262	1.2756	1.0811	1.0610	
	44.4			CONTRIB	0.00%	97.27%	1.90%	0.83%	5
		36.0	0.1634310	CONTRIB	0.02%	90.37%	7.51%	2.10%	72
L54				RATIOS	0.8411	0.4920	1.3737	0.9023	
	46.1			CONTRIB	0.00%	0.00%	99.97%	0.03%	5
		36.0	0.2284340	CONTRIB	0.02%	0.00%	99.89%	0.09%	100
.55				RATIOS	0.9536	0.7985	0.7577	0.8366	
	30.1				59.77%	26.26%	3.36%	10.61%	5
		36.0	0.0006433		59.48%	29.96%	1.88%	8.69%	Θ
.56				RATIOS	0.7920	0.9358	1.0221	0.9166	
	35.1			CONTRIB				4.02%	5
		36.0	0.0066430			33.74%	61.88%	4.10%	3
157				RATIOS	1.1158	0.4571	1.0940	0.8890	
	37.2				25.86%	0.00%	73.33%	0.81%	5
		36.0	0.0205371	CONTRIB	23.86%	0.00%	75.36%	0.78%	9
58				RATIOS	0.7811	0.7316	0.8371	0.7833	
	28.4				5.74%			8.86%	5
		36.0	0.0001668			29.87%	50.46%	10.70%	Θ
59				RATIOS	1.0544	0.7969	0.7344	0.8619	
	32.7			CONTRIB	87.07%	7.83%	0.7344	4.70%	5
	32.7	36.0	0.0022427		87.19%	8.34%	0.29%	4.18%	1
.60				RATIOS	0.3159	0 8037	0.9483	0.6892	
	31.9			CONTRIB		12.00%	87.87%	0.14%	5
	32.3	36.0	0.0011668		0.00%	18.09%	81.91%	0.00%	1
.61				RATIOS	0.8632	0 6285	0.9107	0.8008	
	30.6				8.97%			3.70%	5
	50.0	36.0	0.0005387			0.46%	80.58%	4.86%	9
.62				RATIOS	0.7799	A 9572	0.4879	0.7416	
	33.3			CONTRIB	0.7733	99.26%	0.00%	0.25%	5
	33.3	36.0	0.0031997		0.46%	99.33%	0.00%	0.22%	1
.63				RATIOS	1 8699	1 0564	A 12A9	0.8490	
.us	37.2			RATIOS CONTRIB	1.0699 14.13%	1.0564 85.47%	0.4208 0.00%	0.8490	5
	37.2	36 A	0.0171642		14.13%	85.14%	0.00%	0.40%	8
		30.0	0.01/1042	CONTINID	14.44/0	03.14%	0.00%	0.420	o
.64	22.0			RATIOS	1.0472	0.4573	0.9248	0.8098	-
	32.9	36.0	0.0023657	CONTRIB CONTRIB	68.15% 73.89%	0.00% 0.00%	30.49% 24.76%	1.36% 1.34%	5 1
									-
L65	36.2			RATIOS CONTRIB	0.8487 0.51%	0.8923 9.48%	1.0697	0.9369	5
	30.2	26.6	0.0115158		0.51%		86.53%	3.48%	5
		ں. ں د	0.0113138	CONTLYIN	0.50%	9.31%	86.73%	3.45%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion		MMW	w	CCE	OTHER	SUM
oca- tion	Ground Speed	Exc.	% Time Exc.		NNW	W	SSE	OTHER	SUM
66	25.0			RATIOS	1.1560	0.6309	0.9572	0.9147	-
	35.9			CONTRIB	85.97%	0.03%	11.40%	2.60%	5
		36.0	0.0101160	CONTRIB	86.06%	0.03%	11.32%	2.59%	4
67				RATIOS	0.8926	0.5244	0.9177	0.7783	
	31.0			CONTRIB	13.48%	0.00%	84.58%	1.94%	5
		36.0	0.0006514	CONTRIB	20.09%	0.00%	77.46%	2.45%	Θ
.68				RATIOS	0.9136	0.8281	0.6640	0.8019	
00	29.7			CONTRIB	36.85%	56.43%	0.33%	6.39%	5
	23.7	36.0	0.0005561		34.31%	60.86%	0.00%	4.82%	9
.69				RATIOS	0.7354	0.6285	0.7173	0.6937	
	24.7			CONTRIB	21.17%	13.37%	53.08%	12.38%	5
		36.0	0.0000123	CONTRIB	45.88%	20.26%	33.86%	0.00%	Θ
70				RATIOS	0.7336	0.6775	0.6128	0.6746	
-	24.2			CONTRIB	27.93%	57.77%	3.61%	10.70%	5
		36.0	0.0000182		29.67%	70.33%	0.00%	0.00%	9
71				RATIOS	0.8152	0.6983	1.3464	0.9533	_
	45.1			CONTRIB	0.00%	0.00%	99.90%	0.10%	5
		36.0	0.1903420	CONTRIB	0.02%	0.01%	99.69%	0.28%	83
72				RATIOS	0.8413	0.9313	0.2806	0.6844	
	32.5			CONTRIB	2.53%	97.37%	0.00%	0.10%	5
		36.0	0.0021298	CONTRIB	2.35%	97.65%	0.00%	0.00%	1
73				DATTOS	0.9976	0 5471	A 7003	0.7777	
, ,	30.7			RATIOS CONTRIB	92.30%	0.5471 0.04%	0.7883 5.36%	2.30%	5
	30.7	36 0	0.0008368		95.00%	0.04%	3.12%	1.88%	9
		55.0	3.0000300	CONTINID	JJ.00/6	0.00%	J. 12/0	1.00%	Ū
74				RATIOS	0.6460	0.5293	0.7693	0.6482	
	25.7			CONTRIB	1.36%	0.51%	96.21%	1.93%	5
		36.0	0.0000162	CONTRIB	0.00%	0.00%	100.00%	0.00%	Θ
75				RATIOS	1.1756	0.6163	0.7668	0.8529	
	36.0			CONTRIB	99.10%	0.0103	0.7668	0.8323	5
	50.0	36.0	0.0104913		99.11%	0.00%	0.13%	0.74%	5
76	20.2			RATIOS	0.9468	0.4708	0.8664	0.7613	F
	30.3	26.0	0.0005151	CONTRIB	52.98%	0.00%	44.96%	2.05%	5
		36.0	0.0005154	CONTRIB	66.02%	0.00%	31.86%	2.12%	Θ
77				RATIOS	0.8695	0.3775	0.7701	0.6724	
	27.4			CONTRIB	67.10%	0.00%	31.55%	1.34%	5
		36.0	0.0001020	CONTRIB	83.78%	0.00%	16.22%	0.00%	Θ
70				DATTOC	0 4165	0.3550	1 010=	0.5071	
78	34.1			RATIOS CONTRIB	0.4165 0.00%	0.3559	1.0187 100.00%	0.5971 0.00%	5
	J7.1	36 6	0.0038570		0.00%	0.00%	100.00%	0.00%	2
		۵۵. ۵	0.000070	CONTRIB	0.00%	0.00%	100.00%	0.00%	4
79				RATIOS	1.0495	0.7717	0.9936	0.9383	
	34.5			CONTRIB	35.67%	2.16%	53.76%	8.42%	5
		36.0	0.0047069	CONTRIB	38.52%	2.41%	50.40%	8.67%	2
80				PATTOS	1 0420	1 1666	A 2561	9 8E00	
OU	40.6			RATIOS CONTRIB	1.0438 2.18%	1.1666 97.72%	0.3661 0.00%	0.8589 0.10%	5
			0.0669737		2.48%	97.39%	0.00%	0.13%	29

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

			iterion		MARA	w	CCE	OTHER	CIIM
oca- tion	Ground Speed	Exc.	% Time Exc.		NNW	W	SSE	OTHER	SUM
181				RATIOS	0.8677	0.5379	1.0750	0.8269	_
	36.1			CONTRIB	0.75%	0.00%	98.84%	0.41%	5
		36.0	0.0111250	CONTRIB	0.74%	0.00%	98.85%	0.41%	5
182				RATIOS	1.1170	0.7271	1.0825	0.9755	
	37.0			CONTRIB	28.80%	0.27%	66.44%	4.49%	5
		36.0	0.0184119	CONTRIB	27.08%	0.25%	68.33%	4.35%	8
183				RATIOS	0.8456	0.9293	0.8977	0.8909	
	33.0			CONTRIB	2.12%	73.62%	17.10%	7.16%	5
		36.0	0.0025620	CONTRIB	2.12%	78.58%	12.82%	6.48%	1
184				RATIOS	1.1858	0.7277	0.6891	0.8675	
104	36.3								5
	30.3	36.0	0.0114236	CONTRIB CONTRIB	98.75% 98.68%	0.38% 0.40%	0.00% 0.00%	0.86% 0.92%	5
185				RATIOS	0.8187	0.3032	0.9152	0.6790	
	30.6			CONTRIB	3.81%	0.00%	95.98%	0.21%	5
		36.0	0.0005101	CONTRIB	6.30%	0.00%	93.70%	0.00%	Θ
186				RATIOS	0.5834	0.5238	1.0015	0.7029	
	33.6			CONTRIB	0.00%	0.00%	99.92%	0.08%	5
		36.0	0.0027677		0.00%	0.00%	99.90%	0.10%	1
187				RATIOS	0.9105	0.6538	0.9219	0.8287	
107	31.2			CONTRIB	16.13%	0.70%	78.21%	4.96%	5
	31.2	36.0	0.0007843		23.01%	0.75%	70.21%	6.05%	9
188				RATIOS	1.0017	0.4516	1.0633	0.8389	
	35.9			CONTRIB	8.62%	0.00%	90.78%	0.60%	4
		36.0	0.0097826	CONTRIB	8.69%	0.00%	90.71%	0.60%	4
189				RATIOS	0.9291	1.1309	0.6497	0.9032	
	39.4			CONTRIB	0.55%	99.03%	0.00%	0.42%	5
		36.0	0.0424027	CONTRIB	0.59%	98.91%	0.00%	0.50%	19
.90				RATIOS	0.9605	0.3585	0.9168	0.7452	
	31.4			CONTRIB	35.47%	0.00%	63.81%	0.72%	5
		36.0	0.0009316		46.15%	0.00%	53.05%	0.81%	9
101				DATTOS	1.0784	0 2114	a e000	0.7632	
191	33.4			RATIOS CONTRIB	85.82%	0.3114 0.00%	0.8999 13.79%	0.7632	5
	JJ.+	36 A	0.0031705		88.79%	0.00%	10.86%	0.35%	1
		- 3.3							=
192				RATIOS	1.2068	0.8572	0.7771	0.9470	
	37.2			CONTRIB	93.94%	3.34%	0.10%	2.62%	5
		36.0	0.0143581	CONTRIB	92.51%	4.02%	0.14%	3.34%	6
193				RATIOS	0.9374	0.4481	1.0146	0.8000	
	34.1			CONTRIB	6.36%	0.00%	93.04%	0.60%	5
		36.0	0.0038794		7.46%	0.00%	91.88%	0.66%	2
								•	
194				RATIOS	1.2225	0.4271	1.1280	0.9259	
	39.3			CONTRIB	50.14%	0.00%	49.17%	0.68%	5
		36.0	0.0433696	CONTRIB	34.56%	0.00%	64.70%	0.75%	19
0.5				RATIOS	1.1895	0.4061	0.9211	0.8389	
L95									
195	36.5			CONTRIB	95.71%	0.00%	3.85%	0.43%	5

The ratios of pedestrian-level wind speeds to the reference height wind speeds at the old Alameda NAS meteorological station are shown in the first line of output for each location.

The second line of the output shows the pedestrian level wind speeds, in mph, which would be exceeded one hour per year (0.01141552512% of the time) for each measurement location. This assumes that a wind hazard occurs if a one-minute average speed of 36 mph is reached or exceeded a total of one hour per year.

0.011 Loca- tion	.414% Exc. Ground Speed		iterion % Time Exc.		NNW	W	SSE	OTHER	SUM
196				RATIOS	0.7103	0.5148	1.0986	0.7745	
	36.9			CONTRIB	0.00%	0.00%	99.91%	0.09%	5
		36.0	0.0167850	CONTRIB	0.02%	0.00%	99.89%	0.09%	7
197				RATIOS	0.7001	0.8217	0.9470	0.8229	
	32.0			CONTRIB	0.15%	16.25%	80.77%	2.83%	5
		36.0	0.0012735	CONTRIB	0.20%	23.54%	72.97%	3.30%	1
198				RATIOS	1.0584	0.8672	1.1029	1.0095	
	37.3			CONTRIB	10.23%	3.49%	79.41%	6.86%	5
		36.0	0.0223139	CONTRIB	9.31%	3.09%	81.11%	6.49%	10
199				RATIOS	1.0042	0.4546	0.9905	0.8164	
	33.7			CONTRIB	23.94%	0.00%	75.00%	1.06%	5
		36.0	0.0031529		28.09%	0.00%	70.75%	1.16%	1
200				RATIOS	0.9764	0.5869	1.4274	0.9969	
	47.8			CONTRIB	0.05%	0.00%	99.87%	0.08%	5
		36.0	0.3264910		0.17%	0.00%	99.47%	0.36%	143
201				RATIOS	0.7124	0.8785	0.6395	0.7435	
	30.5			CONTRIB	0.45%	98.30%	0.10%	1.15%	5
		36.0	0.0008546		0.39%	98.76%	0.00%	0.85%	Θ
202				RATIOS	0.5852	0.6646	0.8248	0.6915	
	27.6			CONTRIB	0.08%	5.66%	92.55%	1.70%	5
		36.0	0.0000714		0.00%	11.78%	88.22%	0.00%	Θ
203				RATIOS	0.7540	0.8250	1.5388	1.0393	
-	51.5			CONTRIB	0.00%	0.00%	99.96%	0.04%	5
		36.0	0.5676740		0.00%	0.06%	99.52%	0.42%	249
204				RATIOS	0.7397	0.9301	1.0172	0.8957	
	34.9			CONTRIB	0.10%	31.55%	65.37%	2.98%	5
		36.0	0.0059710		0.10%	34.16%	62.69%	3.05%	3
205				RATIOS	0.9854	0.9015	1.1448	1.0106	
-	38.7			CONTRIB	1.97%	4.02%	89.87%	4.13%	5
		36.0	0.0408507		1.59%	3.08%	91.71%	3.62%	18
206				RATIOS	1.1899	0.9338	1.0854	1.0697	
	38.3			CONTRIB	45.32%	7.41%	35.23%	12.03%	5
			0.0310361		37.52%	6.99%	42.74%	12.75%	14

APPENDIX H: FLORA OF YERBA BUENA ISLAND SAN FRANCISCO COUNTY

Scientific Name	Common Name	Note
Aizoaceae - Fig-Marigold	Family	
Aptenia cordifolia	ice-plant	•
Carpobrotus edulis	Hottentot fig	•
Conicosia pugioniformis	narrowleaf iceplant	•
Tetragonia tetragoniodes	New Zealand spinach	•
Anacardiaceae - Sumac Fa	amily	
Schinus terebinthifolius	Brazilian peppertree	•
Toxicodendron diversilobum	poison oak	
Apiaceae - Carrot Family		
Anthriscus caucalis	bur-chervil	•
Apium graveolens	celery	•
Conium maculatum	poison-hemlock	•
Foeniculum vulgare	sweet fennel	•
Sanicula crassicaulis	Pacific sanicle	
Scandix pecten-veneris	shepherd's needle	•
Apocynaceae - Dogbane F	Family	
Vinca major	big periwinkle	•
Araceae - Arum Family		
Zantedeschia aethiopica	calla lily	•
Araliaceae - Ginseng Fam	ily	
Hedera canariensis	Algerian ivy	•
Hedera helix	English ivy	•
Arecaceae - Palm Family		
Phoenix canariensis	Canary Island palm	•
Footnotes:		
1 = federal or State listed Species3 = CALIPC Listed Invasive Species	2 = other special-status species * = Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Sort By: Family

Mexican fan palm	•
F	
Dutchman's pipevine	
yarrow	
sticky eupatorium	•
California dandelion	
beach-bur	
pearly everlasting	
dog mayweed	•
capeweed	•
Canary Island marguerite	•
California sagebrush	
coyote brush	
English daisy	•
Italian thistle	•
yellow starthistle	•
pineapple weed	•
crown daisy	•
cobwebby thistle	
bull thistle	•
horseweed	•
Australian brass-buttons	•
	sticky eupatorium California dandelion beach-bur pearly everlasting dog mayweed capeweed Canary Island marguerite California sagebrush coyote brush English daisy Italian thistle yellow starthistle pineapple weed crown daisy cobwebby thistle bull thistle horseweed

* = Species not indigenous to CA

3 = CALIPC Listed Invasive Species

HORT = horticultural species

Scientific Name	Common Name	Note
Cotula coronopifolia	brassbuttons	•
Crepis bursifolia	Italian hawksbeard	•
Delairia odorata	Cape ivy	•
Erechtites glomerata	Australasian fireweed	•
Erechtites minima	Australian fireweed	•
Ericameria ericoides	mock heather	
Erigeron glaucus	seaside daisy	
Eriophyllum staechadifolium	seaside woolly sunflower	
Felicia amelloides	blue marguerite	•
Gnaphalium bicolor	bicolor cudweed	
Gnaphalium californicum	California everlasting	
Gnaphalium canescens ssp. beneolens	fragrant everlasting	
Gnaphalium luteo-album	cudweed	•
Gnaphalium stramineum	cotton-batting plant	
Grindelia stricta	coastal gumplant	
Hypochaeris glabra	smooth cat's-ear	•
Jaumea carnosa	jaumea	
Lactuca serriola	prickly lettuce	•
Logfia gallica	narrow-leaf filago	•
Osteospermum fruticosum	African daisy	•
Picris echioides	bristly ox-tongue	•
Senecio hybridus	cineraria	Hort
Senecio vulgaris	common groundsel	•
Footnotes:		
•	pecial-status species s not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Silybum marianum	milkthistle	•
Soliva sessilis	common soliva	•
Sonchus asper ssp. asper	prickly sowthistle	•
Sonchus oleraceus	common sowthistle	•
Stephanomeria virgata ssp. pleuroca	arpa tall stephanomeria	
Taraxacum officinale	common dandelion	•
Betulaceae - Birch Family		
Alnus cordata	Italian alder	•
Corylus cornuta var. californica	California hazelnut	
Brassicaceae - Mustard Fami	ily	
Brassica nigra	black mustard	•
Cakile maritima	sea rocket	•
Capsella bursa-pastoris	shepard's purse	•
Cardamine oligosperma	bitter-cress	
Coronopus didymus	lesser wart-cress	•
Hirschfeldia incana	shortpod mustard	•
Lepidium latifolium	perennial pepperweed	•
Lepidium nitidum var. nitidum	shining pepper-grass	
Lobularia maritima	sweet alyssum	•
Raphanus sativus	wild radish	•
Sisymbrium orientale	Indian hedgemustard	•
Buddlejaceae - Buddleja Fan	nily	
Buddleja davidii	butterfly bush	•
Footnotes:		
	= other special-status species	AC
•	= other special-status species = Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Caprifoliaceae - Honeysuckle Fam	ily	
Lonicera japonica	Japanese honeysuckle	•
Sambucus mexicana	blue elderberry	
Symphoricarpos albus var. laevigatus	common snowberry	
Caryophyllaceae - Pink Family		
Cardionema ramosissimum	sand mat	
Cerastium glomeratum	mouse-ear chickweed	•
Silene gallica	common catchfly	•
Spergularia bocconei	Boccon's sand-spurrey	
Spergularia macrotheca var. macrotheca	large flowered sand-spurrey	
Stellaria media	common chickweed	•
Chenopodiaceae - Goosefoot Fami	ly	
Atriplex triangularis	spearscale	
Chenopodium album	lamb's quarters	•
Chenopodium californicum	California goosefoot	
Salicornia virginica	pickleweed	
Commelinaceae - Spiderwort Fami	ly	
Tradescantia fluminensis	spiderwort	•
Convolvulaceae - Morning-glory F	amily	
Calystegia purpurata ssp. purpurata	purple western morning-glory	
Crassulaceae - Stonecrop Family		
Aeonium haworthii	stone crop	•
Crassula argentea	jade plant	•
Crassula connata	pygmyweed	
Footnotes:		
·	pecial-status species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Dudleya farinosa	powdery dudleya	
Sedum dendroideum	stonecrop	•
Cucurbitaceae - Gourd Family		
Marah fabaceus	California man-root	
Cupressaceae - Cypress Family		
Chamaecyparis lawsonii	Lawson cypress	•
Chamaecyparis pisifera	Sawara false cypress	•
Cupressus arizonica	Arizona cypress	
Cupressus macrocarpa	Monterey cypress	2
Cyperaceae - Sedge Family		
Carex barbarae	Santa Barbara sedge	
Cyperus eragrostis	umbrella sedge	
Dennstaedtiaceae - Bracken Fern I	Family	
Pteridium aquilinum var. pubescens	western brackenfern	
Dryopteridaceae - Wood Fern Fan	nily	
Crytomium falcatum	holly fern	● Hort
Dryopteris arguta	wood fern	
Polystichum munitum	western sword fern	
Equisetaceae - Horsetail Family		
Equisetum telmateia ssp. braunii	giant horsetail	
Euphorbiaceae - Spurge Family		
Chamaesyce maculata	spotted spurge	•
Euphorbia peplus	petty spurge	•
Footnotes:		
	pecial-status species s not indigenous to CA	AG = agricultural species HORT = horticultural species

Sort By: Family

Scientific Name	Common Name	Note
Fabaceae - Legume Family		
Acacia baileyana	Cootamundra wattle	•
Acacia decurrens	green wattle	•
Acacia melanoxylon	blackwood acacia	•
Acmispon wrangelianus	Chile trefoil	
Albizia lophantha	plume acacia	•
Bauhinia variegata	purple orchid tree	•
Ceratonia siliqua	carob	•
Cercis occidentalis	western redbud	
Cytisus scoparius	Scotch broom	•
Genista monspessulana	French broom	•
Lathyrus tingitanus	Tangier pea	•
Lathyrus vestitus var. vestitus	common Pacific pea	
Lotus corniculatus	broadleaf bird's-foot trefoil	•
Lotus scoparius	California broom	
Lotus strigosus	strigose treefoil	
Lupinus arboreus	yellow bush lupine	
Lupinus bicolor	dove lupine	
Lupinus microcarpus var. microcarp	us chick lupine	
Lupinus nanus	Douglas' lupine	
Medicago polymorpha	burclover	•
Medicago sativa	alfalfa	•
Melilotus albus	white sweetclover	•
Footnotes:		
	= other special-status species = Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Melilotus officinalis	yellow sweetclover	•
Trifolium gracilentum var. gracilentum	pinpoint clover	
Trifolium hirtum	rose clover	•
Trifolium willdenovii	tomcat clover	
Vicia americana var. americana	American vetch	
Vicia benghalensis	purple vetch	•
Vicia sativa ssp. nigra	common vetch	•
Vicia sativa ssp. sativa	common vetch	•
Vicia villosa ssp. villosa	hairy vetch	•
Fagaceae - Oak Family		
Quercus agrifolia	coast live oak	
Geraniaceae - Geranium Family		
Erodium botrys	long-beaked storksbill	•
Erodium cicutarium	red-stemmed filaree	•
Erodium moschatum	white-stemmed filaree	•
Geranium dissectum	cut-leaved geranium	•
Geranium molle	dove's-foot geranium	•
Pelargonium peltatum	ivy geranium	•
Grossulariaceae - Gooseberry Fam	ily	
Ribes sanguineum var. glutinosum	red-flowering currant	
Hippocastanaceae - Buckeye Famil	ly	
Aesculus californica	California buckeye	
Hydrophyllaceae - Waterleaf Fami	ly	
Nemophila maculata	five-spot	
Footnotes:		
·	pecial-status species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Phacelia distans	common phacelia	
Phacelia malvifolia	stinging phacelia	
Pholistoma auritum var. auritum	fiestaflower	
Iridaceae - Iris Family		
Chasmanthe aethiopica	chasmanthe	Hort
Iris x hybrid	bearded iris	•
Iris xiphium	Dutch iris	•
Sisyrinchium bellum	blue-eyed grass	
Juncaceae - Rush Family		
Juncus balticus	wire rush	
Juncus bufonius var. bufonius	toad rush	
Juncus bufonius var. congestus	congested toad rush	
Juncus effusus var. pacificus	Pacific bog rush	
Juncus patens	spreading rush	
Luzula comosa	Pacific wood rush	
Lamiaceae - Mint Family		
Monardella villosa ssp. franciscana	coyote mint	
Salvia leucantha	Mexican bush sage	•
Stachys ajugoides var. rigida	rigid hedge nettle	
Liliaceae - Lily Family		
Agapanthus africanus	lily-of-the-Nile	HORT
Agave americana	century plant	•
Allium triquetrum	white-flowered onion	•
Footnotes:		
	other special-status species Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Aloe saponaria	aloe	•
Amaryllis belladonna	naked lady	•
Chlorogalum pomeridianum var. divaricatum	spreading soaproot	
Dichelostemma capitatum ssp. capitatum	blue dicks	
Narcissus pseudonarcissus	common daffodil	•
Triteleia laxa	Ithuriel's spear	
Linaceae - Flax Family		
Linum bienne	narrow-leaved flax	•
Malvaceae - Mallow Family		
Abutilon striatum	Indian mallow	•
Lavatera assurgentiflora	malva rosa	
Malva nicaeensis	bull mallow	•
Malva parviflora	cheeseweed	•
Malva sylvestris	high mallow	•
Moraceae - Mulberry Family		
Ficus pumila	creeping fig	•
Myoporaceae - Myorporum Family		
Myoporum laetum	myoporum	•
Myrtaceae - Myrtle Family		
Eucalyptus camaldulensis	river red gum	•
Eucalyptus ficifolia	scarlet flowering gum	•
Eucalyptus globulus	Tasmanian blue gum	•
Eucalyptus leucoxylon	white ironbark	•
Eucalyptus sideroxylon	red ironbark	•
Footnotes:		
	al-status species it indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Leptospermum laevigatum	Australian tea tree	•
Melaleuca decussata	lilac melaleuca	Hort
Metrosideros excelsus	New Zealand Christmas tree	Hort
Oleaceae - Olive Family		
Ligustrum japonicum	waxleaf privet	•
Ligustrum lucidum	glossy privet	•
Ligustrum ovalifolium	California privet	Hort
Onagraceae - Evening Primrose	e Family	
Camissonia ovata	sun cups	
Clarkia amoena	farewell-to-spring	
Clarkia unguiculata	elegant clarkia	
Epilobium brachycarpum	tall willowherb	
Epilobium ciliatum ssp. ciliatum	northern willowherb	
Oenothera elata ssp. hookeri	Hooker's evening-primrose	
Oxalidaceae - Oxalis Family		
Oxalis pes-caprae	Bermuda buttercup	•
Oxalis rubra	windobox oxalis	•
Papaveraceae - Poppy Family		
Eschscholzia californica	California poppy	
Fumaria parviflora	small-flowered fumitory	•
Pinaceae - Pine Family		
Pinus canariensis	Canary Island pine	•
Pinus halepensis	Aleppo pine	•
Pinus pinea	Italian stone pine	•
Footnotes:		
	her special-status species pecies not indigenous to CA	AG = agricultural species HORT = horticultural species

Sort By: Family

Scientific Name	Common Name	Note
Pinus ponderosa	ponderosa pine	
Pinus radiata	Monterey pine	2
Pittosporaceae - Pittosporum Family		
Pittosporum crassifolium	thick-leaved pittosporum	•
Pittosporum eugenioides	tarata	•
Pittosporum tenuifolium	pittosporum	•
Plantaginaceae - Plantain Family		
Plantago coronopus	cut-leaved plantain	•
Plantago erecta	California plantain	
Plantago lanceolata	English plantain	•
Poaceae - Grass Family		
Agrostis capillaris	colonial bent grass	•
Agrostis pallens	leafy bent grass	
Avena barbata	slender wild oats	•
Avena fatua	wild oats	•
Briza maxima	big quaking grass	•
Briza minor	little quaking grass	•
Bromus carinatus var. carinatus	California brome	
Bromus diandrus	ripgut brome	•
Bromus hordeaceus	soft chess	•
Bromus madritensis ssp. rubens	red brome	•
Cortaderia selloana	pampas grass	•
Cynodon dactylon	Bermudagrass	•
Footnotes:		
1 = federal or State listed Species 2 = other species	al-status species	AG = agricultural species

* = Species not indigenous to CA

3 = CALIPC Listed Invasive Species

HORT = horticultural species

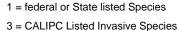
Scientific Name	Common Name	Note
Cynosurus echinatus	hedgehog dogtail	•
Dactylis glomerata	orchardgrass	•
Distichlis spicata	saltgrass	
Ehrharta erecta	erect veldtgrass	•
Elymus glaucus ssp. glaucus	blue wildrye	
Festuca arundinacea	tall fescue	•
Festuca rubra	red fescue	
Gastridium ventricosum	nit grass	•
Holcus lanatus	common velvet-grass	•
Hordeum marinum ssp. gussoneanum	Mediterranean barley	•
Hordeum murinum ssp. glaucum	hare barley	•
Hordeum murinum ssp. leporinum	foxtail barley	•
Leptochloa fascicularis	bearded sprangletop	
Leymus condensatus	giant wildrye	
Leymus triticoides	creeping wildrye	
Leymus x vancouverensis	Vancouver's ryegrass	
Lolium multiflorum	Italian ryegrass	•
Lolium perenne	perennial ryegrass	•
Melica imperfecta	Coast Range melic	
Nassella lepida	foothill needlegrass	
Nassella pulchra	purple needlegrass	
Parapholis incurva	sickle grass	•
Pennisetum clandestinum	kikuyugrass	•
Footnotes:		
	ecial-status species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Phalaris aquatica	hardinggrass	•
Phalaris minor	littleseed canarygrass	•
Poa annua	annual bluegrass	•
Poa secunda ssp. secunda	one-sided bluegrass	
Polypogon monspeliensis	annual rabbitsfoot grass	•
Vulpia bromoides	six-weeks fescue	•
Vulpia myuros var. hirsuta	western six-weeks fescue	•
Polemoniaceae - Phlox Far	mily	
Gilia capitata ssp. chamissonis	dune gilia	2
Polygonaceae - Buckwhea	t Family	
Eriogonum fasciculatum	flat-top buckwheat	
Eriogonum latifolium	coast buckwheat	
Muehlenbeckia complexa	maidenhair vine	•
Polygonum arenastrum	common knotweed	•
Rumex acetosella	sheep sorrel	•
Rumex crispus	curly dock	•
Rumex pulcher	fiddle dock	•
Polypodiaceae - Polypody	Family	
Polypodium californicum	California polypody	
Portulacaceae - Purslane F	amily	
Claytonia exigua ssp. exigua	serpentine spring beauty	
Claytonia perfoliata ssp. perfoliata	a miner's lettuce	
Primulaceae - Primrose Fa	mily	
Anagallis arvensis	scarlet pimpernel	•
Footnotes:		
1 = federal or State listed Species3 = CALIPC Listed Invasive Species	2 = other special-status species * = Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Proteaceae - Protea Family		
Hakea suaveolens	sweet hakea	•
Pteridaceae - Fern Family		
Adiantum jordanii	maidenhair fern	
Pellaea andromedifolia	coffee fern	
Pentagramma triangularis ssp. triangularis	goldback fern	
Ranunculaceae - Buttercup Family		
Ranunculus californicus	California buttercup	
Ranunculus muricatus	spiny buttercup	•
Rhamnaceae - Buckthorn Family		
Ceanothus dentatus	dwarf ceanothus	
Ceanothus foliosus var. medius	La Cuesta ceanothus	
Ceanothus thyrsiflorus	blue blossom	
Rosaceae - Rose Family		
Cotoneaster franchetii	orange cotoneaster	•
Cotoneaster lacteus	Parney's cotoneaster	•
Cotoneaster pannosa	silverleaf cotoneaster	•
Eriobotrya japonica	loquat	•
Heteromeles arbutifolia	toyon	
Malus sylvestris	apple	•
Oemleria cerasiformis	oso berry	
Prunus ilicifolia	hollyleaf cherry	
Pyracantha angustifolia	common firethorn	•
Rhaphiolepis indica	Indian hawthorn	Hort
Footnotes:		
	cial-status species	AG = agricultural species HORT = horticultural species

Scientific Name	Common Name	Note
Rosa gymnocarpa	wood rose	
Rubus discolor	Himalayan blackberry	•
Rubus ursinus	California blackberry	
Rubiaceae - Madder Fami	ly	
Coprosma repens	mirror plant	•
Galium aparine	goose grass	
Sherardia arvensis	field madder	•
Salicaceae - Willow Famil	ly	
Populus nigra	Lombardy poplar	•
Populus tremuloides	quaking aspen	
Salix laevigata	red willow	
Salix lasiolepis	arroyo willow	
Saxifragaceae - Saxifrage	Family	
Escallonia rubra	redclaws	•
Scrophulariaceae - Figwor	rt Family	
Hebe speciosa	showy hebe	•
Mimulus aurantiacus	sticky monkeyflower	
Mimulus guttatus	common large monkey-flower	
Scrophularia californica	California figwort	
Triphysaria pusilla	dwarf owl's-clover	
Veronica persica	Persian speedwell	•
Solanaceae - Nightshade F	Family	
Solanum furcatum	forked nightshade	•
Solanum nigrum	black nightshade	•
Footnotes:		
1 = federal or State listed Species 3 = CALIPC Listed Invasive Species	2 = other special-status species * = Species not indigenous to CA	AG = agricultural species HORT = horticultural species

Jun 21, 2010



Checklist Of The Flora Of Yerba Buena Island, San Francisco County

Sort By: Family

Scientific Name	Common Name	Note
Taxaceae - Yew Family		
Taxus baccata	English yew	•
Taxodiaceae - Bald Cypress Family		
Sequoia sempervirens	coast redwood	
Tropaeolaceae - Nasturtium Family		
Tropaeolum majus	garden nasturtium	•
Ulmaceae - Elm Family		
Ulmus pumila	Siberian elm	•
Valerianaceae - Valerian Family		
Centranthus ruber	red valerian	•

Footnotes:

2 = other special-status species

* = Species not indigenous to CA

AG = agricultural species HORT = horticultural species

APPENDIX I: FINAL WATER SUPPLY ASSESSMENT FOR THE PROPOSED TREASURE ISLAND –

YERBA BUENA ISLAND PROJECT

Final Water Supply Assessment

for the

Proposed Treasure Island – Yerba Buena Island Project

November 2009

Prepared by:

In coordination with the San Francisco Public Utilities Commission, Water Enterprise

1410 Rocky Ridge Drive Roseville, CA 95661 916.782.7275

TABLE OF CONTENTS

1.0	11	NTRODUCTION	1-1
	1.1.	Project Location, Land Use, Zoning and Characteristics	1-1
	1	.1.1. Project Location	1-1
		Water Supply Planning	
	1	.2.1. SB 610 Water Supply Assessment	1-7
2.0	٧	VATER SUPPLY	2-1
	2.1.	Climate	2-1
	2.2.	Water Supply Entitlements, Water Rights and Contracts	2-2
	2.3.	Introduction to the SFPUC Water Supply Sources	2-2
	2	.3.1. Surface Water Rights	2-2
	2.4.	Water Supply Considerations	2-3
	2.5.		
		.5.1. Local Groundwater	
		.5.2. Local Recycled Water	
		Water Supply Reliability and Improvements	
		.6.2. Local Groundwater Projects	
		.6.3. Local Water Conservation	
	2	.6.4. Summary of New Local Water Supply Programs	2-8
		Total SFPUC Retail Water Supplies	
	2	.7.1. New Drought Year Supplies	2-9
3.0	D	ROUGHT SUPPLY PLANNING AND WATER SUPPLY RELIABILITY	3-1
		Overview	
	3	.1.1. Water Shortage Allocation Plan	3-2
	3.2.	Retail Water Shortage Allocation Plan	3-3
	3.3.	Urban Water Management Planning Act (Water Code Section 10632)	3-4
	3.4.	Dry Year Water Supply Projects	3-4
	3.5.	Development of Dry Year Supplies	
		.5.1. Groundwater Storage and Recovery Project	
	3	.5.2. Desalination	3-5
4.0	٧	VATER DEMAND OVERVIEW	4-1
	4.1.	Overview	4-1
	4.2.	Historical System Demand	4-1
	4.3.	Proposed Project Water Demand	4-2
	4.4.	Potential Recycled Water of Proposed Project	4-3
	4.5.	City of San Francisco Retail Water Demand Analysis	4-5
		.5.1. Water Demand of Major Development Projects and Incremental Growth	
		.5.2. Water Demand of Residential Projections	
		.5.3. Water Demand of Non-Residential Employment Projections	
	-	.o. - . or r oo rotal Notali Oystofii Domanu	

5.0 COMP	ARISON OF AVAILABLE WATER SUPPLIES VERSUS DEMAND	5-1
5.1. Sup	ply and Demand Comparison	5-1
6.0 CONC	LUSION OF ANALYSIS AND FINDINGS	6-1
	A Findings	
7.0 REFE	RENCES	7-1
APPEND	ICES	
Appendix A Appendix B	SFPUC 2008 Annual Groundwater Monitoring Report Westside Basin SFPUC Agenda Item for Approval of the Water System Improvement Project October 31, 2008	
Appendix C	SFPUC Water System Improvement Project Information (PEIR Summary; April to July Quarterly Report and WSIP progress to date)	
Appendix D	SFPUC Water Supply Availability Study (October 2009)	
Appendix E	Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Uses (November 2009)	
LIST OF TAB	LES	
Table 1-1: Pro	ject Proposed Land Uses	1-5
Table 2-1: City	y of San Francisco Climate Summary	2-1
Table 2-2: WS	SIP Water Supply Sources (mgd)	2-8
	PUC Water Supplies 2010 - 2030	
Table 3-1: WS	SAP Allocation	3-2
Table 3-2: 200	05 – 2030 SFPUC Retail Allocations in Normal, Dry and Multiple Dry Years	3-2
Table 4-1: SF	PUC Water Demands (mgd)	4-2
Table 4-2: Tre	easure Island Redevelopment Project Estimated Water Demand (mgd)	4-3
	imated Recycled Water Demand Treasure Island Redevelopment Project	4-4
Table 4-4: Est	imated Water Demand with Recycled Water at the Treasure Island development Project	
Table 4-5: 203	30 Water Demand Increase within San Francisco (Proposed Project, Other velopment Projects and Incremental Growth) (mgd)	
	jections for Residential Growth and Residential Demand	
	ter Demand for Non-Residential Employment Projections	
	PUC Retail Demand (mgd)	
Table 5-1: Pro	ojected Supply and Demand Comparison - Normal, Dry, and Multiple Dry Years	S
Table 5-2: 203	Supply and Demand with Implementation of WSAP and RWSAP (mgd)	5-3
LIST OF FIGU	JRES	
Figure 1-1: Re	egional and Project Location	1-2
	easure Island – Yerba Buena Island Land Use Plan	
•	FPUC Retail Service Area in City and County of San Francisco	

Figure 2-1: Regional Water Supply System	2-4
Figure 2-2: SFPUC Water Supplies	
Figure 6-1: Comparison of Supply and Demand over 20 years	

1.0 INTRODUCTION

The City of San Francisco and the Treasure Island Development Authority ("TIDA") are conducting an environmental review under the requirements of the California Environmental Quality Act (CEQA) for the proposed Treasure Island – Yerba Buena Island Project (proposed project or TI-YBI). This water supply assessment (WSA) will provide information for use in the CEQA analysis for this proposed project. The environmental review for the proposed project includes an assessment of the available water supply to serve the proposed project. The requirements for a WSA are set forth in the California Water Code (Water Code) Sections 10910 et seq.

A WSA connects water supply and land use planning with the environmental review process. The law also reflects the growing awareness of the need to incorporate water supply and demand analysis at the earliest possible stage in the land use planning process. The core of this law is an assessment of whether available water supplies are sufficient to serve the demand generated by a project, as well as the reasonably foreseeable cumulative demand in the region over the next 20 years under a range of hydrologic conditions.

This WSA provides information on the available water supply to serve the proposed project based on Water Code Sections 10631, and 10910 et seq.

This document is divided into six sections: Introduction, Water Supply Sources, Demand Analysis, Supply and Demand Comparison, Conclusion of Analysis and Findings. The Introduction describes the proposed project and water supply planning under Water Code 10910 et seq.

1.1. Project Location, Land Use, Zoning and Characteristics

1.1.1. Project Location

The proposed project includes portions of Treasure Island and Yerba Buena Island in San Francisco Bay (see Figure 1-1: Regional and Project Location) which comprise the former Naval Station Treasure Island (NSTI) owned and operated by the United States Navy until its closure in 1997. The proposed project area encompasses approximately 370 acres of land on Treasure Island, approximately 90 acres of land on Yerba Buena Island and about 550 acres of tidal and submerged lands adjacent to the Islands. The US Navy is in the process of conveying most of these areas to TIDA, which currently manages a variety of interim residential, industrial, institutional and recreational land uses.

The project area is designated as a recycled water use area as defined in the City of San Francisco's Recycled Water Ordinances (effective November 7, 1991, and amended in 1994). The ordinances require property owners to install dual-plumbing systems for recycled water use within the designated water use areas.¹

.

On November 18, 2009, the Building Standards Commission unanimously voted to approve the California Dual Plumbing Code that establishes statewide standards for installing both potable and recycled water plumbing systems in commercial, retail, and office buildings, theaters, auditoriums, condominiums, schools, hotels, apartments, barracks, dormitories, jails, prisons, and reformatories. The new code is effective Jan. 11, 2011. Website address: http://www.water.ca.gov/recycling/DualPlumbingCode/

1.1.1.1. Proposed Project Overview

The proposed Treasure Island and Yerba Buena Island Redevelopment Plan (Redevelopment Plan) would provide the basis for redevelopment of NSTI lands from a primarily low-density residential area with vacant and underutilized nonresidential structures to a new mixed-use community with a retail center, a variety of open space and recreation opportunities, on-site infrastructure, and public and community services. The proposed project would consist of up to 8,000 residential units, approximately 550,000 square feet of commercial, flex and retail space including renovated historic buildings, up to 500 hotel rooms, 300 acres of parks and open space, transportation, bicycle and pedestrian facilities, a ferry terminal/transit hub, miscellaneous public and community facilities, and utilities. The proposed project would be implemented in four major phases from approximately 2011 through 2030 A major component of the proposed Redevelopment Plan is the Sustainability Plan, which includes goals, strategies, and targets for the sustainable redevelopment of NSTI. Figure 1-2 is the Treasure Island – Yerba Buena Island Land Use Plan.

Sustainability Plan. The Sustainability Plan documents the guiding principles for the proposed project's Development Program and identifies implementation measures to be undertaken by the developers and other stakeholders. Many of these measures are integral to the proposed Development Program, and are intended to facilitate progressively higher levels of sustainability over time. These include the proposed residential densities, proximity to transit facilities, orientation of streets and buildings, and green building specifications, which would be incorporated into the Design for Development guidelines and conditions of approval. In addition, the proposed Development Program would include strategies intended to achieve Gold certification under the U.S. Green Building Council's Leadership in Energy and Environmental Design for Neighborhood Development program. These include a comprehensive transportation demand management program, provision of infrastructure to maximize the on-site production of renewable energy as technologies and delivery mechanisms become available; and a parks and open space program to create, restore and maintain habitat and landscape areas, and other features that would reduce potable water usage.

1.1.1.2. Proposed Project Land Use Information

The proposed project consists of mixed-use development areas on Treasure Island and Yerba Buena Island, the majority of which occur on Treasure Island. Table 1-1 presents the overall land use distribution and proposed facilities.

1.1.1.3. Project Characteristics and Development Components

Residential. The proposed Development Program would include up to approximately 8,000 residential dwelling units (DU), including approximately 7,700 – 7800 units on Treasure Island and up to 300 units on Yerba Buena Island. The southwest corner of Treasure Island will be developed as an "Urban Core" neighborhood, located near the proposed Ferry Quay and Transit Hub. The proposed residences would include housing sized for families.

Proposed Neighborhood-Serving Retail, Commercial, and Institutional Uses. The proposed Development Program commercial component would include: approximately 500 hotel rooms; approximately 311,000 square feet (sf) of commercial uses in the renovated historic buildings, retail uses concentrated and organized as a main street between the Ferry Quay and Transit Hub, the Clipper Cove plaza, and two of the historic buildings, ancillary retail uses along the Clipper Cove marina and in the residential area. The total amount of new retail space provided in the Development Program's commercial component will be up to 140,000 sf.

Land Use Description	Land Use Designation	Unit/Area
Decidential (DII)	Treasure Island	7,700 – 7,850
Residential (DU)	Yerba Buena Island	150 - 300
Total (DU)		8,000
	Full Service Hotel at the Ferry Terminal	300 - 350 rooms
Hotel (rooms)	Boutique at Clipper Cove	70 - 100 rooms
	Wellness Center on YBI	50 rooms
Total (rooms)		Up to 500 rooms
Office (sf)	New Office Space on TI	100,000
New Construction Retail (sf)	Neighborhood Service	45,000
	Other Retail Uses	95,000
Total (sf)		Up to 140,000
	Building 1	76,000
Adaptive Reuse (sf)	Building 2	85,000
	Building 3	150,000
Total (sf)		311,000
Parking (sf)	Structures	2,479,750
Open Space (acres)		300
YBI Historic/Open Space Structures (sf)	Structures	75,000
Marina (slips)		400
	Treasure Island School	105,000
	Police/Fire	30,000
Community / Civic Facilities (sf)	Misc. small community facilities	13,500
Community , Civic i demaes (ci)	Pier 1 community center	35,000
	TI Sailing Center	15,000
	Museum	75,000
Total (sf)		273,500
Job Corps (sf)	Existing Square Feet to Remain	490,000
Coast Guard Facility	Existing Square Feet to Remain	110,000
	Wastewater Treatment Plant	10,000.
Utility Facilities (sf)	Corporation Yard Buildings at	4,000
	Treatment Plant and Water Tanks	
Total (sf)		14,000

The proposed Development Program would provide space for a variety of community programs in an existing historic building, in some of the proposed residential buildings, and possibly in a stand-alone community center with space for child-care facilities. The existing, closed public grammar school on Treasure Island would be improved and reopened for use by the San Francisco Unified School District. The existing wastewater treatment plant would be replaced. A solid waste recycling program would be established and a recycling center/corporation yard would be provided. A joint police/fire station would be provided on Treasure Island. The existing Job Corps facility would remain in use in its current location on Treasure Island, under the jurisdiction of the Department of Labor. Similarly, the U.S. Coast Guard facility on Yerba Buena Island would remain in its current location.

Proposed Open Space and Recreation. The proposed Development Program would include approximately 300 acres of publicly accessible pathways, parks, open space, plazas, and shoreline improvements. The recreational and open space uses would include perimeter shoreline and water access, a stormwater treatment wetland, a Great Park covering much of the northeast portion of Treasure Island, a regional recreational facility, and a variety of active and passive recreational areas.

Transit Facilities and Services. The proposed Development Program would include the construction of a new ferry quay and terminal and a bus transit facility on the western shore of Treasure Island. These two uses would anchor the proposed Intermodal Transit Hub, which would provide transportation facilities, services, and information. Proposed funding for ferry vessels would provide the opportunity for an operator to initiate ferry service to the Islands between San Francisco and Treasure Island, and the proposed bus transit facility would provide stops for Muni service to San Francisco and East Bay transit service. In addition, the proposed Development Program would include a free shuttle service around the Islands.

Recycled Water and Potable Water Efficiency Considerations. The proposed Development Program includes a proposal to use recycled water treated to tertiary levels to irrigate open space areas, the urban farm, roadside plantings, public open spaces, and landscape water features, and for appropriate plumbing fixtures within commercial buildings. As such, the proposed recycled water program would provide for an on-island recycled water plant (part of the proposed wastewater treatment facility), sized to meet the long-term demand. New distribution piping for proposed recycled water would be provided for uses on Treasure Island only. At this time, on-site recycled water facilities are still being evaluated; therefore, this WSA provides a water supply analysis with and without the use of recycled water at the project site.

The proposed Development Program, as stated above would include strategies intended to achieve Gold certification under the U.S. Green Building Council's Leadership in Energy and Environmental Design for Neighborhood Development program. These include a transportation demand management program, infrastructure provisions to maximize the on-site production of renewable energy; a parks and open space program to create, restore and maintain habitat and landscape areas; and features that would reduce potable water usage. In order to reduce the use of potable water on a per-unit basis, water reduction measures could include a combination of high-efficiency fixtures and appliances, and retrofitting existing building infrastructure.

1.2. Water Supply Planning

Senate Bill 610 was passed into law on January 1, 2002. This law reflects the need to incorporate water supply and demand analysis at the earliest possible stage in the planning process. SB 610 amended portions of the Water Code, including Section 10631, which contains the Urban Water Management Planning Act, as well as adding Sections 10910, 10911, 10912, 10913, and 10915, which describe the required elements of a WSA. Upon signing this bill and a related bill not applicable to the proposed project, Governor Gray Davis stated, "Most notably, these bills will coordinate local water supply and land use decisions to help provide California's cities, farms, and rural communities with adequate water supplies. Additionally, these bills increase requirements and incentives for urban water suppliers to prepare and adopt comprehensive management plans on a timely basis."

Senate Bill 610 is designed to build on the information that is typically contained in an Urban Water Management Plan (UWMP). The amendments to Water Code Section 10631 were designed to make WSAs and UWMPs consistent. A key difference between the WSAs and UWMPs is that UWMPs are required to be revised every five years, in years ending with either zero or five, while WSAs are required as part of the environmental review process for each individually qualifying project. As a result, the 20-year planning horizons for each type of document may cover slightly different planning periods than other WSAs or the current UWMP. Additionally, not all water providers who must prepare a WSA are required to prepare an UWMP.

² Department of Water Resources. 2003. Guidebook for Implementation of SB 610 and SB 221 of 2001.

1.2.1. SB 610 Water Supply Assessment

The SB 610 water supply assessment process involves answering the following questions:

- Is the project subject to CEQA?
- Is it a project under SB 610?
- Is there a public water system?
- Is there a current UWMP that accounts for the project demand?
- Is groundwater a component of the supplies for the project?
- Are there sufficient supplies available to serve the project over the next 20 years?

1.2.1.1. "Is the Project Subject to CEQA?"

The first step in the SB 610 process is determining whether the project is subject to CEQA. SB 610 amended Public Resources Code Section 21151.9 to read: "Whenever a City or county determines that a project, as defined in Section 10912 of the Water Code, is subject to this division [i.e., CEQA], it shall comply with part 2.10 (commencing with Section 10910) of Division 6 of the Water Code." The City of San Francisco and the TIDA have determined that the proposed project is a project subject to CEQA. The information contained in this assessment will be used to inform and support the project specific Environmental Impact Report (EIR) for the proposed project, and will be appended thereto.

1.2.1.2. "Is It a Project Under SB 610?"

The second step in the SB 610 process is to determine if a project meets the definition of a "Project" under Water Code Section 10912 (a). Under this section, a "Project" is defined as meeting any of the following criteria:

- 1. A proposed residential development of more than 500 dwelling units;
- 2. A proposed shopping center or business establishment employing more than 1,000 persons or having more than 500,000 square feet (ft²) of floor space;
- 3. A commercial building employing more than 1,000 persons or having more than 250,000 ft² of floor space;
- 4. A hotel or motel with more than 500 rooms;
- 5. A proposed industrial, manufacturing, or processing plant, or industrial park, planned to house more than 1,000 persons, occupying more than 40 acres of land, or having more than 650,000 ft² of floor area:
- 6. A mixed-use project that includes one or more of these elements; or
- 7. A project creating the equivalent demand of 500 residential units.

Alternately, if a public water system has less than 5,000 service connections, the definition of a "Project" also includes any proposed residential, business, commercial, hotel or motel, or industrial development that would account for an increase of 10 percent or more in the number of service connections for the public water system. The proposed project is a mixed-use project that would include one or more of these elements listed above, specifically, "the proposed project exceeds residential development of more than 500 dwelling units" and for that reason, it meets the requirements as a "Project" under the Water Code.

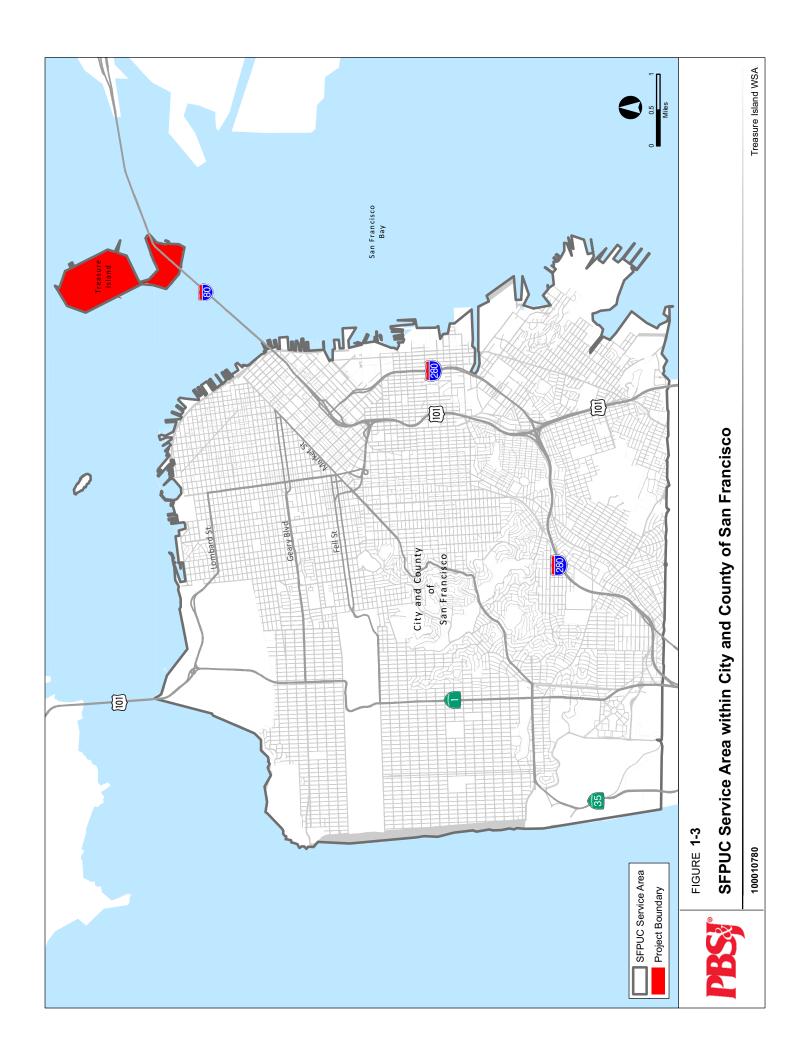
1.2.1.3. "Is There a Public Water System?"

The third step in the SB 610 process is determining if there is a "public water system" to serve the project. Section 10912 (c) of the California Water Code states: "[A] public water system means a system for the provision of piped water to the public for human consumption that has 3,000 or more service connections." The San Francisco Public Utilities Commission (SFPUC) is a public water system that serves the City and County of San Francisco, including the proposed project area. The SFPUC's Retail service area is shown in Figure 1-3. The SFPUC provides water to both retail and wholesale water customers. A population of over 2.5 million people within the counties of San Francisco, San Mateo, Santa Clara, Alameda, and Tuolumne rely entirely or in part on the water supplied by the SFPUC.

Retail Customers: The SFPUC's retail water customers include the residents, business, and industries located within the corporate boundaries of the City and County of San Francisco (City). In addition to these customers, retail water service is also provided to other customers located outside of the City, such as Treasure Island, the Town of Sunol, San Francisco International Airport, Lawrence Livermore Laboratory, Castlewood, and Groveland Community Services District.

Wholesale Customers: The SFPUC sells water to wholesale customers under terms of the recently renegotiated Water Supply Agreement together with individual water sales contracts. Since 1970, the SFPUC has supplied approximately 65 percent of the total wholesale customer water demand. Some of the wholesale water customers are entirely reliant on the SFPUC for their water supply.

1.2.1.4. "Is There a Current UWMP that Accounts for the Project Demand?"


Step four in the SB 610 process involves determining if there is a current UWMP that considers the projected water demand for the project area. The Water Code requires that all public water systems providing water for municipal purposes to more than 3,000 customers or supplying more than 3,000 acre-feet annually must prepare an UWMP, and the plan must be updated at least every five years on or before December 31 in years ending in five and zero.

Water Code Section 10910 (c)(2) states: "If the projected water demand associated with the proposed project was accounted for in the most recently adopted urban water management plan, the public water system may incorporate the requested information from the urban water management plan in preparing the elements of the assessment required to comply with subdivisions (d), (e), (f), and (g) [i.e., the WSA]." The SFPUC 2005 UWMP is currently available online.³

As of late 2008, the SFPUC concluded that its 2005 UWMP no longer accounted for every qualifying project within San Francisco including the land use changes at the proposed project area. Therefore, any qualifying projects not accounted in the 2005 UWMP will require preparation of a WSA that documents the SFPUC's current and projected supplies when compared to projected demands associated with new growth not covered in the 2005 UWMP including agriculture and industrial uses. When the 2005 UWMP was prepared, the redevelopment plan at TI-YBI did not include the development of the proposed project; therefore, this WSA analyzes the change in demand at the project site under the proposed project.

1-8

³ SFPUC 2005 Urban Water Management Plan, http://sfwater.org/detail.cfm/MC_ID/13/MSC_ID/165/C_ID/2776.

1.2.1.1. "Is Groundwater a Component of the Supplies for the Project?"

This section addresses the requirements of Water Code Section 10910 (f), paragraphs 1 through 5, which apply if groundwater is a source of supply for a proposed project. As required by Water Code Section 10910 (f) a description and status of the local groundwater basin is discussed below. Groundwater is a minor component of water supply for the SFPUC and for the proposed project. A discussion of the SFPUC's groundwater supply programs is included in Sections 2.6.2.1 and 3.4 of this WSA.

In April 2005, the SFPUC completed the Final Draft North Westside Basin Groundwater Management Plan (GWMP), which identified opportunities for increasing groundwater production in San Francisco. The GWMP included a Plan Element to regularly report on groundwater conditions in the North Westside Groundwater Basin. Since completion of the GWMP, the SFPUC prepared two annual reports on the condition, status and water supply programs involving the North Westside Groundwater Basin.

Groundwater Basin Descriptions

The City and County of San Francisco are located over seven groundwater basins: Westside, Lobos, Marina, Downtown, Islais Valley, South San Francisco, and Visitation Valley. The Lobos, Marina, Downtown, and South San Francisco Basins are located completely within City limits; the remaining basins extend into San Mateo County. The basins are part of the larger San Francisco Bay Hydrologic Region, as defined by the Department of Water Resources (DWR) in its Bulletin 118. DWR Bulletin 118 describes the groundwater resources of the state and provides individual basin descriptions. DWR has not identified any of the basins listed above as being in overdraft or as being adjudicated.⁴

The following information is from the SFPUC's 2008 Annual Groundwater Monitoring Report Westside Basin. See Appendix A for the entire report.

The Westside Basin is about 40 square miles in area and includes four major geologic units. These units are the Jurassic - Cretaceous Franciscan Complex, Pliocene Merced Formation, Pleistocene Colma Formation, and Pleistocene to recent Dune Sands. There are also minor, yet widespread, units of recent alluvium along stream channels. Groundwater development has primarily occurred in the Colma and Merced Formations. The Merced Formation is the primary water-producing aquifer in the basin; however, the Colma Formation is also of interest since Lake Merced is incised within this formation. As a result of the difficulty of differentiating the contacts between the Dune Sands, the Colma Formation, and the Merced Formation, the precise thickness of the Colma Formation and Dune Sands overlying the Merced Formation has not been determined. Groundwater in the vicinity of Lake Merced, and north to Stern Grove and Golden Gate Park, is encountered at relatively shallow depths (ranging from approximately 5 to 60 feet). South of Lake Merced, the depth to groundwater can exceed 300 feet below ground surface (bgs).

Phillips, et al. (1993) defined each of the groundwater basins in San Francisco as a continuous body of unconsolidated sediments and the surrounding surface drainage area. All seven major groundwater basins identified in San Francisco are open to the Pacific Ocean or San Francisco Bay. The landward parts of the groundwater basins generally are bounded horizontally and vertically by bedrock, which is assumed to be relatively impermeable compared with unconsolidated marine and alluvial deposits. Groundwater flow may occur between basins where the bedrock ridge that constitutes the boundary is subterranean. The north-south topography and bedrock height defined by

1-10

Department of Water Resources. Groundwater Management Technical Assistance – Adjudicated Basins. http://www.groundwater.water.ca.gov/technical_assistance/gw_management/#adbasins

the Coast Ranges generally forms an east-west hydrologic boundary through San Francisco.

The western part of San Francisco is divided into the Westside and Lobos Basins on the basis of a northwest-trending bedrock ridge through the northeastern part of Golden Gate Park. The bedrock ridge has several small surface expressions, and bedrock altitude data indicate that the ridge is continuous, though subterranean. Some degree of hydraulic connection is possible between the two basins where the ridge is not exposed at the land surface, but the degree of connection probably is minimal. The Westside Basin extends south to Burlingame and Hillsborough. Well drillers' logs for the San Bruno area indicate a deep sandy unit overlain by about 200 feet of predominantly fine-grained clays. Correlation of the deeper sand deposits is unclear; however, surficial mapping may indicate a relationship to exposures of sand/gravel deposits in the Burlingame area, which are mapped as non-marine Santa Clara Formation (Brabb and Pampeyan, 1983). A southward-extending ridge of Franciscan bedrock appears to separate San Bruno from the San Francisco Bay to the east. The upper fine grained beds appear to be Holocene to Late Pleistocene estuarine deposits of the San Francisco Bay (LSCE, 2004).

The subsurface configuration of the various geologic units in the Westside Basin has been delineated in a series of geologic cross-sections based on a combination of lithologic logs; water well drillers' reports, and geophysical logs (LSCE, 2004 and 2006). Lithologic units and other significant features in the basin are illustrated in geological cross-section form. In the northern Westside Basin, in San Francisco, there are up to three aguifer units separated by two distinctive fine-grained units, the -100-foot clay and the W-Clay (LSCE, 2004). The aquifer units are generally designated as: 1) The "Shallow aquifer", which is present to an elevation of approximately -100 feet mean sea level (msl) (located above the -100-foot clay), in the vicinity of Lake Merced and the southern portion of the Sunset District of San Francisco; 2) The "Primary Production aquifer", which overlies the W-Clay; and 3) The "Deep aguifer" which underlies the W-Clay. In the Daly City area, the -100-foot clay is absent, and the aguifer system is primarily composed of the Primary Production aguifer and the Deep aguifer. Further to the south, in the South San Francisco area, the W-Clay is absent and the Primary Production aquifer is split into shallow and deep units, separated by a fine-grained unit at an elevation of approximately 300 feet below msl. The primary production aquifer in the San Bruno area is located at an elevation less than 200 feet below msl, and it underlies a thick, surficial fine-grained unit comprised of clay, sandy clay, and sand beds.

1.2.1.2. "Are There Sufficient Supplies to Serve the Project Over the Next 20 Years?"

Water Code Section 10910 (c)(4) states: "If the City or county is required to comply with this part pursuant to subdivision (b), the water assessment for the project shall include a discussion with regard to whether the total projected water supplies, determined to be available by the City or county for the project during normal, single dry and multiple dry water years during a 20-year projection, will meet the projected water demand associated with the proposed project, in addition to existing and planned future uses, including agricultural and manufacturing uses."

The SFPUC, based on the analysis in this WSA, concludes that are adequate supplies to serve the proposed project, including existing demand and planned future uses in the SFPUC's Retail service area through 2030. However, after 2030 in multiple dry-year events, the SFPUC would have to implement its demand management programs to reduce demand to meet projected supply curtailments.

As required, the next step in the SB 610 process is to prepare the assessment of the available water supplies, including the availability of these supplies in all water-year conditions over a 20-year planning horizon, and an assessment of how these supplies relate to project-specific and

cumulative demands over that same 20-year period. In this case, the period is 20 years and covers the years 2010 to 2030.

There are three primary areas addressed in a water supply assessment:

- relevant water supply entitlements, water rights, and water contracts;
- a description of the available water supplies; and,
- an analysis of the demand placed on those supplies, both by the project and on a cumulative basis.

Water entitlements and contracts are addressed in Section 2 and demand analysis is discussed in Section 4. Section 6 contains conclusions and findings.

2.0 WATER SUPPLY

This section presents the local climate conditions and reviews the SFPUC's water supply sources, entitlements, water rights and contracts.

2.1. Climate

San Francisco has a Mediterranean climate. Summers are cool and winters are mild with infrequent rainfall. Temperatures in the San Francisco area average 58 degrees Fahrenheit annually ranging from the mid-40s in winter to the mid-70s in late summer. Strong onshore winds in summer keep the air cool, generating fog through September. The warmest temperatures generally occur in September and October. Rainfall in the San Francisco area averages about 20 inches⁵ per year and is generally confined to the "wet" season, from late October to early May. Except for occasional light drizzles from thick marine stratus clouds, summers are nearly completely dry. Coastal fog helps reduce summer irrigation requirements. A summary of temperature and rainfall data for the City of San Francisco is included in Table 2-1.

Table 2-1: City of San Francisco Climate Summary						
	Maximum Average Temperature (°F) ^a	Minimum Average Temperature (°F) ^a	Average Monthly Rainfall (inches) ¹			
January	55.8	42.5	4.38			
February	59.1	44.9	3.63			
March	61.2	46.1	2.81			
April	63.9	47.6	1.37			
May	66.8	50.2	0.39			
June	70.0	52.7	0.11			
July	71.5	54.1	0.02			
August	72.1	55.0	0.05			
September	73.4	54.8	0.18			
October	70.2	51.9	0.96			
November	62.9	47.4	2.36			
December	56.4	43.2	3.76			
Annual Average	65.3	49.2	20.00			
Note: 1. Source: Western Region	al Climate Center – San Francisco	Data from 1/1/1937 to 12/31/200	08.			

According to the Department of Water Resources, eleven droughts have occurred in California since 1850. The year 1977 is recognized as the driest single year of California's measured hydrologic record. The most recent multi-year statewide drought took place between 1987 and 1992. Droughts exceeding three years are relatively rare in Northern California; however, even localized droughts in Northern California have extensive repercussions for water agencies dependent upon Sierra Nevada snowpack and spring runoff.

Department of Water Resources. Background: Droughts in California. http://watersupplyconditions.water.ca.gov/background.cfm, accessed September 2007.

Hydrologic data from 1971 -2000: Western Regional Climate Center; Mission Delores/SF 047772 and Richmond/SF 047767.

2.2. Water Supply Entitlements, Water Rights and Contracts

Water Code Section 10910 (d)(1) states: "The assessment required by this section shall include an identification of any existing water supply entitlements, water rights, or water service contracts relevant to the identified water supply for the proposed project, and a description of the quantities of water received in prior years by the public water system, or the City or county if either is required to comply with this part pursuant to subdivision (b), under the existing water supply entitlements, water rights or water service contracts."

2.3. Introduction to the SFPUC Water Supply Sources

The Regional Water System (RWS) currently delivers an annual average of approximately 265 million gallons of water per day (mgd), with approximately 85 percent of that water supply provided by the Hetch Hetchy system, which diverts water from the Tuolumne River. The balance (of approximately 15 percent) comes from runoff in the Alameda Creek watershed, which is stored in the Calaveras and San Antonio reservoirs, and runoff from the San Francisco Peninsula, which is stored in the Crystal Springs, San Andreas, and Pilarcitos reservoirs (which also provide storage for water delivered from the Hetch Hetchy Project). A small portion of retail demand is met through locally produced groundwater, used primarily for irrigation at local parks and on highway medians, and recycled water, which is used for wastewater treatment process water, sewer box flushing, and similar wash down operations. The SFPUC also retails groundwater (pumped from the Pleasanton well field) to the Castlewood development in Alameda County.

2.3.1. Surface Water Rights

The City and County hold pre-1914 appropriative water rights to store and deliver water from the Tuolumne River in the Sierra Nevada and locally from the Alameda and Peninsula watersheds. The City and County also divert and store water in the San Antonio Reservoir under an appropriative water right license granted by the State Water Resources Control Board (SWRCB) in 1959.

Appropriative water rights allow the holder to divert water from a source to a place of use not connected to the water source. These rights are based on seniority and use of water must be reasonable, beneficial, and not wasteful. In 1914, California established a formal water rights permit system, which is administered by the SWRCB. The SWRCB has sole authority to issue new appropriative water rights but cannot define property rights created under a pre-1914 appropriative water right.

The 1912 Freeman Report identified the ultimate diversion rate from the Tuolumne River to the Bay Area as 400 mgd and the City used this as the basis for designing the export capacity of the Hetch Hetchy project. The City has sufficient water rights for current diversions and the ultimate planned diversion rate of the Hetch Hetchy Project.

The federal Raker Act, enacted on December 19, 1913, grants to the City rights-of-way and public land use on federal property in the Sierra Nevada Mountains to construct, operate, and maintain reservoirs, dams, conduits, and other structures necessary or incidental to developing and using water and power. It also imposes restrictions on the City's use of the Hetch Hetchy Reservoir, including (among others) the requirement that the City recognize the senior water rights of the Turlock and Modesto Irrigation Districts (TID and MID) to divert water from the Tuolumne River. Specifically, the Raker Act requires the City to bypass certain flows through its Tuolumne River reservoirs to TID and MID for beneficial use. By agreement, the City, TID, and MID have supplemented these Raker Act obligations to increase the TID and MID entitlements to account for other senior Tuolumne River water rights and to allow the City to "pre-pay" TID and

MID their entitlement by storing water in the Don Pedro water bank. The City is required to bypass inflow to TID and MID sufficient to allow these districts to divert 2,416 cfs or natural daily flow, whichever is less, at all times (as measured at La Grange), except for April 15 to June 13, when the requirement is 4,066 cfs or natural daily flow as measured at La Grange, whichever is less.

2.4. Water Supply Considerations

The SFPUC prepared a Program Environmental Impact Report (PEIR) under CEQA for the Water System Improvement Program (WSIP). (A discussion of the WSIP follows in Section 2.7.1). At the request of the SFPUC, the San Francisco Planning Department studied the Phased WSIP Variant as part of the environmental analysis. The SFPUC identified this variant in order to consider a program scenario that involved full implementation of all proposed WSIP facility improvement projects to insure that the public health, seismic safety, and delivery reliability goals were achieved as soon possible, but phased implementation of a water supply program to meet projected water purchases through 2030. Deferring the 2030 water supply element of the WSIP until 2018 would allow the SFPUC and its wholesale customers to focus first on implementing additional local recycled water, groundwater, and demand management actions while minimizing additional diversions from the Tuolumne River.

The Phased WSIP Variant establishes a mid-term planning milestone in 2018 when the SFPUC would reevaluate water demands through 2030 in the context of then-current information, analysis, and available water resources. The SFPUC currently delivers an annual average of approximately 265 million gallons per day (mgd) from local watersheds (Peninsula and Alameda Creek) and the Tuolumne River Watershed. By 2030, demand on the SFPUC system is expected to increase to an annual average of 300 mgd. The Phased WSIP Variant would meet the projected 2018 purchase requests of 285 mgd from the RWS by capping purchases at 265 mgd; the remaining 20 mgd would be met through water conservation, recycling, and groundwater use—10 mgd by Wholesale Customers and 10 mgd in the City. Before 2018, the SFPUC and the Wholesale Customers will engage in a new planning process to re-evaluate water system demands and supply options, including conducting additional studies and environmental reviews necessary to address water supply needs after 2018. Therefore, this WSA assumes the SFPUC will limit purchases to an annual average of 265 mgd from the RWS watersheds.

2.5. SFPUC Regional Water System

In 1934, San Francisco combined the Hetch Hetchy system and Spring Valley system to create the SFPUC RWS. The rights to local diversions were originally held by the Spring Valley Water Company, which was formed in 1862. The RWS is owned and operated by the City and County.

On average, the Hetch Hetchy Project provides over 85 percent of the water delivered and the balance approximately 15 percent is met through the Bay Area reservoirs. The RWS delivers an annual average of approximately 265 mgd – 81 mgd serves the Retail customers within the City and County of San Francisco and the other 184 mgd is delivered to the Wholesale customers. The RWS currently delivers water to 2.5 million users in Tuolumne, Alameda, Santa Clara, San Mateo, and San Francisco counties.

The RWS is a complex system, shown in Figure 2-1, and supplies water from two primary sources:

Tuolumne River through the Hetch Hetchy Reservoir, and

• Local runoff into reservoirs in Bay Area reservoirs in the Alameda and Peninsula watersheds.

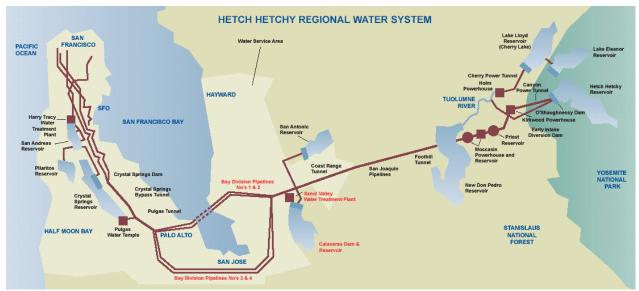


Figure 2-1: Regional Water Supply System

Water from Hetch Hetchy Reservoir, through the Hetch Hetchy facilities represents the majority of the water supply available to the SFPUC. On average, the Hetch Hetchy Project provides over 85 percent of the water delivered to the Bay Area. During droughts the water received from the Hetch Hetchy system can amount to over 93 percent of the total water delivered.

Bay Area reservoirs provide on average approximately 15 percent of the water delivered by the SFPUC RWS. The local watershed facilities are operated to conserve local runoff for delivery. On the San Francisco Peninsula, the SFPUC utilizes Crystal Springs Reservoir, San Andreas Reservoir, and Pilarcitos Reservoir to capture local watershed runoff. In the Alameda Creek watershed, the SFPUC constructed the Calaveras Reservoir and San Antonio Reservoir. In addition to capturing runoff, San Antonio, Crystal Springs, and San Andreas reservoirs also provide storage for Hetch Hetchy diversions. The local watershed facilities also serve as an emergency water supply in the event of an interruption to Hetch Hetchy diversions.

2.5.1. Local Groundwater

San Francisco overlies all or part of seven groundwater basins. These groundwater basins include the Westside, Lobos, Marina, Downtown, Islais Valley, South, and Visitation Valley basins. The Lobos, Marina, Downtown, and South basins are located wholly within the City limits, while the remaining three extend south into San Mateo County. The portion of the Westside Basin aquifer located within San Francisco is commonly referred to as the North Westside Basin. With the exception of the Westside and Lobos basins, all of the basins are generally inadequate to supply a significant amount of groundwater for municipal supply because of low yield.

Early in its history, San Francisco made significant use of local groundwater, springs, and spring-fed surface water. However, after the development of surface water supplies in the Peninsula and Alameda watersheds by Spring Valley Water Company and the subsequent completion of the Hetch Hetchy Reservoir and aqueduct in the 1930's, the municipal water supply system has relied almost exclusively on surface water from local runoff, the Alameda and

Peninsula watersheds, and the Tuolumne River watershed. Local groundwater use, however, has continued in the City primarily for irrigation purposes. The San Francisco Zoo and Golden Gate Park use groundwater for non-potable purposes. Current use accounts for annual average of approximately 2.5 mgd.

About one (1) mgd of groundwater is delivered to Castlewood Country Club from well fields operated by the SFPUC in Pleasanton and drawn from the Central Groundwater Sub Basin in the Livermore/Amador Valley. These wells are metered and have been in operation for several decades. For purposes of water accounting and billing, these deliveries to Castlewood are accounted for as part of San Francisco's Retail Customer base. Castlewood groundwater supplies are used entirely within Castlewood and not available for use in the City and County of San Francisco.

2.5.2. Local Recycled Water

From 1932 to 1981, the City's McQueen Treatment Plant provided recycled water to Golden Gate Park for irrigation purposes. Because of changes in regulations the City closed the McQueen plant and discontinued use of recycled water in Golden Gate Park. Currently, recycled water from the SFPUC's Southeast Water Pollution Control Plant is used on a limited basis for wash-down operations and is provided to construction contractors for dust control and other nonessential construction purposes. Current use of recycled water for these purposes in the City is less than one mgd.

2.5.3. Local Water Conservation

The SFPUC is committed to demand-side management programs and the City's per capita water use has dropped by about one-third since 1977 due, in part, to these programs. The first substantial decrease came following the 1976-77 drought in which gross per capita water use dropped from 160 to 130 gallons per capita per day (gpcd). Despite continuous growth in the City since then, water demands have remained lower than pre-drought levels.

A second substantial decrease in water use within the City occurred as a result of the 1987-92 drought when a new level of conservation activities resulted in further water use savings. It is anticipated that through the continuation and expansion of these programs, per capita water use will continue to decrease into the future. Current gross per capita water use within the City is 91.5 gpcd with residential water use calculated to be approximately 57 gpcd, the lowest use of any major urban area in the State.

The SFPUC's demand management programs range from financial incentives for plumbing devices to improvements in the distribution efficiency of the system. The conservation programs implemented by the SFPUC are based on the California Urban Water Conservation Council's list of fourteen Best Management Practices identified by signatories of the Memorandum of Understanding Regarding Urban Water Conservation in California executed in 1991.

2.6. Water Supply Reliability and Improvements

To improve dry-year supplies and ensure that the future water needs of its retail and wholesale customers will be met in a more reliable and sustainable manner, the SFPUC has undertaken water supply projects in the WSIP. In addition, the SFPUC is looking to diversify and enhance the City's water supply portfolio through the development of local water supplies, such as recycled water, groundwater, and water conservation.

2.6.1. Water System Improvement Program and the Phased WSIP Variant

The WSIP is a multi-billion dollar, multi-year, capital program to upgrade the RWS. The program will deliver improvements that enhance the SFPUC's ability to provide reliable, affordable, high quality drinking water to its 27 wholesale customers and regional Retail customers in Alameda, Santa Clara, and San Mateo counties, and to 800,000 Retail customers in San Francisco, in an environmentally sustainable manner.

As required under CEQA, the San Francisco Planning Department prepared a PEIR for the WSIP. The PEIR evaluated the potential environmental impacts of the proposed WSIP and identified potential mitigations to those impacts. The PEIR also evaluated several alternatives to meet the SFPUC service area's projected increase in water demand between now and 2030. The water supply improvement options investigated included 10 alternatives using various water supply combinations from the local watersheds; the Tuolumne and Lower Tuolumne; ocean desalination; and additional recycled water, groundwater, and conservation.

The PEIR was certified by the San Francisco Planning Commission on October 30, 2008. On the same day the SFPUC adopted the Phased WSIP Variant option. (Appendix B contains the SFPUC Commission Agenda Item for approval of the PEIR)

2.6.1.1. Phased WSIP Variant

At the request of the SFPUC, the San Francisco Planning Department studied the Phased WSIP Variant as part of the environmental analysis. The SFPUC identified this variant in order to consider a program scenario that involved full implementation of all proposed WSIP facility improvement projects to insure that the public health, seismic safety, and delivery reliability goals were achieved as soon possible, but phased implementation of a water supply program to meet projected water purchases through 2030. Deferring the 2030 water supply element of the WSIP until 2018 would allow the SFPUC and its wholesale customers to focus first on implementing additional local recycled water, groundwater, and demand management actions while minimizing additional diversions from the Tuolumne River.

The Phased WSIP Variant establishes a mid-term planning milestone in 2018 when the SFPUC would reevaluate water demands through 2030 in the context of then-current information, analysis and available water resources. The SFPUC currently delivers an annual average of approximately 265 million gallons of water per day from local watersheds (Peninsula and Alameda Creek) and the Tuolumne River Watershed. By 2030, demand on the SFPUC system is expected to increase to an annual average of 300 million gallons of water per day. The Phased WSIP Variant would meet the projected 2018 purchase requests of 285 mgd from the RWS by capping purchases from the watersheds at 265 mgd; the remaining 20 mgd would be met through water efficiencies and conservation, water recycling and local groundwater use—10 mgd by Wholesale Customers and 10 mgd in the City and County. Before 2018, the SFPUC and the Wholesale Customers will engage in a new planning process to reevaluate water system demands and supply options, including conducting additional studies and environmental reviews necessary to address water supply needs after 2018.

The Phased WSIP Variant includes the following key program elements:

- Full implementation of all WSIP facility improvement projects.
- Water supply delivery to RWS customers through 2018 only of 265 mgd average annual target delivery originating from the watersheds. This includes 184 mgd for the Wholesale Customers and 81 mgd for the Retail Customers.

- Water supply sources include: 265 mgd average annual from the Tuolumne River and local watersheds and 20 mgd of water conservation, recycled water and local groundwater developed within the SFPUC's service area (10 mgd Retail; 10 mgd wholesale).
- Dry-year water transfers of 2 mgd coupled with the Westside Groundwater Basin Conjunctive Use Project.
- Re-evaluation of 2030 demand projections, potential RWS purchase requests and water supply options by December 31, 2018 and a separate SFPUC decision in 2018 regarding RWS water deliveries after 2018.
- The ability to impose financial penalties is included in the new Water Supply Agreement to limit water sales to an average annual of 265 mgd from the watersheds.

The additional 10 mgd of supplies produced in San Francisco by implementation of the local WSIP programs have been included in this WSA. This WSA assumes WSIP local water supplies will be in place in the timeframes stated in the SFPUC WSIP. With this assumption, total Retail supplies increase to 94.50 mgd in 2015 and remain constant over the 20-year planning horizon. Projects related to these efforts are detailed below. WSIP programs, financials and progress-to-date is presented in Appendix C.

2.6.2. Local Groundwater Projects

2.6.2.1. San Francisco Groundwater Supply Project

The San Francisco Groundwater Supply Project would provide up to 4 mgd of local groundwater water to improve reliability during drought or maintenance conditions, as well as ensure that a reliable, high-quality source of water is available in the case of an earthquake or other emergency. The project proposes the construction of up to six wells and associated facilities in the western part of San Francisco to extract up to 4 mgd of groundwater water from the Westside Groundwater Basin for distribution in the City. The extracted groundwater, which would be used both for regular and emergency water supply purposes, would be disinfected and blended in small quantities with imported surface water before entering the municipal drinking water system. The environmental review for this project begins in November 2009.

2.6.2.2. Lake Merced Water Level Restoration Project

The goal of the Lake Merced Water Level Restoration Project is to protect and balance the beneficial uses of Lake Merced by providing a more stable water level regime using groundwater and stormwater, rather than supplies provided through the RWS.

2.6.2.3. Local Recycled Water Projects

In March 2006, the SFPUC updated the Recycled Water Master Plan (RWMP) for the City. The 2006 RWMP identified where and how San Francisco could most feasibly develop recycled water in the City and provided strategies for implementing the recycled water projects that were identified.

The proposed Westside, Harding Park and Eastside Recycled Water Projects would provide up to 4 mgd of recycled water to a variety of users in San Francisco. Recycled water will primarily be used for landscape irrigation, toilet flushing and industrial purposes. The Harding Park Project has completed environmental review, and the Westside Project will begin environmental review in late 2009 or early 2010.

The proposed Westside Project would bring recycled water from the proposed recycled water treatment facility in Golden Gate Park to the San Francisco Zoo, Golden Gate Park, and Lincoln Park Golf Course. Recycled water would be used for irrigation at all three sites; additionally, it would be used for non-potable uses in Golden Gate Park at the California Academy of Sciences. The proposed Harding Park Recycled Water Project would use available recycled water from the North San Mateo County Sanitation District (NSMCSD) located in Daly City, to irrigate Harding Park and Fleming Park golf courses in San Francisco. The SFPUC has partnered with the NSMCSD for this proposed project.

Currently, the SFPUC is conducting a recycled water demand assessment on the Eastside of San Francisco. The assessment examines the potential uses of recycled water for irrigation, toilet flushing, and commercial applications. The WSIP contains funding for planning, design, and environmental review for the San Francisco Eastside Recycled Water Project.

2.6.3. Local Water Conservation

The SFPUC has also increased its water conservation programs in an effort to achieve new water savings by 2018. The SFPUC's conservation program is based on the Demand Study that identified water savings and implementation costs associated with a number of water conservation and efficiency measures. The Demand Study evaluated the costs and benefits of implementing 48 different conservation measures using an end-use model. The results indicated that local conservation programs implemented through 2030 could cumulatively reduce Retail purchases from the SFPUC RWS by 4.5 mgd in year 2030. These new conservation programs include high-efficiency toilet replacement in low-income communities, plumbing retrofits in compliance with the 1992 California plumbing code and water efficient irrigation systems in municipal parks. Through its expanded conservation program, the SFPUC anticipates reducing gross per capita consumption from 91.5 gpcd to 87.4 gpcd by 2018 for an average daily savings of approximately 4.0 mgd.

2.6.4. Summary of New Local Water Supply Programs

As previously stated, the SFPUC anticipates that the expanded groundwater and recycled water production, and increased conservation programs will provide the City with an additional 10 mgd of local water supplies. As quantified in Table 2-2 with implementation of the WSIP, the SFPUC expects to have in these local supplies in place by 2015. These programs and projects are reliable in all hydrologic conditions and are not subject to WSAP reductions or curtailments. (Appendix C contains the Summary of the WSIP Projects, a Quarterly Progress Report [April – June 2009] and other progress-to-date information)

Table 2-2: WSIP Water Supply Sources (mgd)							
WSIP Water Supplies	2010	2015	2020	2025	2030		
Groundwater (SF GWSP)	0.0	2.0	2.0	2.0	2.0		
Recycled Water	0.0	4.0	4.0	4.0	4.0		
Conservation Supply	0.0	4.0	4.0	4.0	4.0		
Total New Supplies 0.0 10.0 10.0 10.0 10.0							
Source: SFPUC Water System	Improvement Pro	ogram, October 2	2008.				

2.7. Total SFPUC Retail Water Supplies

Table 2-3 summarizes the SFPUC's total water supplies now and over the 20-year planning period. In 2010, prior to the development of the 10 mgd of local supplies, the SFPUC can access an annual average 84.50 mgd from all sources discussed above. Beginning in 2015,

when the WSIP water supply sources are readily available, the SFPUC's Retail water supplies increase to 94.5 mgd. These supplies are assumed to be available in the quantities listed in Table 2-3. The SFPUC intends to use these supplies to meet its Retail customer demands.

Table 2-3: SFPUC Water Supplies 2010 - 2030							
Water Supply Sources	2010	2015	2020	2025	2030		
Current Water Supply Sources							
SFPUC RWS							
(Surface water: Tuolumne River, Alameda & Peninsula) ⁽¹⁾	81.0	81.0	81.0	81.0	81.0		
Groundwater Sources							
Groundwater (In-City Irrigation Purposes)	2.5 ⁽²⁾	0.5 ⁽³⁾	0.5 ⁽³⁾	0.5 ⁽³⁾	0.5 ⁽³⁾		
Groundwater at Castlewood ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾		
Groundwater: Treated for Potable – Previously used							
for In-City Irrigation purposes ⁽⁵⁾	0.0	2.0	2.0	2.0	2.0		
Groundwater Subtotal	3.5	3.5	3.5	3.5	3.5		
Current Water Supply Subtotal	84.5	84.5	84.5	84.5	84.5		
WSIP Water Supply Sources			•				
Groundwater Development: Potable from SF GWSP							
(Westside Groundwater Basin) ⁽⁶⁾	0.0	2.0	2.0	2.0	2.0		
Recycled Water Expansion for Irrigation ^(/)	0.0	4.0	4.0	4.0	4.0		
Conservation Supply Program	0.0	4.0	4.0	4.0	4.0		
WSIP Supply Subtotal	0.0	10.0	10.0	10.0	10.0		
Total Retail Supply (Current and WSIP Supplies)	84.5	94.5	94.5	94.5	94.5		

Notes

Figure 2-1 is a graphical representation of the SFPUC's current supply sources and the WSIP local supply sources. As shown in Figure 2-2, the supplies grow from 84.5 mgd in 2010 to 94.5 mgd as the WSIP local supplies are brought into the SFPUC Retail supply system. The figure shows the total supplies increasing in 2015 and holding constant over the 20-year planning horizon.

2.7.1. New Drought Year Supplies

As outlined above, the WSIP includes development of dry-year supplies for the RWS – these supplies would be readily available during dry years when the watershed supplies are cutback due to below-normal precipitation. The PEIR also included an analysis of dry-year water supply transfers from the senior water rights holders (MID and TID) on the Tuolumne River in 2018; a groundwater conjunctive use project; and, a regional desalination project. The latter two projects are described in greater detail in Section 3.4. The SFPUC is currently investigating the possibility of a dry-year water transfer with MID and TID in 2018. (See Appendix D for an expanded discussion of dry year water supply programs and projects)

^{1.} RWS surface water supplies are subject to reductions due to below-normal precipitation. This may affect dry year supplies - model shows supply reduction occurs in year 2 of multiple dry year event. (Source: SFPUC 2008 WSIP Phase Variant Supply limitation)

^{2.} Groundwater serves irrigation to Golden Gate Park, SF Zoo, and Great Highway Median. (Source: 2005 SFPUC UWMP Table 8B page 43)

A Groundwater reserve of 0.5 mgd for irrigation purposes will remain as part of SFPUC's non-potable groundwater supply. (Source: SFPUC 2008 WSIP Phase Variant)

^{4.} Castlewood current and projected use remains unchanged over 20 year planning horizon. (Source: 2005 SFPUC UWMP Table 8B page 43)

^{5. 2.0} mgd of groundwater treated and blended for Potable water supply purposes. (Source: 2005 SFPUC UWMP Table 8B page 43)

^{6. 2.0} mgd of new groundwater developed as part of the new local supply target. (Source: SFPUC 2008 WSIP Phase Variant Supply Target) 7. 2.0 mgd of Recycled used for irrigation at Golden Gate Park, SF Zoo, Great Highway Median, and 2.0 mgd for other non-potable purposes.

⁽Source: SFPUC 2008 WSIP Phase Variant Supply Target)

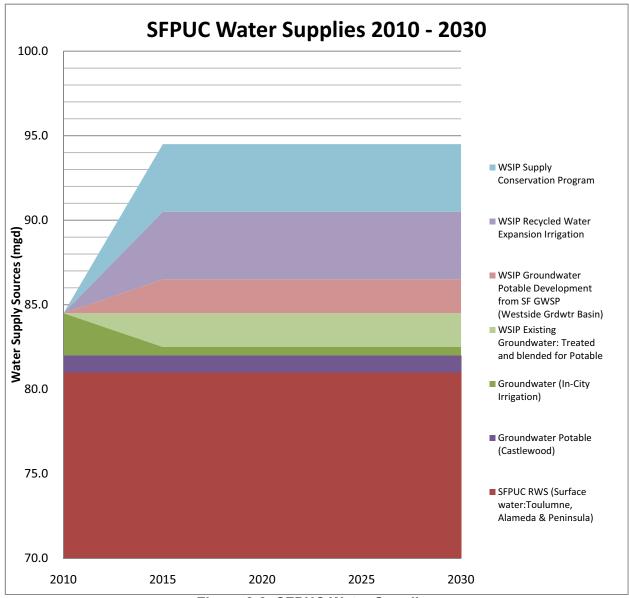


Figure 2-2: SFPUC Water Supplies

3.0 DROUGHT SUPPLY PLANNING AND WATER SUPPLY RELIABILITY

3.1. Overview

The SFPUC water supply system reliability is expressed in terms of its ability to deliver water during droughts. Reliability is defined by the amount and frequency of water delivery reductions required to balance customer demands with available supplies in droughts. The SFPUC has a reliability goal of meeting dry-year delivery needs while limiting rationing to a maximum 20 percent system-wide reduction in water service during extended droughts.

The total amount of water the SFPUC has available to deliver to its retail and wholesale customers during a defined period of time is dependent on several factors. These include the amount of water that is available to the SFPUC from natural runoff, the amount of water in reservoir storage, and the amount of water that must be released from the SFPUC's system for commitments to purposes other than customer deliveries, such as releases below Hetch Hetchy reservoir to meet the Raker Act and fishery purposes.

The SFPUC operates its system to optimize the reliability and quality of its water deliveries. Hetch Hetchy Reservoir operations are guided by two principal objectives: collection of Tuolumne River water runoff for diversion to the Bay Area; and fulfillment of the SFPUC's downstream release obligations. To conserve runoff, Hetch Hetchy Project reservoirs are drawn down beginning in early winter, relying on the recurrence and forecast of snow melt to guide drawdown releases. Similarly, the RWS Bay Area reservoirs are operated to conserve watershed runoff. As such, reservoirs are drawn down during the winter period to capture storms and reduce the potential for spilling water out of the reservoirs. In the spring, excess Hetch Hetchy water supply (snowmelt) is transferred to three of the Bay Area reservoirs, capable of receiving the water, to fill any unused reservoir storage.

Prior to the late 1970's, droughts did not seriously affect the ability of the SFPUC to sustain full deliveries to its customers. However, as the 1987-1992 drought progressed and reservoir storage continued to decline, it became apparent that continued full deliveries could not be sustained without the risk of running out of water before the drought ended.

To provide some level of assurance that water could be delivered continuously throughout a drought (although at reduced levels), the SFPUC adopted a drought planning sequence and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in SFPUC's reservoirs. Each year, during the snowmelt period, the SFPUC evaluates the amount of total water storage expected to occur throughout the RWS. If this evaluation finds the projected total water storage to be less than an identified level sufficient to provide sustained deliveries during drought, the SFPUC may impose delivery reductions or rationing.

SFPUC's UWMP assumes "firm" delivery "as the amount the system can be expected to deliver during historically experienced drought periods." The 1987 to 1992 drought is the basis for this plan, plus an additional period of limited water availability. The SFPUC plans its water deliveries assuming that the worst drought experience is likely to recur and then adds an additional period of limited water availability. An 8.5-year drought scenario is referred to as the "design drought" and is ultimately the basis for SFPUC's water resource planning and modeling.

⁷ San Francisco Public Utilities Commission. December 2005. Urban Water Management Plan. p. 21.

⁸ San Francisco Public Utilities Commission. December 2005. *Urban Water Management Plan.* p. 21.

The "design drought" is based on the 1986-1992 drought plus 2.5 years of "prospective drought", which includes 6 months of recovery period.⁹

3.1.1. Water Shortage Allocation Plan

During a drought, it is expected that the retail and wholesale customers would experience a reduction in the amount of water received from the RWS. The amount of this reduction has been dictated by existing contractual agreements between the SFPUC and the Wholesale Customers, as detailed in the existing Water Shortage Allocation Plan (WSAP). The WSAP provides specific allocations of available water between the retail and wholesale customers collectively associated with different levels of system-wide shortages, as shown in Table 3-1.

Table 3-1: WSAP Allocation						
Level of System-Wide Share of Available Water						
Reduction in Water Use SFPUC Wholesale Custome						
Required	Share	Share (collectively)				
5% or less	35.5%	64.5%				
6% through 10%	36.0%	64.0%				
11% through 15%	37.0%	63.0%				
16% through 20%	37.5%	62.5%				

In addition to providing an allocation method, the plan also includes provisions for transfers, banking and excess use charges.

Under the WSAP, SFPUC retail customers would experience no reduction in deliveries at a 10 percent shortage. However, during a 20 percent system-wide shortage, the retail customers would experience a 1.9 percent reduction in retail deliveries. This assumes the development of the additional 10 mgd of local supplies in the retail service area. These additional supplies are not subject to a reduction under the WSAP as the WSAP only allocates water from the RWS. Table 3-2 compares SFPUC RWS retail supplies during normal, single dry year, and multiple dry year periods.

Table 3-2: 2005 – 2030 SFPUC Retail Allocations in Normal, Dry and
Multiple Dry Years

			Si	ngle		М	ultiple Dry Year Event			
	Norm	al Year	Dry Year		Dry Year Year 1		Year 2		Year 3	
	mgd	%	mgd	%	mgd	%	mgd	%	mgd	%
2010	81.0	100%	81.0	100.0%	81.0	100.0%	79.5	98.1%	79.5	98.1%
2015	81.0	100%	81.0	100.0%	81.0	100.0%	79.5	98.1%	79.5	98.1%
2020	81.0	100%	81.0	100.0%	81.0	100.0%	79.5	98.1%	79.5	98.1%
2025	81.0	100%	81.0	100.0%	81.0	100.0%	79.5	98.1%	79.5	98.1%
2030	81.0	100%	81.0	100.0%	81.0	100.0%	79.5	98.1%	79.5	98.1%

Notes

 In 2010 the retail allocation of RWS supply is reduced to 81 mgd to reflect the retail allocation under the 2018 Phased WSIP Variant. 10 mgd of recycled water, groundwater, and conservation will be implemented by 2015 to make up for the loss in RWS supply. The 10 mgd of local supply is not subject to reduction under the WSAP.

Source: San Francisco Public Utilities Commission. 2005. Urban Water Management Plan for the City and County of San Francisco. p. 54-57 and discussions with SFPUC staff.

Under the WSAP, the SFUPC retail allocations at a 10 percent shortage are 85.86 mgd. However, due to the Phased WSIP Variant, only 81 mgd of RWS supply is shown. The remaining supply can be transferred to the Wholesale Customers under the terms of the Water Supply Agreement.

San Francisco Public Utilities Commission. April 2000. Water Supply Master Plan. p. 22.

The WSAP has been carried forward in the new Water Supply Agreement for system-wide shortages of up to 20 percent. For shortages in excess of this amount, the Water Supply Agreement provides that the SFPUC may allocate water in its discretion.

3.2. Retail Water Shortage Allocation Plan

San Francisco has established criteria that relate water deliveries to water supply and the SFPUC's objectives to manage water deliveries during extended drought. These criteria provide guidance to the SFPUC for the determination of the annual availability of water. The structure of the criteria was developed during the course of the 1987-92 drought period and incorporates procedures which were implemented during actual operations.

The established water delivery criteria incorporate a three-level staging of delivery reductions: the first stage is associated with voluntary actions by customers and the second and third stages are associated with mandatory rationing programs enforced by the SFPUC. Depending on the level of water demand and the desired maximum delivery reduction, one, two or all three of the stages are required. These criteria have been found to be viable through computer simulation of historical drought events and resultant SFPUC operations.

Based on past drought experience and the established criteria, San Francisco's Retail Water Shortage Allocation Plan (RWSAP) was adopted to formalize the three-stage program of action to be taken in San Francisco to reduce water use during a drought.

In accordance with the RWSAP, prior to the initiation of any water delivery reductions in San Francisco, whether it be initial implementation of reduction delivery or increasing the severity of water shortage, the SFPUC would outline a drought response plan that would address the following: the water supply situation; proposed water use reduction objectives; alternatives to water use reductions; methods to calculate water use allocations and adjustments; compliance methodology and enforcement measures; and, budget considerations. This drought response will be presented at a regularly scheduled SFPUC Commission meeting for public input. The meeting will be advertised in accordance with the requirements of Water Code Section 6066 of the Government Code, and the public will be invited to comment on the SFPUC's intent to reduce deliveries.

Depending on the level of water demand and the desired objective for water use reduction, one, two, or all three stages of the RWSAP may be required.

Stage 1 (Voluntary)

- System-wide demand reductions of 5-10 percent experienced
- Voluntary rationing request of customers
- Customers are alerted to water supply conditions
- Remind customers of existing water use prohibitions
- Education on, and possible acceleration of, incentive programs

Stage 2 (Mandatory)

- System-wide demand reductions of 11-20 percent experienced
- All Stage 1 actions implemented
- All customers receive an "allotment" of water based on the Inside/Outside allocation method (based on base year water usages for each account)

• Water use above the "allocation" level will be subject to excess use flow restrictor devices and shut-off of water

Stage 3 (Mandatory)

- System-wide demand reductions of 20 percent or greater experienced
- Same actions as in Stage 2 with further reduced allocations

3.3. Urban Water Management Planning Act (Water Code Section 10632)

Pursuant to the Urban Water Management Planning Act (Water Code Section 10632), water suppliers with an existing dry year shortage contingency plan can implement subsequent stages of demand reduction measures listed in its UWMP as a strategy to balance supply and demand. The WSAP and the RWSAP, contained in Section 9 of the SFPUC's 2005 UWMP is the SFPUC's dry year shortage contingency plan that allows the SFPUC to reduce water deliveries to customers and implement demand reductions during periods of water shortage. Therefore, when a supply deficit occurs, the SFPUC would follow its adopted water shortage contingency plans (WSAP and RWSAP) to implement drought-planning sequences and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in the SFPUC reservoirs. These delivery reductions allow the SFPUC to maintain water in storage over an extended period. In addition, under the RWSAP, the SFPUC would balance Retail supply curtailments by reducing demand.

3.4. Dry Year Water Supply Projects

As discussed in Section 2.7, the SFPUC, as part of the WSIP, has currently engaged the following projects or programs as methods to improve RWS dry-year supplies. Within the WSIP, the SFPUC addressed the development of supplies to be utilized during dry year events. These plans include the use of recycled water as component of a conjunctive use program and participation in the development of Bay Area desalination plant. Each of these plans is discussed below. (See Appendix D for an expanded discussion of dry year water supply programs and projects)

3.5. Development of Dry Year Supplies

3.5.1. Groundwater Storage and Recovery Project

The proposed Regional Groundwater Storage and Recovery Project would balance the use of both groundwater and surface water to increase water supply reliability during dry years or in emergencies. The proposed project is located in San Mateo County and is sponsored by the SFPUC in coordination with its partner agencies, the California Water Service Company, City of Daly City and City of San Bruno. The partner agencies currently purchase wholesale surface water from the SFPUC and also independently operate groundwater production wells for drinking water and irrigation.

The proposed Regional Groundwater Storage and Recovery Project would extract groundwater from the South Westside Basin groundwater aquifer in San Mateo County. The project would consist of installing up to 16 new recovery well facilities in northern San Mateo County to pump stored groundwater during a drought. During years of normal or heavy precipitation, the proposed project would provide surface water to the partner agencies in order to reduce the amount of groundwater pumped. Over time, the reduced pumping would result in the storage of approximately 61,000 acre-feet of water (more than the supply contained in the Crystal Springs Reservoir on the SFPUC Peninsula Watershed). This would allow recovery of this stored water

at a rate of up to 7.2 mgd for a 7.5-year dry period. The water would be in compliance with the California Department of Public Health requirements for drinking water supplies. This project would include construction of well pump stations, disinfection units, and piping. This project is currently undergoing environmental review.

3.5.2. Desalination

The SFPUC's investigations of desalination as a water supply source have focused primarily on the potential for regional facilities. The proposed Bay Area Regional Desalination Project is a joint venture between the SFPUC, Contra Costa Water District, East Bay Municipal Utility District, and the Santa Clara Valley Water District. The regional desalination project would: provide an additional source of water during emergencies; provide a supplemental water supply source during extended droughts; allow other major water facilities to be taken out of service for maintenance or repairs; and increase supply reliability by providing water supply from a regional facility. The Bay Area Regional Desalination Project would have an ultimate total capacity of up to 65 mgd.¹⁰

¹⁰ EBMUD, "Desalination Project", www.ebmud.com/water_&_environment/water_supply/current_projects/desalination_project/default.htm, accessed July 30, 2009.

4.0 WATER DEMAND OVERVIEW

The SFPUC provides wholesale water service to 27 Bay Area water agencies located in Alameda, San Mateo and Santa Clara Counties (Wholesale Customers), and also serves as the retail water supplier for the City. This section shows the calculated water demand for the proposed project as well the calculated water demand projections for San Francisco based on recent housing and population forecasts within the entire system.

4.1. Overview

Over 2.5 million people in Bay Area counties currently rely on water supplied by the SFPUC RWS. The water supplied by the RWS comes from sources in the Bay Area (reservoirs with local runoff) and water from the Tuolumne River watershed. The water is of excellent quality and reasonable cost, and is a positive factor in attracting businesses, new residents, and industry to the Bay Area.

In addition to providing wholesale water supply, the SFPUC provides retail water service to residents, businesses, and institutions within the City limits, as well as to a number of residential and commercial accounts in the Bay Area and the Sierra Nevada foothills.

Wholesale Customers: The SFPUC provides wholesale water service to 27 Bay Area water agencies in Alameda, San Mateo, and Santa Clara Counties under the terms of a recently renegotiated Water Supply Agreement. The SFPUC supplies approximately 65 percent of the total wholesale customer water demand. Some of the wholesale water customers rely entirely on the SFPUC for their water supplies.

Retail Customers: The SFPUC's retail water customers include the residents, businesses, and industries within the municipal boundaries of the City and County. In addition to these customers, retail water service is also provided to other customers in the Bay Area and Sierra Nevada foothills. These accounts include the San Francisco International Airport and the San Francisco County Jail in San Mateo County, the unincorporated Town of Sunol and Lawrence Livermore Laboratory in Alameda County, and the Groveland Community Services District in Tuolumne County. In addition, the SFPUC retails groundwater (pumped from the Pleasanton well field) to the Castlewood development in Alameda County.

Historically, approximately 96 percent of the SFPUC's retail water demands have been met through deliveries from the SFPUC RWS. A small portion of San Francisco's demand is met through locally produced groundwater and secondary treated recycled water. The groundwater is used primarily for irrigation at local parks and on highway medians. The recycled water is used mostly at municipal facilities for wastewater treatment process water, sewer box flushing, and similar wash down operations.

4.2. Historical System Demand

Table 4-1 presents the historical water demands in the SFPUC Retail service area in fiscal years 2000-2008 and shows the changes in demands over this same year period. As shown in Table 4-1, over the last eight years, total demand in the Retail service area has decreased by 7.9 mgd.

Table 4-1: SFPUC Water Demands (mgd)									
Fiscal Years ¹	2000	2001	2002	2003	2004	2005	2006	2007	2008
In City Retail Total	83.3	84.2	84.2	81.3	78.4	78.4	78.1	75.5	75.3
Outside Retail Customers ²	8.4	8.4	8.6	8.2	9.1	9.1	7.7	8.4	8.5
Total Demand ³	91.7	92.6	92.8	89.5	87.5	87.1	85.8	83.9	83.8

Notes:

4.3. Proposed Project Water Demand

The project sponsor's water resource consultants provided the expected water use of the proposed project. Initial water demand estimates of 1.7 mgd were provided to the SFPUC as part of the Water Supply Availability Study (WSAS) [WSAS Appendix B] in August 2009. For this WSA, the project sponsor provided refined water demand estimates of 1.63 mgd¹¹ (Appendix E). The refinement of projected water demand at the project site does not change the results of the WSAS. An independent analysis was performed as a part of the WSAS and this WSA by analyzing similar land uses and assigning a demand factor for each use. The results of the independent analysis conclude that the demand estimates provided by the project sponsors are reliable.

Proposed project implementation is expected by 2011 and buildout is expected by 2030. Table 4-2 on the following page presents the proposed project estimated water demand at buildout, including continuing demand associated with the Department of Labor and US Coast Guard. Total demand at the project site is estimated at 1.63 mgd. The potable average daily demand shown in Table 4-2 is estimated at 1.20 mgd (1,826.4 acre-feet per year). Table 4-2 estimates the projected water demand at the project site with compliance to the California plumbing code and San Francisco's Green Building Ordinance.

^{1.} Fiscal Years June to July

^{2.} Other Retail Customers include: Groveland CSD, Lawrence Livermore Laboratory, City Irrigation, Castlewood.

^{3.} Includes Unaccounted for water

Source: SFPUC 2005 UWMP and data from SFPUC staff August 2009.

Appendix E - Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets, November 2009.

Table 4-2: Treasure Island Redevelopment Project Estimated Water Demand (mgd)⁽¹⁴⁾

Land Use and Facilities	Units/Area	Potable Water Demand (gpd)	Total Water Demand
Residential ⁽¹⁾	8,000 Dwelling Units	812,704	962,000
Small Community Facilities ⁽³⁾	13,500 sf	945	1,418
Pier 1 Community Center ⁽³⁾	35,000 sf	2,450	3,675
Open Space ⁽¹⁰⁾	300 acres	30,000	210,000
Subtotal Residential ⁽¹⁾		846,099	1,177,093
Hotel ⁽²⁾	500 rooms	132,500	136,000
Office ⁽³⁾	100,000 sf	7,000	10,500
Retail ⁽³⁾	140,000 sf	9,800	14,700
Adaptive Reuse, General ⁽³⁾	244,000 sf	17,080	25,620
Adaptive Reuse, Retail ⁽³⁾	67,000 sf	4,690	7,035
Miscellaneous Structures ⁽⁴⁾	75,000 sf	5,625	7,500
Marina ⁽¹³⁾	400 slips	20,000	20,000
Treasure Island School ⁽⁷⁾	105,000 sf	21,000	21,000
Police/Fire ⁽⁶⁾	30,000 sf	4,000	6,000
TI Sailing Center ⁽³⁾	15,000 sf	1,050	1,575
Museum ⁽³⁾	75,000 sf	5,250	7,875
Department of Labor ⁽⁸⁾	900 rooms	111,542	111,542
Coast Guard Facility ⁽⁹⁾		17,000	17,000
Utility Facilities ⁽³⁾	14,000 sf	980	1,470
Urban Farm ⁽¹¹⁾	20 acres	2,000	62,000
Subtotal Non-Residential		359,517	449,817
Total ⁾		1,205,616	1,626,910 ⁽¹⁴⁾

Notes:

6. Potable use based on 400 persons per day at 15 gpcd total water use, minus recycled water use (toilets) at 5 gpcd

7. 1 Student per 100 SF, 20 gpd per students

8. Value based on 2007 monthly demand provided by S. Larano, SFPUC.

9. Value provided by S. Larano, SFPUC.

10. Potable demand at 100 gpd/acre. Irrigation demand at 180,000 gpd for TI (CMG 8/7/09 spreadsheet).

11. Potable demand at 100 gpd/acre. Irrigation demand at 60,000 gpd (CMG 8/7/09 spreadsheet).

13. Based on 400 slips, day use only (no live aboard). 50 gpd per slip

14. Appendix E - Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets, November 2009.

4.4. Potential Recycled Water of Proposed Project

The project area is designated as a recycled water use area as defined in the City of San Francisco's Recycled Water Ordinances (effective November 7, 1991, and amended in 1994). The ordinances require property owners to install dual-plumbing systems for recycled water use within the designated water use areas. ¹²

In compliance with the City's Recycled Water Ordinances, and to support the goals of the proposed Sustainability Plan for development at TI-YBI, the Sustainability Plan includes a program to utilize recycled water at the project site. As proposed, the use of recycled water is for irrigation of the open space areas, the urban farm, roadside planter areas, landscape water

 ⁵⁰ gallons per capita per day (gpcd), based on water conserving projections for 2030, based on 8000 units at 2.33 residents per dwelling unit.
 Population per dwelling unit based on City average from Demands Report Includes 30,000 gpd irrigation (CMG 8/7/09 spreadsheet) 1.17 mgd with outdoor irrigation that cannot accounted for as non-residential.

Potable use based on 265 gpd/room; this includes all uses within the hotel. Recycled use based on 7 gallons recycled water per room per day (toilet flushing). Assumes no grounds for irrigation. Water demand based on AWWA standards.

^{3.} Potable water demand based on 0.07 gpd/sf. Recycled water demand based on 0.375 gpd/sf. Reference : CCSF Retail Demands Report Nov 2004

Allowance for misc. open space buildings not included elsewhere, including the YBI Historic Buildings, kiosks, warming hut, etc. Estimated
potable use is based on 1 person per 200 SF, 20 gpcd total water use, minus 5 gpcd recycled water for toilets.

On November 18, 2009, the Building Standards Commission unanimously voted to approve the California Dual Plumbing Code that establishes statewide standards for installing both potable and recycled water plumbing systems in commercial, retail, and office buildings, theaters, auditoriums, condominiums, schools, hotels, apartments, barracks, dormitories, jails, prisons, and reformatories. The new code is effective Jan. 11, 2011. Website address: http://www.water.ca.gov/recycling/DualPlumbingCode.

features, plumbing fixtures in commercial buildings and for indoor residential use (toilet flushing) and irrigation in the residential areas. In 2006, Brown and Caldwell prepared an *Evaluation of Wastewater and Recycled Water Treatment Alternatives for the Proposed Treasure Island Development* report that evaluated, at a planning level, the recycled water options for Treasure Island. The report reviewed general options for an on-island and off-island supply of recycled water, and recommended a new on-island Recycled Water Treatment Plant. The results of the Brown and Caldwell (2006) report still hold (in 2009), but the proposed development at TI-YBI has been modified to include greater residential densities.

As shown in Table 4-3 recycled water demand is estimated at 421,294 gpd or 0.42 mgd.

Table 4-3: Estimated Recycled Water Demand Treasure Island Redevelopment Project (mgd)⁽¹⁴⁾

		Recycled Water
Land Use and Facilities	Unit/Area	Demand
Residential ⁽¹⁾	8,000 Units	149,296
Small Community Facilities ⁽³⁾	13,500 sf	473
Pier 1 Community Center ⁽³⁾	35,000 sf	1,225
Open Space ⁽¹⁰⁾	300 acres	180,000
Subtotal Residential ⁽¹⁾		330,994
Hotel ⁽²⁾	500 Rooms	3,500
Office ⁽³⁾	100,000 sf	3,500
Retail ⁽³⁾	140,000 sf	4,900
Adaptive Reuse, General ⁽³⁾	244,000 sf	8,540
Adaptive Reuse, Retail ⁽³⁾	67,000 sf	2,345
Miscellaneous Structures ⁽⁴⁾	75,000 sf	1,875
Marina ⁽¹³⁾	400 Slips	0
Treasure Island School ⁽¹⁾	105,000 sf	0
Police/Fire ⁽⁶⁾	30,000 sf	2,000
TI Sailing Center ⁽³⁾	15,000 sf	525
Museum ⁽³⁾	75,000 sf	2,625
Department of Labor ⁽⁸⁾	900 Rooms	0
Coast Guard Facility ⁽⁹⁾	~	0
Utility Facilities ⁽³⁾	14,000 sf	490
Urban Farm ⁽¹¹⁾	20 acres	60,000
Subtotal Non-Residential		90,300
Totals ⁽¹⁴⁾ (gpd)	~	421,294 ⁽¹⁴⁾
Totals (mgd)	~	0.42

Notes:

- Potable water demand based on 50 gallons per capita per day (gpcd) minus 6.4 gpcd recycled water for toilets, based on water conserving projections for 2030, 8,000 homes at 2.33 residents per dwelling unit. Population per dwelling unit based on City average from 2004 Demands Report.Includes 30,000 gpd irrigation (CMG 8/7/09 spreadsheet)
- Potable use based on 265 gpd/room; this includes all uses within the hotel. Recycled use based on 7 gallons recycled water per room per day (toilet flushing). Assumes no grounds for irrigation. Water demand based on AWWA standards.
- 3. Potable water demand based on 0.07 gpd/sf. Recycled water demand based on 0.375 gpd/sf. Reference : CCSF Retail Demands Report t Nov 2004
- 4. Allowance for misc. open space buildings not included elsewhere, including the YBI Historic Buildings, kiosks, warming hut, etc. Estimated potable use is based on 1 person per 200 SF, 20 gpcd total water use, minus 5 gpcd recycled water for toilets.
- 6. Potable use based on 400 persons per day at 15 gpcd total water use, minus recycled water use (toilets) at 5 gpcd
- 7 1 Student per 100 SF, 20 gpd per students
- 8 Value based on 2007 monthly demand provided by S. Larano, SFPUC.
- 9 Value provided by S. Larano, SFPUC.
- 10.Potable demand at 100 gpd/acre. Irrigation demand at 180,000 gpd for TI (CMG 8/7/09 spreadsheet).
- 11. Potable demand at 100 gpd/acre. Irrigation demand at 60,000 gpd (CMG 8/7/09 spreadsheet).
- 12.Maximum daily demand 120% of average daily demand
- 13.Based on 400 slips, day use only (no live aboard). 50 gpd per slip
- 14. Appendix E Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets, November 2009.

Table 4-4 shows a comparison of demand met by potable uses versus demand met with recycled water. Therefore, if recycled water is developed on Treasure Island, and permitted for

uses approved by the State of California at the TI-YBI project site, potable water demand at the project site would be reduced accordingly. Based on the estimates in Table 4-4, potable water demand at the project site would be reduced to approximately 1.2 mgd. (Note: potable demand is reduced by 0.42 mgd but total water demand at the project site remains unchanged at 1.63 mgd). It should be noted that recycled water generated on-site is considered additional water supply sources beyond the SFPUC's WSIP recycled water supplies. undertaken in this WSA is based on the total water demand of 1.63 mgd, excluding the recycled water supply offset.

Table 4-4: Estimated Water Demand with Recycled Water at the Treasure Island Redevelopment Project

Land Use and Facilities	Potable Water Demand (gpd) ⁽¹⁾	Recycled Water Demand (gpd) ⁽²⁾	Total Water Demand ⁽¹⁾
Subtotal Residential	846,099	330,994	1,177,093
Subtotal Non-Residential	359,517	90,300	449,817
Total (gpd)	1,205,616	421,294	1,626,910
Total (mgd)	1.2	0.42	1.63

1. Table 4-2 Treasure Island Redevelopment Project Estimated Water Demand.

2. Table 4-3 Estimated Recycled Water Demand Treasure Island Redevelopment Project (mgd)

Source: Appendix E - Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets, November 2009.

4.5. City of San Francisco Retail Water Demand Analysis

To update the water supply and demand estimates provided in the 2005 UWMP, the SFPUC developed a WSAS. The WSAS incorporates new water supply information (per the Phased Variant WSIP) and generates new estimates of future water demand that were based on new population and employment estimates, including several major development proposals not anticipated in the 2005 UWMP, including the proposed project, Candlestick Point - Hunters Point Shipyard Phase II and Parkmerced.

To update future water demand, the WSAS compared the estimates of residential households and employees used in the 2005 UWMP with new population and employment forecasts provided by the San Francisco Planning Department, 13 which were designed to closely match the recently adopted Association of Bay Area Governments (ABAG) Projections 2009 target, but taken into account local knowledge of projects currently in various stages of the entitlement process. Updated water demand estimates were then generated, which included the incremental future growth that was not previously included in the 2005 UWMP estimates.

The new demand estimates also incorporate the results of the 2004 Demand Report, which analyzed water demands associated with each retail customer sector and included development of a water use model. The water use model accounts for demand at the end use level (such as individual toilets and showers), and established water use rates for specific units, including multiple family residential households and employees, the latter of which is used to estimate non-residential water demands. The WSAS used an average of these water use rates over the next 20 years (2010-2030) to establish a water use rate for multi-family residential households of 98.7 gpd, and a water use rate for employees of 42.42 gpd. With these unit rates, future water demand can be estimated from changes in the number of residential households and/or employees in San Francisco.

San Francisco Planning Department, Projections of Growth by 2030, July 9, 2009 (included as Appendix A 13 to the Water Supply Availability Study).

4.5.1. Water Demand of Major Development Projects and Incremental Growth

Upon buildout in 2030, the development at the TY-YBI project site and two other large development projects represent the majority of new growth in San Francisco above the 2030 growth projected in the 2005 UWMP. Table 4-5 shows the total water demand of the proposed project and the other two proposed developments currently in the SF Planning development pipeline. The Candlestick Point – Hunters Point Shipyard Phase II project includes a number of different development scenarios; the development scenario at Candlestick Point – Hunters Point Shipyard Phase II with the highest estimated water demand is listed in Table 4-5.

Table 4-5: 2030 Water Demand Increase within San Francisco (Proposed Project, Other Development Projects and Incremental Growth) (mgd)

	Water Demand (mgd) ⁽¹⁾			
Development	Projected Demand	Demand with Non-Residential Adjustment (1.40) ⁽⁷⁾		
Treasure Island – Yerba Buena Island ⁽²⁾	1.63	1.17		
Candlestick Point – Hunters Point Shipyard Phase II ⁽³⁾	1.99	1.05		
Parkmerced Project ⁽⁴⁾	0.98	0.94		
Development Subtotal	4.67	3.16		
Existing Demand at Development Sites ⁽⁵⁾	-1.51	-1.51		
Net Development Subtotal	3.16	1.65		
Incremental Growth in SF (City and County) ⁽⁶⁾	0.24	0.24		
Net Change in Water Demand with Non-Residential Adjustment ⁽⁷⁾	~	1.89 ⁽⁷⁾		

Notes:

2. Table 4-2 Treasure Island Redevelopment Project Estimated Water Demand. (Appendix E)

4. Parkmerced Water Demand Spreadsheet from August 2009 (Appendix D [WSAS Appendix B])

6. Derived by SFPUC staff based on approximately 2,387 dwelling units at 98.7 gpd. (Appendix D [WSAS Appendix B])

As stated previously, the Demand Report analyzed water demand associated with each Retail customer sector and established per unit-use rates. As such, between 2010 and 2030, the SFPUC used a per-unit use rate average of 98.7 gpd per household for multi-family residential demands. As shown in Table 4-5, the 98.7 gpd per household rate was applied to the incremental growth of 2,387 new dwelling units throughout the City resulting in a demand of 0.24 mgd in 2030.

At the TI-YBI project site in 2030, total water demand is calculated at 1.63 mgd. ¹⁴ In that same year residential demand at the project site is estimated to be 1.17 mgd. As shown in Table 4-5, in 2030 the total net change in demand of 1.89 mgd accounts for demand related to new

^{1.} Average annual demands. Residential water demands for the proposed projects were provided to the City by project developer. They were also developed using an end use model on a per unit or per employee basis. The developer demands were independently reviewed by PBS&J and the SFPUC as part of this Study, and appear consistent with the SFPUC demand estimates. (Appendix D [WSAS Appendix B])

^{3.} CP-HPS Phase II Arup - Winzler & Kelly Water Demand Memo September 25, 2009 (Appendix D [WSAS Appendix B])

^{5.} Existing demand provided by SFPUC from current billing records (CP-HPS = 0.3 mgd) (TI-YBI = 0.5 mgd) (Parkmerced = 0.71 mgd) (Appendix D [WSAS Appendix B])

^{7.} To avoid double-counting the water demand associated with the 2009 SF Planning Non-Residential Employment Projections and the non-residential demand calculated in the developer estimates at each of the Project sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This study assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections.

Appendix E - Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets, November 2009.

development less existing demand, and includes a non-residential demand adjustment to avoid double-counting the 2030 SF Planning Employment projections. 15

4.5.2. Water Demand of Residential Projections

In an effort to represent development implementation over the 20-year planning horizon (2010– 2030), this WSA assumes that residential growth and demand would occur at a linear rate over the same 20-year period without accounting for market force influences or changes in local economics.

Table 4-6 presents the residential growth projections included the 2005 UWMP and the 2009 growth projections developed by the SF Planning department. As shown in Column A, residential growth in 2010 is estimated at 344,306 units, builds to 351,608 units in 2015 and then grows continually to 373,513 units by 2030. As shown in Column C, under the linear growth assumption, by 2015 new residential units are estimated to increase by 7,447 units, and continue to increase proportionally over the next 15 years to 29,787 units in 2030. Of these 29,787 units, 27,400 are proposed in the large development projects and account for the majority of new residential growth in 2030. The balance of 2,387 is projected as Incremental Growth throughout the San Francisco. As presented in Column A+C, San Francisco can expect 359,055 units in 2015, and based on the 2009 SF Planning Projections estimate, total residential units would be 403,300 by 2030.

Table 4-6: Projections for Residential Growth and Residential Demand								
Year	2005 UWMP Projections (DU) ⁽¹⁾	2005 UWMP Demand (mgd) ⁽²⁾	2009 SF Planning Projections (DU) ⁽³⁾	2009 SF Planning Demand (mgd) ⁽⁴⁾	Total Residential (DU) ⁽⁵⁾	Total Demand (mgd) ⁽⁶⁾		
	Α	В	С	D	A+C	B+D		
2010	344,306	44.7	0	0	344,306	44.70		
2015	351,608	43.8	7,447	0.47	359,055	44.27		
2020	358,910	43.2	14,894	0.95	373,804	44.15		
2025	366,211	42.9	22,340	1.42	388,551	44.32		
2030	373,513	42.9	29,787	1.89	403,300	44.79		

DU = Dwelling Units

1. Single and Multiple Family Residential Unit Projections from SFPUC 2005 UWMP(Table 2, page 7)

Column B shows the residential water demand projected in the 2005 UWMP; demand deceases from 44.7 mgd in 2010 to 42.9 in 2030 because of plumbing fixture retrofits in existing residences and higher water efficiency fixtures at new developments, including the development at the project site. As shown in Column D, water demand Table 4-6, new residential water demand commences in 2015 at 0.47 mgd and progresses to 1.89 mgd in 2030. Column B+D

^{2.} Estimated Demand generated by Residential Unit Projections from SFPUC 2005 UWMP (Table 8B, page 43)

3. Residential Units Projections from 2009 SF Planning (In 2030 - Projects (CP-HPS II (10,500 DU); TI-YBI (8,000 DU) and Parkmerced (total 8,900 DU) including Incremental Growth (2,387 DU) linear distribution over 20-year (2010-2030) planning period (Appendix D [WSAS Table 5-2])

^{4.} Estimated Demand generated by Projects (from developer estimates) and Incremental Growth (98.7 gpd per household) linear distribution over 20year (2010-2030) planning period (Appendix D [WSAS Tables 5-4 and 5-6])

^{5.} Total Residential Unit Projections (2005 UWMP + 2006 SF Planning) residential units over the 20-year planning horizon. (Appendix D [WSAS Table 5-2])

^{6.} Total Projected Water Demand generated by all new residential units over the 20-year planning horizon. (Appendix D [WSAS Table 5-6]) Source: Developed by PBS&J and SFPUC, October 2009.

To avoid double-counting the water demand associated with the 2009 SF Planning Non-Residential 15 Employment Projections and the non-residential demand calculated in the developer estimates at each of the proposed development sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This WSA assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections.

shows the total residential demand, accounting for demand from the 2005 UWMP and 2009 SF Planning Projections over the 20 year planning period.

In 2030, total residential demand is estimated to be 44.79 mgd. In that same year, the proposed project's estimated residential demand of 1.17 mgd would be 2.6 percent (1.17/44.79) of the City's average daily residential demand.

4.5.3. Water Demand of Non-Residential Employment Projections

Between 2010 and 2030, SFPUC used an average of 42.42 gallons per day (gpd) per employee for non-residential water demands (Appendix D). As shown in Table 4-7, the 42.42 gpd per employee water demand rate was applied to the growth in jobs over the 20-year planning horizon. In 2015, demand is expected to be 30.52 mgd and by 2030, water demand generated through employment is expected to reach 31.73 mgd. To avoid double-counting the non-residential demand calculated in the developer estimates at each of the development sites, this WSA assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections.

Table 4-7: Water Demand for Non-Residential Employment Projections						
Employment Projections and Non-Residential						
Demand	2010	2015	2020	2025	2030	
SF Planning Employment Total ⁽¹⁾ (jobs)	712,145	719,447	726,749	734,050	748,100	
Non-Residential - Business/Industrial Demand ⁽²⁾ (mgd)	30.21	30.52	30.83	31.14	31.73	
Notes:						

^{1.} Table 5-1 2009 SF Planning Projections (Appendix D)

In 2030, total non-residential demand is estimated to be 31.73 mgd. In that same year, at buildout, the proposed project's estimated non-residential demand of 0.36 mgd would be 1.13 percent (0.36/31.73) of the City's non-residential average daily demand.

4.5.4. SFPUC Total Retail System Demand

The SFPUC incorporated the 2009 SF Planning projections for residential and non-residential growth in San Francisco into the WSAS to assess the results of the SF Planning projections and its effects on the City's water demand. The totals of the previous tables (Table 4-6 and Table 4-7) along with demand data from the 2005 UWMP is incorporated in the City's total Retail demand shown in Table 4-8. The table represents the anticipated growth in demand commencing in 2010 and extending over the 20-year planning horizon to 2030.

As shown in Table 4-8, incremental residential growth demand and demand at each of large development sites commences in 2015 at 0.47 mgd and progresses to 1.89 mgd in 2030. In 2015, demand drops slightly due to a reduction in total residential demand. The non-residential demand commences in 2010 at 30.21 mgd, increases to 30.83 mgd and culminates at 31.73 in 2030.

Table 4-8 shows total Retail demands for the SFPUC beginning in 2010 at 91.81, and then drops slightly in 2015 because of a drop in residential demand and then increases to 91.69 mgd in 2020. In 2030, total Retail demand is expected to be 93.42 mgd. In that same year, the proposed project's total demand of 1.63 mgd would be 1.74 percent (1.63 mgd/ 93.42 mgd) of average daily Retail demand.

^{2.} Average of 42.42 gallons per day (gpd) per employee for non-residential water demands. (Appendix D])

Table 4-8: SFPUC Retail Demand (mgd)						
Users, Facilities and Entities	Projected Water Demand (mgd)					
	2010	2015	2020	2025	2030	
Residential Demand (Single & Multiple Family) ⁽¹⁾	44.70	43.80	43.20	42.90	42.90	
New Residential Demand generated by Projects and						
Incremental Growth ⁽²⁾⁽⁴⁾	-	0.47	0.95	1.42	1.89	
Subtotal	44.70	44.27	44.15	44.32	44.79	
Non-Residential - Business/Industrial Demands ^(3,4)	30.21	30.52	30.83	31.14	31.73	
Subtotal	74.91	74.79	74.97	75.46	76.52	
Unaccounted-for System Losses	7.30	7.30	7.30	7.30	7.30	
Subtotal	82.21	82.09	82.27	82.76	83.82	
Other Retail Demands ⁽⁵⁾	4.90	4.90	4.90	4.90	4.90	
Lawrence Livermore Laboratory; Groveland CSD ⁽⁶⁾	1.20	1.20	1.20	1.20	1.20	
City Irrigation Demand ^(/)	2.5	2.5	2.5	2.5	2.5	
Castlewood Community Demand ⁽⁸⁾	1.0	1.0	1.0	1.0	1.0	
Total Retail Demand	91.81	91.69	91.87	92.36	93.42	

- 1. Residential Demands (Source: 2005 SFPUC UWMP Table 8B, page 43.)
- 2. See **Table 4-4** Multiple Family [In 2030 Incremental Growth of 0.24 mgd + (CP-HPS II 10,500 DU) 1.04 mgd + (TI-YBI 8,000 DU) 1.17 mgd + (Parkmerced 8,900 total DU) 0.94 mgd = 3.40 mgd] Existing Demand is 1.51 mgd at all sites. [3.40 mgd – 1.51 = 1.89 mgd] as shown in Tble 4-2 (Sources: ARUP Water Demand Memo for CP-HPS Phase II September 25, 2009; Parkmerced Water Demand Spreadsheet June 30, 2009; Treasure Island Water Technical Report December 2008 Appendix E - Table 7.2 Treasure Island Project Water Demand with Recycled Water for Residential Toilets.
- See Table 4-7. Agriculture, Mining, Construction, Manufacturing, Transportation, Wholesale & Retail Trade, F.I.R.E., Services, Gov't including Builders - Contractors and Docks - Shipping. (Source: Adapted from 2009 ABAG Employment Projections in conjunction with SF Planning, July 2009) As developed in the Demand Study, SFPUC derived the employment water demands by taking the ABAG employment projections and multiplying by 42.42 gallons per employee per day and is consistent with SFPUC's demand projection methodology.
- 4. See Table 4-7. Non-residential (jobs/employment) demands at major project sites were assumed to be contained in the 2009 ABAG Employment projections. Growth in demand is incrementally increased to reflect the growth in jobs over the 20-year planning horizon. To avoid doublecounting the water demand associated with the 2009 SF Planning Non-Residential Employment Projections and the non-residential demand calculated in the developer estimates at each of the Project sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This study assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections. Table 4-4 shows the net change in water demand at the Project sites and the adjusted change in water demand without non-residential demand. Adapted by PBS&J and SFPUC September 2009 from ARUP Water Demand Memo for CP-HPS Phase II September 25, 2009; Parkmerced Water Demand Spreadsheet June 30, 2009; Treasure Island Water Technical Report December 2008 Updated . August 2009.
- 5. US Navy, SF International Airport, and other suburban/municipal accounts. (Source: 2005 SFPUC UWMP Table 8B, page 43.)
- Lawrence Livermore Laboratories (0.8 mgd); Groveland CSD (0.4 mgd). (Source: 2005 SFPUC UWMP Table 8B, page 43.) City Irrigation at Golden Gate Park, Great Highway Median and SF Zoo. (Source: 2005 SFPUC UWMP Table 8B, page 43.)
- Castlewood Community demand served by wells in the Pleasanton well field. Source: 2005 SFPUC UWMP Table 8B, page 43.

5.0 COMPARISON OF AVAILABLE WATER SUPPLIES VERSUS DEMAND

Section 10910 (c)(3) of the Water Code states, "the water supply assessment for the project shall include a discussion with regard to whether the public water system's total projected water supplies available for normal, dry and multiple dry water years during a 20-year projection will meet the projected water demand associated with the proposed project, in addition to the public water system's existing and planned future uses, including agricultural and manufacturing uses."

5.1. Supply and Demand Comparison

Table 5-1 compares the SFPUC Retail supplies and demand during normal, single dry year, and multiple dry year periods, as required by Water Code Section 10910 (c)(3). Section 2.7 discusses the SFPUC's total water supplies now and over the 20-year planning period. In 2010, prior to the development of the 10 mgd of local WSIP supplies, the SFPUC has access to annual average of 84.50 mgd from all water supply sources. Beginning in 2015, when the WSIP water supply sources are readily available, the SFPUC's Retail water supplies increase to 94.50 mgd. These supplies are assumed to be available in the quantities listed in Table 5-1. The SFPUC intends to use these supplies to meet its Retail customer demands.

The demand estimates in this WSA show that the 2009 SF Planning projections result in an increase in City Retail demand. As stated previously, by 2030 Retail demand is estimated at 93.42 mgd. This increase, however, does not change the findings in the 2005 UWMP, which estimated demand at 93.40 mgd in 2030. As shown in Table 5-1 on the following page, the SFPUC can meet the current and future demands of its Retail customers in normal years, single dry-years and nearly all multiple dry-year events with the exception of years 2 and 3 after 2030.

As modeled in Table 5-1, the deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd as per the Phased WSIP Variant, without full development of the additional 10 mgd of new supplies. It is expected that 10 mgd of local WSIP supply sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (Fiscal Year 2007-2008 use was 83.9 mgd). If Retail demand exceeds the available RWS supply of 81.0 mgd between 2010 and 2015, and total RWS deliveries exceed 265 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water with the payment of an Environmental Surcharge. Notably, total RWS deliveries in Fiscal Year 2007-2008 were 256.7 mgd, which is 8.3 mgd below the 265 mgd watershed delivery goal.

As discussed in Section 3, in time of system-wide shortages due to drought conditions, the WSAP provides a fair and reasonable method for allocating water between the SFPUC's Retail service area and its wholesale customers (collectively). As shown in Table 5-1, after 2030, pursuant to the SFPUC's WSAP, Retail customers would experience no reduction in deliveries at a 10 percent RWS Retail supply curtailment. However, during a 20 percent RWS shortage when Retail RWS supplies are reduced by 1.9 percent to 79.5 mgd, the Retail customers would experience a 1.5 mgd reduction in RWS Retail deliveries. The SFPUC, as part of the WSIP, adopted a water reliability objective of no greater than 20-percent rationing in any one year of a drought. The RWS rationing reduction of 1.9 percent is well within the SFPUC's 20-percent reliability objective.

SFPUC 2005 Urban Water Management Plan Table 8B, p. 43.

Table 5-1: Projected Supply and Demand Comparison - Normal, Dry, and Multiple Dry Years (mgd)

		Normal		Multipl	vent	
	Retail Supply and Demand	Year	Single Dry Year	Year 1	Year 2	Year 3
2010	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater Supply ⁽²⁾	3.50	3.50	3.50	3.50	3.50
	Total Retail Supply ⁽³⁾	84.50	84.50	84.50	83.00	83.00
2	Total Retail Demand ⁽⁴⁾	91.81	91.81	91.81	91.81	91.81
	Surplus/(Deficit) ⁽⁵⁾	-7.31	-7.31	-7.31	-8.81	-8.81
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2015	WSIP Supply Sources ^(/)	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	91.69	91.69	91.69	91.69	91.69
	Surplus/(Deficit)	2.81	2.81	2.81	1.31	1.31
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2020	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	91.87	91.87	91.87	91.87	91.87
	Surplus/(Deficit)	2.63	2.63	2.63	1.13	1.13
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2025	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	92.36	92.36	92.36	92.36	92.36
	Surplus/(Deficit)	2.14	2.14	2.14	0.64	0.64
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2030	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	93.42	93.42	93.42	93.42	93.42
Notos:	Surplus/(Deficit)	1.08	1.08	1.08	-0.42 ⁽⁸⁾	-0.42 ⁽⁸⁾

Notes

- 1. RWS Supply SFPUC (Table 2-2)
- Groundwater Uses for In-City Irrigation and Castlewood (Table 2-2).
- 3. Total Retail Supply from SFPUC Water Supplies Table 2-2.
- 4. SFPUC Retail Demand from Table 4-8.
- 5. The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).
- 6. Groundwater Supplies at Castlewood and In-City Irrigation (Table 2-2).
- WSIP Supply Sources (Recycled Water (4.0 mgd; Groundwater (2.0 mgd Existing and 2.0 from NWGWP, and WSIP Water Efficiency and Conservation (4.0 mgd) (Table 2-2).
- Deficit occurs in year 2 and 3 of multiple dry year event, SFPUC implements its Drought Year Water Shortage Contingency Plans RWSAP and WSAP to balance supply and demand under this projected shortfall as described in Section 3.0.

As shown in Table 5-1, under this multiple dry-year event scenario, ¹⁷ it is possible that the SFPUC will not be able to meet 100 percent of its Retail demand. After 2030, as modeled in this WSA, a supply shortfall of 0.42 mgd is anticipated to occur in the second and third year of a multiple dry-year event due to RWS supply curtailments.

Multiple dry-year events are defined as a three-year event per UWMP requirements. SFPUC determined that a multiple dry-year event is years 2-4 of SFPUC's 8.5 year design drought. SFPUC can meet 100 percent of deliveries in the first year of such an event.

Pursuant to the Urban Water Management Planning Act (Water Code Section 10632), water suppliers with an existing dry year shortage contingency plan can implement subsequent stages of demand reduction measures listed in its UWMP as a strategy to balance supply and demand. The WSAP and the RWSAP, contained in Section 9 of the SFPUC's 2005 UWMP is SFPUC's dry year shortage contingency plan that allows the SFPUC to reduce water deliveries to customers and implement demand reductions during periods of water shortage. Therefore, to overcome the potential 0.42 mgd supply deficit expected after 2030, the SFPUC would follow its adopted water shortage contingency plans (WSAP and RWSAP) to implement drought-planning sequences and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in the SFPUC reservoirs. These delivery reductions allow the SFPUC to maintain water in storage over an extended period. In addition, under the RWSAP, the SFPUC would balance Retail supply curtailments by reducing demand.

Table 5-2 was extracted from Table 5-1 to demonstrate the additional conservation necessary to balance supply and demand under the RWSAP in 2030. When the SFPUC implements its RWSAP, as shown in Table 5-2, Retail customers would be required to reduce daily demand by approximately 0.37 percent to balance demand against the supply shortfall. Stage 1 of the RWSAP in Section 3.2 requests voluntary conservation of at least 5 percent up to 10 percent. The 0.44 percent needed falls within Stage 1 and as modeled no further conservation would be required.

Table 5-2: 2030 Supply and Demand with Implement	MODE MODE MODE MODE MODEL MO
Table 3-2. 2030 Subbly allu Dellialiu Willi Illiblelliei	

	Normal Single Dry		Multipl	vent	
Retail Supply and Demand ⁽¹⁾	Year	Year	Year 1	Year 2	Year 3
RWS Supply	81.00	81.00	81.00	79.50	79.50
Groundwater	3.50	3.50	3.50	3.50	3.50
WSIP Supply Sources	10.00	10.00	10.00	10.00	10.00
Total City Supply	94.50	94.50	94.50	93.00	93.00
Total Retail Demand	93.42	93.42	93.42	93.42	93.42
Surplus/(Deficit)	1.08	1.08	1.08	-0.42	-0.42
RWSAP Dema	RWSAP Demand Reduction (Conservation Needed)				
Total City Supply	94.50	94.50	94.50	93.00	93.00
Total Retail Demand	93.42	93.42	93.42	93.42	93.42
Surplus/(Deficit)	None	None	None	-0.42	-0.42
Stage 1 Conservation Savings (0.44%)	None	None	None	0.42	0.42
Retail Demand Reduction with RWSAP	Surplus	Surplus	Surplus	93.00	93.00
Surplus/(Deficit) None None 0.00		0.00	0.00		

Note:

1. Table 5-1 Projected Supply and Demand Comparison - Normal, Dry, and Multiple Dry Years.

Adapted by PBS&J October 2009.

As presented in Section 4.4, if recycled water is developed on Treasure Island and permitted for uses approved by the State of California at the TI-YBI project site, potable water demand generated at the project site would be reduced to 1.2 mgd, thereby reducing the City's total Retail demand by 0.42 mgd. The use of recycled water at the TI-YBI project site would contribute to eliminating the Retail water shortage forecasted to occur after 2030 in multiple dry years.

6.0 CONCLUSION OF ANALYSIS AND FINDINGS

There is an anticipated increase in the SFPUC supply reliability over the next 20 years as a result of the SFPUC implementing the water supply improvements in the WSIP and local water supply projects. Over this same period, demand in SFPUC's Retail service area will continue to increase as well. This is the result of growth in housing developments, population increases and employment opportunities throughout San Francisco.

In 2030, the proposed project's demand of 1.63 mgd, without accounting for any recycled water, would be 1.74 percent of the average daily demand in the SFPUC's Retail service area. This does not affect the ability of the SFPUC to meet the demand of its Retail customers. Beginning in 2015, when the WSIP water supply sources are readily available, the SFPUC's Retail water supplies increase to 94.5 mgd. The SFPUC intends to use these supplies to meet its Retail customer demands. As shown in Table 5-1, the SFPUC has sufficient supplies to meet current and planned future uses in normal year, single dry and all multiple dry-year events with the exception of years 2 and 3 after 2030.

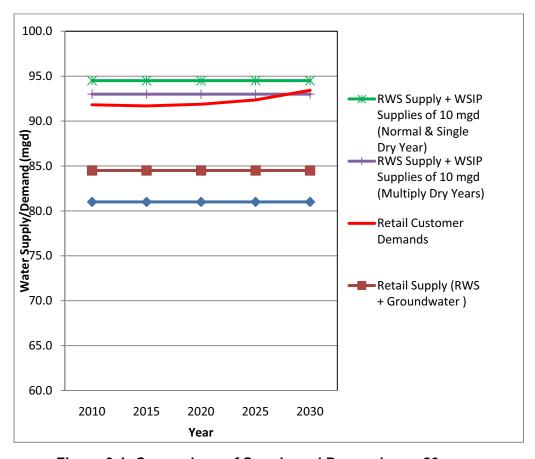


Figure 6-1: Comparison of Supply and Demand over 20 years

After 2030, as shown in Figure 6-1, under a multiple dry-year event the SFPUC will experience a 0.42 mgd supply deficit (demand exceeds supply) and would not be able to meet 100 percent of its Retail demand including the proposed project. The water supply deficit is related to increasing demand throughout the SFPUC's Retail service area and the policy decision to limit RWS deliveries from the watersheds until 2018. This WSA used a conservative assumption

and extended the decision to limit deliveries to 2030 (Annual average RWS limit is 265 mgd [81 mgd in SFPUC's Retail service area and 184 mgd in the Wholesale service area]).

Pursuant to the Urban Water Management Planning Act (Water Code Section 10632), water suppliers with an existing dry year shortage contingency plan can implement subsequent stages of demand reduction measures listed in its UWMP as a strategy to balance supply and demand. The WSAP and the RWSAP, contained in Section 9 of the SFPUC's 2005 UWMP is the SFPUC's dry year shortage contingency plan that allows the SFPUC to reduce water deliveries to customers and implement demand reductions during periods of water shortage. Therefore, to overcome the potential 0.42 mgd supply deficit expected after 2030, the SFPUC would follow its adopted water shortage contingency plans (WSAP and RWSAP) to implement drought-planning sequences and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in the SFPUC reservoirs. These delivery reductions allow the SFPUC to maintain water in storage over an extended period. In addition, under the RWSAP, the SFPUC would balance Retail supply curtailments by reducing demand.

As discussed previously, the SFPUC has water rights and entitlements that are more than adequate to meet existing and projected future demand throughout the SFPUC's Retail service area. With completion of the WSIP projects, the SFPUC will have the capacity to reliably deliver potable water to meet customer purchases up to an annual average of 300 mgd. However, due to conditions of approval in the WSIP PEIR, the SFPUC is limiting deliveries from the watersheds until at least 2018. Prior to 2018, the SFPUC will engage in a new planning process to re-evaluate water system demand and water supply options. As a part of this process, San Francisco will conduct additional environmental studies and CEQA review as appropriate to address the SFPUC's recommendation regarding water supply and proposed water system deliveries after 2018.

This WSA concludes that the SFPUC has adequate supplies based on water rights and entitlements and adopted plans for local water supply projects to meet Retail demand in all years with the exception of a potential shortfall occurring after 2030 under a multiple dry-year event. In the event of a supply shortfall, the SFPUC, through its WSAP and RWSAP can impose supply curtailments and subsequent stages of demand reductions to balance demand against curtailed supplies.

As discussed previously, if recycled water is developed on Treasure Island and permitted for uses approved by the State of California at the TI-YBI project site, potable water demand generated at the project site would be reduced to 1.2 mgd, thereby reducing the City's total Retail demand by 0.42 mgd. The use of recycled water at the TI-YBI project site would contribute to eliminating the Retail water shortage forecasted to occur after 2030 in multiple dry years.

6.1. WSA Findings

Regarding the availability of water supplies to serve the proposed project, beginning in 2015 the SFPUC finds as follows:

- In years of average and above-average precipitation, and including development of the SFPUC's local WSIP water supply sources, the SFPUC has adequate supplies to serve 100 percent of normal, single dry and multiple dry year demand up to 2030.¹⁸
- In multiple-dry-year events after 2030, when the SFPUC imposes reductions in its supply, the SFPUC has in place the WSAP and RWSAP to balance supply and demand.
- With the WSAP and RWSAP in place, and the addition of local WSIP supplies, the SFPUC finds it has sufficient water supplies available to serve its Retail customers including the demand of the proposed project, and existing and planned future uses.

The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).

7.0 REFERENCES

- Department of Water Resources. October 2003. *Guidebook for Implementation of SB 610 and SB 221* of 2001, 2003.
- ESA and Orion. October 2008. Final Program Environmental Impact Report for the San Francisco Public Utilities Commission Water System Improvement Program. Prepared for City and County of San Francisco Planning Department.
- Golden Gate Weather Services. "Climate of San Francisco, Narrative Description" http://ggweather.com/sf/narrative.html. Accessed January 5, 2006.
- San Francisco Public Utilities Commission. April 2000. Water Supply Master Plan.
- San Francisco Public Utilities Commission. November 2004. *Retail Water Demands and Conservation Potential.* Prepared by Margaret A. Hannaford, P.E and Hydroconsult, Inc.
- San Francisco Public Utilities Commission. 2004. Wholesale Customer Demand Projection Technical Report. Prepared by URS.
- San Francisco Public Utilities Commission. 2005. Draft Water System Improvement Program.
- San Francisco Public Utilities Commission. 2005. *Urban Water Management Plan for the City and County of San Francisco*.

APPENDICES

APPENDIX A SFPUC 2008 ANNUAL GROUNDWATER MONITORING REPORT WESTSIDE BASIN

2008 ANNUAL GROUNDWATER MONITORING REPORT WESTSIDE BASIN SAN FRANCISCO AND SAN MATEO COUNTIES, CALIFORNIA

Prepared By:
San Francisco Public Utilities Commission

In Coordination with the City of Daly City, the City of San Bruno and the California Water Service Company (South San Francisco District)

April 2009

ACKNOWLEDGEMENTS

The Westside Basin Annual Groundwater Report for 2008 was prepared by the San Francisco Public Utilities Commission (SFPUC) in cooperation with the City of Daly City, California Water Services Company (South San Francisco District) and the City of San Bruno. This report summarizes the results of water level elevation monitoring, water quality sampling and analysis, and additional field activities conducted within the basin for 2008.

Obiajulu Nzewi prepared this report under the direction of Jeff Gilman and Greg Bartow.

Obiajulu Nzewi

P.G. No. 08466 (Exp. 06/10) R.E.A. No. 08285 (Exp. 6/10)

Jeffrey A. Gilman

P.G. No. 3517 (Exp. 01/11)

C.HG. No. 87 (Exp. 01/11)

Distribution: (1)

cc: Patrick Sweetland, City of Daly City

Kevin Brown, City of Daly City

Thomas Salzano, Cal Water

Sam Silva, Cal Water

Steve Davis, City of San Bruno

Pamela Thompson, City of San Bruno

Laura Allen, Colma

Roger Appleby, Coalition of Cemeteries

Bob Maddow, Esq.

Charles Ice, SMCEHSA

Jim Blanke, WRIME

Jim Warner, ERM

Lorraine Anderson, SFDPH

Stephanie Cushing, SFDPH

Daniel LaForte, SF Rec Park

Thomas Chiosso, SF Zoo

Alan R. Wong, SFPUC

John Fio, HydroFocus

Will Halligan, LSCE Karen Grove, SFSU Lisa White, SFSU Rick Thall, SF Rec Park Gus Yates

CONTENTS

		F	Page
ACK	NOW	LEDGEMENTS	I
1.0	1.1	RODUCTIONBackgroundPlanned and Ongoing Projects	1 2
2.0	SITE 2.1 2.2 2.3	DESCRIPTION AND HYDROGEOLOGICAL SETTING Hydrogeologic Setting Lake Merced Pine Lake	5 6
3.0	HIST	ORICAL GROUNDWATER DEVELOPMENT	. 8
4.0	4.1 4.2 4.3 4.4 4.5 4.6 4.7	City of Daly City	10 10 10 11 11 12 12
5.0	GRO	DUNDWATER MONITORING AND TESTING PROGRAM	14
6.0	COA 6.1 6.2 6.3 6.4	STAL AND BAY SIDE WATER LEVEL MONITORING Coastal Water Level Monitoring Bay Side Water Level Monitoring Lake Merced and Lake-Aquifer Monitoring South Westside Basin Water Level Monitoring	16 18 19
7.0	GRC 7.1 7.2 7.3	Coastal Groundwater Quality General Basin Conditions 7.2.1 City of Daly City 7.2.2 City of South San Francisco 7.2.3 City of San Bruno Recycled Water	22 23 24 24 24
8.0		IMARY AND PROPOSED ACTIVITIES FOR 2009	26 26

		Coastal Monitoring	
		Lake Merced	
		Recycled Water Program	
		Bay Side Monitoring	
9.0	REFE	ERENCES	
0.0		20	
		TABLES	
Table	e 1	Historical and Current Water Requirements and Supplies – Golf Course Irrigation Around Lake Merced	
Table	e 2	Groundwater Pumping – Westside Basin	
Table	e 3	Groundwater Elevation Monitoring Network - Well Identification	
Table	e 4	Groundwater Elevation Contour Well Network	
Table	e 5	Groundwater Quality Monitoring Network Well Identification	
Table	e 6	Coastal Groundwater Quality	
Table	e 7	General Basin and Conjunctive Use Groundwater Quality	
Table	e 8	General Basin Iron and Manganese Groundwater Quality	
Table	e 9	Recycled Water Program Groundwater Quality	
Table	e 10	Groundwater and Lake Level Monitoring Frequency	
Table	e 11	Groundwater Quality Monitoring Frequency and Analyses	
		FIGURES	
Figui	re 1	Westside Basin Major Groundwater Production Areas	
Figui	re 2	North-South Geologic Cross Section – Westside Basin	
Figu	re 3	Historical Groundwater Pumping – Westside Basin	
Figui	re 4	Recent Municipal Groundwater Pumping – Westside Basin	
Figu	re 5	Well Location Map – Groundwater Elevation Monitoring Network	
Figui	re 6 (a	Groundwater Elevation and Chloride Concentration Hydrographs – Kir Wells	kham
Figui	re 7 (a	a-d) Groundwater Elevation and Chloride Concentration Hydrographs – Ort Wells	tega
Figui	re 8 (a	a-d) Groundwater Elevation and Chloride Concentration Hydrographs – Tal Wells	raval
Figui	re 9 (a	a-c) Groundwater Elevation and Chloride Concentration Hydrographs – Sa Francisco Zoo Monitoring Wells	n
Figui	re 10 ((a-c) Groundwater Elevation and Chloride Concentration Hydrographs – Ba Side Monitoring Wells - Burlingame	У

Figure 11 (a & b)	Groundwater Elevation and Chloride Concentration Hydrographs – Bayside Monitoring Wells - SFO
Figure 12	Groundwater Elevation Hydrograph; LMMW1S, and LMMW1D – Shallow and Primary Production Aquifers
Figure 13	Groundwater Elevation Hydrograph; DC-1 – Primary Production Aquifer
Figure 14	Groundwater Elevation Hydrograph; SS1-02 – Primary Production Aquifer
Figure 15	Groundwater Elevation Hydrograph; SB-12 – Primary Production Aquifer
Figure 16	Groundwater Elevation Contours – Shallow Aquifer, Spring 2008
Figure 17	Groundwater Elevation Contours – Shallow Aquifer, Fall 2008
Figure 18	Groundwater Elevation Contours – Primary Production Aquifer, Spring 2008
Figure 19	Groundwater Elevation Contours – Primary Production Aquifer, Fall 2008
Figure 20	Lake Merced Water Surface Elevation, South Lake (August 2001 to January 2009)
Figure 21	Well Location Map – Groundwater Quality Monitoring Network
Figure 22	Long-Term Water Quality, Daly City DC-2 Westlake
Figure 23	Long-Term Water Quality, Cal Water SS1-14
Figure 24	Long-Term Water Quality, San Bruno SB-17 Corp Yard
Figure 25	Long-Term Nitrate Concentrations – San Bruno, South San Francisco, and Daly City

APPENDICES

Appendix A	Groundwater Elevation Hydrographs
Appendix B	Analytical Data Results
Appendix C	Sampling and Testing Protocol for the Westside Basin
Appendix D	Summary of New Well Activity in the Westside Basin for 2008

1.0 INTRODUCTION

This report presents the results of the 2008 Annual Groundwater Monitoring for the Westside Basin. The Westside Groundwater Basin extends from Golden Gate Park in San Francisco to the City of Burlingame in San Mateo County, and is an important municipal and irrigation water supply for the respective communities and businesses that overlie the Basin (Figure 1).

As part of continuing agency coordination and public education, it is intended that the preparation of this annual report, along with future annual reporting and supplemental technical reports, will provide regular summaries of overall basin conditions. The annual report is intended to provide information summarizing basin-wide groundwater pumping in the basin, describe groundwater levels and quality in the different aquifer systems that are present in the basin, and describe surface water conditions, most notably in Lake Merced. In addition to reporting of hydrogeologic conditions, the data-gathering network will be modified as necessary to provide a comprehensive review of basin conditions. Additionally, monitoring activities will be coordinated with ongoing and future project-specific monitoring activities to ensure an efficient, comprehensive monitoring program.

1.1 Background

Over the last several years, there has been a significant increase in data collection efforts and cooperative management of groundwater and interrelated surface water resources in the Westside Basin among the San Francisco Public Utilities Commission (SFPUC), the City of Daly City (Daly City), California Water Service Company (Cal Water, municipal water purveyor to South San Francisco, the Town of Colma and a portion of unincorporated San Mateo County), and the City of San Bruno (San Bruno). The initial data collection efforts included increased monitoring of groundwater and lake level elevations in the northern Westside Basin and the initiation of a basin-wide, semi-annual monitoring program that has involved the cooperative efforts of the SFPUC, Daly City, Cal Water, and San Bruno beginning in spring 2000. Part of the increased management effort was the preparation of the 2005 Final Draft North Westside Groundwater Basin Management Plan, which included a Plan Element to regularly report on groundwater conditions in the Westside Basin (SFPUC, 2005).

In 2006, the SFPUC, in cooperation with Daly City, Cal Water, and San Bruno, prepared a report entitled "Hydrogeologic Conditions in the Westside Basin, 2005" (LSCE, 2006). That report provided an overview of historical, current and planned activities related to groundwater use within the Basin, and described the hydrogeologic conditions of the Westside Basin as of 2005. Since 2007, the SFPUC Water Resources Division has prepared the annual groundwater monitoring reports in cooperation with Daly City, San Bruno, and Cal Water.

The monitoring program has expanded to monitor changes in groundwater levels and quality resulting from the recycled water program and the pilot conjunctive use program and to assist the SFPUC in quantifying the change in groundwater storage resulting from the above projects.

The physical barriers to seawater intrusion that are evident west of Daly City (as a result of faulting and steeply dipping beds of the Merced Formation) are not as evident in the North Westside portion of the basin, where the beds do not exhibit pronounced dips, and faults are further offshore. In that light, the expansion of the monitoring program included the construction of monitoring wells along the coast from Daly City to Golden Gate Park to monitor for the potential occurrence of seawater intrusion resulting from ongoing groundwater use and planned groundwater development within the North Westside Basin. Monitoring for the potential occurrence of seawater intrusion on the San Francisco Bay-side (Bay Side) of the basin was implemented by the City of San Bruno in 2006. In the fall of 2006, two new well clusters were installed by San Bruno at locations in the San Francisco Airport and within Burlingame. These wells are monitored semi-annually by San Bruno.

For convenience, the portion of the Westside Groundwater Basin north of the San Francisco/ San Mateo County line is referred to as the North Westside Groundwater Basin. The portion of the Westside Basin located south of the County line is referred to as the South Westside Groundwater Basin.

1.1.1 Planned and Ongoing Projects

The purpose and scope of the monitoring program has evolved to monitor changes in the groundwater system resulting from the following planned and ongoing projects:

Proposed Westside Basin Recycled Water Project

The proposed Westside Recycled Water Project is part of the SFPUC's Water System Improvement Program. It would deliver highly treated recycled water to a variety of customers through a system of pipelines, pump stations, storage tanks, and reservoirs. The system would bring recycled water from the proposed water treatment facility in Golden Gate Park to the San Francisco Zoo, Golden Gate Park, and Lincoln Park and Golf Course. The recycled water would be used for irrigation at all three sites, as well as non-portable uses at the Zoo and at the California Academy of Sciences.

In 2004, the North San Mateo County Sanitation District (NSMCSD), a subsidiary of Daly City, constructed facilities at its wastewater treatment plant to produce recycled water. The plant currently provides recycled water that is used for irrigation purposes at the Lake Merced Golf Club, the Olympic Club Golf Course, and the San Francisco Golf Club, as well as other landscaped areas in Daly City. These recycled water customers use less than 1 million gallons of recycled water per day on average. The plant has the capacity to produce up to 2.8 million gallons of recycled water per day. As a result, the NSMCSD has recycled water available to

irrigate the Harding Park and Fleming Golf Courses, while still meeting the needs for its current recycled water customers.

Daly City and the SFPUC are proposing to expand the NSMCSD's recycled water distribution system in order to provide recycled water for irrigation purposes to the Harding Park and Fleming Golf Courses. Recycled water would replace potable water from the SFPUC's Regional Water System currently being used for irrigation at these locations. The proposed project facilities would include:

- Distribution Facilities: The project would require a new pump station at the Harding Park Maintenance Yard, and approximately 4,800 feet of 18-inch distribution pipeline along Lake Merced Boulevard.
- Storage Reservoir: The project would require construction of a new 700,000 gallon underground recycled water storage tank at Harding Park Maintenance Yard.
- Back-up Connection: The project would require construction of a back-up connection to SFPUC potable water distribution system.

San Francisco Groundwater Supply Project

As part of the San Francisco Groundwater Supply Project, the SFPUC proposes the construction of up to six wells and associated facilities in the western part of San Francisco. The wells would extract up to 4 million gallons per day (mgd) of water from the Westside Basin. The extracted groundwater, which would be used both for regular and emergency water supply purposes, would be blended with imported surface water before entering the municipal drinking water system. The project would provide a new source of water and improve reliability during system maintenance and drought conditions.

South Westside Basin Conjunctive Use Project

The purpose of the project is to develop a groundwater supply in the South Westside Basin for use during drought conditions. In normal and wet years, the SFPUC will supply supplemental surface water to Daly City, Colma, San Bruno, and the California Water Service Company (South San Francisco District) to be used in place of groundwater pumping. The reduced pumping during the normal and wet years would thereby increase the volume of groundwater in storage that can be pumped in dry years.

The proposed project includes construction of 16 groundwater wells with a total capacity of 7.2 mgd. Five of the wells would be connected to the Daly City water system, six (or three each) will be connected to the water systems of Cal Water and San Bruno, and five would be connected to the SFPUC transmission system. Treatment may be required at some of the wells for the removal of manganese. Additionally, the project would include nearly 9,800 feet of water distribution piping to make the necessary connections.

In October 2008, five new monitoring well clusters were installed at the following locations as part of this project:

- CUP-10A located within SFPUC Right of Way in Daly City
- CUP-18 located within SFPUC Right of Way at Colma Blvd. in Colma;
- CUP-19 located within SFPUC Right of Way at Serramonte Blvd. in Colma;
- CUP-22A located within SFPUC Right of Way at Hickey Blvd. at Camaritas Road, in South San Francisco; and.
- CUP-36-1 located within SFPUC Right of Way at Southwood Drive in South San Francisco.

The well construction permits, as-built construction details, lithologic and geophysical logs, and summaries of groundwater quality are presented in Appendix D. Subsequent monitoring events will incorporate these wells into the monitoring network to enhance characterization of groundwater conditions in the southern portion of the basin.

1.2 Municipal Water Agencies

The SFPUC is responsible for providing a reliable, high quality water supply for the City and County of San Francisco (San Francisco). The SFPUC also provides water to a large network of wholesale customers that extend from Daly City, adjacent to San Francisco, south through the Peninsula to Santa Clara County, and up the southeast side of San Francisco Bay through Alameda County to Hayward. The SFPUC water supply system supplies all of the San Francisco municipal demand and about two-thirds of the total water demands of its wholesale customers (SFPUC, 2005). Total water demand of retail customers in San Francisco is nearly 94 million gallons per day (mgd), or about 105,000 acre-feet per year (afy), which represents a significant decrease in water demand from recent drought periods (SFPUC, 2005). The total water requirements of the Bay Area wholesale customers in 2005 were estimated to be about 282 mgd, or about 316,000 afy (SFPUC, 2005).

Since the 1990's the SFPUC, Daly City, Cal Water and San Bruno have worked cooperatively on Westside Basin investigations, monitoring and coordinated projects. Daly City, Cal Water, and San Bruno have typically included groundwater from the Westside Basin for municipal water supply in combination with SFPUC-imported surface water. The City of Daly City's Department of Water and Wastewater Resources is responsible for the management and operation of Daly City's drinking water supply system. The City of San Bruno's Water Division of the Public Works Department is responsible for the management and operation of San Bruno's drinking water supply system. Cal Water is an investor-owned utility that serves South San Francisco, Colma and a very small part of Daly City.

2.0 SITE DESCRIPTION AND HYDROGEOLOGICAL SETTING

2.1 Hydrogeologic Setting

The Westside Basin is about 40 square miles in area (Figure 1) and includes four major geologic units. These units are the Jurassic - Cretaceous Franciscan Complex, Pliocene Merced Formation, Pleistocene Colma Formation, and Pleistocene to recent Dune Sands. There are also minor, yet widespread, units of recent alluvium along stream channels. Groundwater development has primarily occurred in the Colma and Merced Formations. The Merced Formation is the primary water-producing aquifer in the basin; however, the Colma Formation is also of interest since Lake Merced is incised within this formation.

As a result of the difficulty of differentiating the contacts between the Dune Sands, the Colma Formation, and the Merced Formation, the precise thickness of the Colma Formation and Dune Sands overlying the Merced Formation has not been determined. Groundwater in the vicinity of Lake Merced, and north to Stern Grove and Golden Gate Park, is encountered at relatively shallow depths (ranging from approximately 5 to 60 feet). South of Lake Merced, the depth to groundwater can exceed 300 feet below ground surface (bgs).

Phillips, et al. (1993) defined each of the groundwater basins in San Francisco as a continuous body of unconsolidated sediments and the surrounding surface drainage area. All seven major groundwater basins identified in San Francisco are open to the Pacific Ocean or San Francisco Bay. The landward parts of the groundwater basins generally are bounded horizontally and vertically by bedrock, which is assumed to be relatively impermeable compared with unconsolidated marine and alluvial deposits. Groundwater flow may occur between basins where the bedrock ridge that constitutes the boundary is subterranean. The north-south topography and bedrock height defined by the Coast Ranges generally forms an east-west hydrologic boundary through San Francisco.

The western part of San Francisco is divided into the Westside and Lobos Basins on the basis of a northwest-trending bedrock ridge through the northeastern part of Golden Gate Park. The bedrock ridge has several small surface expressions, and bedrock altitude data indicate that the ridge is continuous, though subterranean. Some degree of hydraulic connection is possible between the two basins where the ridge is not exposed at the land surface, but the degree of connection probably is minimal. The Westside Basin extends south to Burlingame and Hillsborough. Well drillers' logs for the San Bruno area indicate a deep sandy unit overlain by about 200 feet of predominantly fine-grained clays. Correlation of the deeper sand deposits is unclear; however, surficial mapping may indicate a relationship to exposures of sand/gravel deposits in the Burlingame area, which are mapped as non-marine Santa Clara Formation (Brabb and Pampeyan, 1983). A southward-extending ridge of Franciscan bedrock appears to separate San Bruno from the San Francisco Bay to the east. The upper fine grained beds

appear to be Holocene to Late Pleistocene estuarine deposits of the San Francisco Bay (LSCE, 2004).

The subsurface configuration of the various geologic units in the Westside Basin has been delineated in a series of geologic cross-sections based on a combination of lithologic logs, water well drillers' reports, and geophysical logs (LSCE, 2004 and 2006). Lithologic units and other significant features in the basin are illustrated in geological cross-section form in Figure 2.

In the northern Westside Basin, in San Francisco, there are up to three aquifer units separated by two distinctive fine-grained units, the –100-foot clay and the W-Clay (LSCE, 2004). The aquifer units are generally designated as:

- 1) The "Shallow aquifer", which is present to an elevation of approximately –100 feet mean sea level (msl) (located above the –100-foot clay), in the vicinity of Lake Merced and the southern portion of the Sunset District of San Francisco;
- 2) The "Primary Production aquifer", which overlies the W-Clay; and
- 3) The "Deep aquifer" which underlies the W-Clay.

In the Daly City area, the –100-foot clay is absent, and the aquifer system is primarily composed of the Primary Production aquifer and the Deep aquifer.

Further to the south, in the South San Francisco area, the W-Clay is absent and the Primary Production aquifer is split into shallow and deep units, separated by a fine-grained unit at an elevation of approximately 300 feet below msl. The primary production aquifer in the San Bruno area is located at an elevation less than 200 feet below msl, and it underlies a thick, surficial fine-grained unit comprised of clay, sandy clay, and sand beds.

2.2 Lake Merced

Lake Merced is incised in the Shallow aquifer and is composed of four lakes: North Lake, East Lake, South Lake, and Impound Lake. A narrow channel connects the North and East Lakes, thereby creating equal water elevations in both lakes. A conduit between North Lake and South Lake allows water to flow between the lakes when the elevation in either lake is approximately 3.35 feet, San Francisco City datum¹. When lake levels are below that elevation, these two lakes are separated and typically exhibit different elevations. South Lake and Impound Lake are separated below an elevation of approximately 4.26 feet, San Francisco City datum, by a levee that contains the Ingleside combined sewer pipeline and the foundation of a pedestrian walkway. Soil has accumulated on the foundation to an elevation of approximately 5 feet, San

¹ City Datum = NAVD88-11.37ft.

Francisco City datum. When either lake level is above that 5-foot elevation, water flows freely underneath the pedestrian walkway to connect both lakes.

Until the early 1900's, Lake Merced was one continuous body of water fed by local runoff and springs, with an outflow to the ocean in the form of a stream located at the northwestern end of North Lake. The stream flowed westward toward the ocean through the present-day location of the San Francisco Zoo and Sloat Boulevard. The springs that fed the lake were primarily located on the eastern side and in the southern portion of Lake Merced, causing a primary flow direction through the lake from the south to the north. In contrast, the current flow direction through the lakes is reversed, largely as a result of urban growth in the vicinity of Lake Merced, which has resulted in reduced recharge from springs and increased pumpage in the Primary Production aguifer south of Lake Merced. The urbanization of the watershed has also resulted in the emplacement of large amounts of fill that now impede spring discharge in the lake, and the diversion of an increasing amount of storm water away from Lake Merced and into the ocean or wastewater treatment plant. These diversions began with the construction of the Vista Grande Canal and Tunnel by the Spring Valley Water Works in 1897, and have continued with successive urban development in San Francisco and northern San Mateo County. The development of the watershed has also affected groundwater recharge from precipitation, which previously infiltrated and recharged the Shallow aquifer to a greater extent. As a result of all the preceding, the amount of subsurface inflow into Lake Merced, which in the early 1900's was manifested as spring inflow, has been reduced. The reduction in subsurface recharge to Lake Merced results in short-term lake levels being more sensitive to fluctuations in precipitation, since direct precipitation, along with shallow groundwater inflow, are the primary lake recharge mechanisms.

2.3 Pine Lake

Pine Lake is located north/northeast of Lake Merced in the westernmost portion of the Stern Grove and Pine Lake Park. Pine Lake (also known as Laguna Puerca) is one of San Francisco's few natural lakes. It is a small, shallow lake approximately three (3) acres in size. The lake has historically been overgrown with aquatic plants, which have periodically been removed. The San Francisco Recreation and Park Department has recently implemented a park improvement program for the Stern Grove and Pine Lake Park area. In November 2004, the Recreation and Park Department augmented lake levels over a 15-day period using groundwater pumped from a nearby well located east of Pine Lake. The lake addition was part of a study to evaluate the rate of lake level decline following a water addition. Approximately 25 acre-feet were discharged to the lake, which would theoretically raise the lake by about 8 feet. Nearby groundwater monitoring showed a corresponding increase in groundwater levels of about 5 feet in the Shallow aquifer.

We understand that the San Francisco Recreation and Park Department intends to resume groundwater pumping at the newly rehabilitated Pine Lake well in the near future, to once again augment the water level in Pine Lake.

SFPUC will cooperate with the Recreation and Park Department to measure future groundwater pumping from the Pine Lake well.

3.0 HISTORICAL GROUNDWATER DEVELOPMENT

By the early 1900's, wells had been constructed north, east, and south of Lake Merced for farming and drinking water supply. During that time, Spring Valley Water Company had two wells located near the Lake Merced outlet. Spring Valley pumpage was only about 100 afy (Bartell, 1913). The total of Lake Merced, Sunset District, and Golden Gate Park pumpage averaged 400 to 500 afy. In the early 1930s, the San Francisco Board of Public Works installed production wells in the Sunset District with a pumping capacity of about 6 mgd (6,700 afy). Groundwater withdrawals for emergency (drought) purposes averaged about 5 mgd (5,600 afy) from October 1930 through October 1935, but were discontinued after the availability of Hetch Hetchy water in the mid-1930s.

Beginning in the early 1950's, post-World War II development of Daly City and farther south onto the Peninsula was met with an increase in groundwater pumping and imported water deliveries from the SFPUC. Groundwater pumping increased from about 1,000 afy to nearly 5,000 afy between 1950 and 1970 (Kirker, Chapman & Associates, 1972). Since then, Daly City's groundwater pumping has ranged between approximately 3,000 and 5,000 afy, where it remained until October 2002, when an increase in SFPUC system water replaced the majority of Daly City's groundwater supply in normal and wet years as part of a demonstration conjunctive use pilot program among San Francisco, Daly City, Cal Water in South San Francisco, and the City of San Bruno. The conjunctive use pilot program ended in 2004. However, a subsequent agreement extended the project with Daly City, which received supplemental surface water until May 2007 when deliveries were suspended due to dry year water conditions. SFPUC plans to continue this demonstration program in Daly City. Daly City groundwater pumping totaled about 3,600 acre-feet (af) for 2008.

Groundwater pumping by Cal Water in South San Francisco has progressively declined from about 2,200 afy in 1947, to about 1,600 afy in 1969, to about 1,200 afy in 2002, to zero in 2003 (Figure 3). The decreases in groundwater pumping have been offset by increases in SFPUC system water deliveries. In early 2003, groundwater pumping in South San Francisco was discontinued as part of the same conjunctive use pilot program described above, with local surface water supplies replacing pumped groundwater. Groundwater pumping for municipal supply in South San Francisco resumed once again in March 2008 and totaled 206 af during 2008.

Pumping in San Bruno ranged from approximately 1,700 to 3,100 afy from 1997 through 2001 (Figure 3). In 2002, San Bruno decreased groundwater pumping to approximately 1,240 acre feet (af) and further decreased groundwater production to about 550 af in 2003 and 2004 as part of the pilot conjunctive use program. San Bruno resumed pumping after cessation of the demonstration conjunctive use program in that part of the basin in early 2005. In 2008 San Bruno pumped approximately 2,100 af of groundwater.

Total municipal pumping in the Westside Basin, as shown in Figure 3, was about 7,500 afy from the mid-1970s to the mid-1980s, and then ranged generally between about 6,000 and 8,000 afy until 2001. From 2002 to 2007, municipal pumping was reduced as part of the conjunctive use pilot program. In spring 2007, due to the dry 2006/2007 winter conditions, the SFPUC discontinued supplemental water delivery to Daly City, and Daly City resumed pumping from its municipal wells. Major groundwater production areas and historical groundwater pumping in the Westside Basin are presented on Figure 1 and Figure 3, respectively. Recent municipal groundwater usage is shown on Figure 4.

In addition to municipal water supply pumping in the Westside Basin, groundwater has historically been developed for irrigation supply and other non-potable uses, most notably on golf courses around Lake Merced, on the cemeteries in Colma, in Golden Gate Park and at the San Francisco Zoo. All unmetered, groundwater pumping for irrigation supply has been estimated infrequently. Kirker Chapman (1972) estimated golf course and cemetery pumping to be about 5,000 afy in 1969, and Yates, et al. (1990) estimated Golden Gate Park pumping to be about 1,000 afy during the late 1970's and 1980's. Adding those estimates to metered municipal pumping, as illustrated in Figure 3, suggests that total pumping was almost 15,000 afy in the late 1960's [assuming that Golden Gate Park pumping was similar in the late 1960's to the late 1970's and 1980's, as reported by Yates, et al. (1990)]. Assuming irrigation pumping to not substantially have changed until 2005 as discussed below, total pumping could be considered to have been about 6,000 afy more than municipal pumping, or in the range of about 12,000 to 14,000 afy from the mid -1980's through 2001.

Between 2002 and 2004, municipal pumping significantly decreased as part of the conjunctive use pilot program, to around 2,000 afy. From 2005 to May 2007 supplemental SFPUC water continued to be delivered to Daly City. In 2005, initial deliveries of recycled water for golf course irrigation largely eliminated groundwater use at the courses around Lake Merced, leaving the cemeteries, the San Francisco Zoo, and Golden Gate Park as the notable pumpers for irrigation and other non-potable uses, using an estimated 3,000 afy. The combination of the conjunctive use demonstration project and recycled water deliveries for golf course irrigation resulted in the combination of metered and estimated pumping in the basin declining to about 6,000 af in 2005, and approximately 5,400 af in 2006. Following discontinuation of the conjunctive use pilot program with Daly City in May 2007, approximately 7,500 af of groundwater was pumped in 2007.

4.0 GROUNDWATER PUMPING, USAGE AND DEVELOPMENT - 2008

In 2008, groundwater pumping in the Westside Basin was primarily for municipal supply to Daly City, Cal Water (South San Francisco), and San Bruno, as well as for irrigation and other non-potable uses by the San Francisco Zoo, Golden Gate Park, golf courses, and cemeteries, as described below and summarized in Table 2.

The SFPUC is planning to develop 4 mgd of regular groundwater supply from the North Westside Basin. As part of this plan, a test well was constructed at the South Sunset Playground in June 2007 and a second test well was completed at the West Sunset Playground in 2008. The West Sunset Playground test well is 12-inches in diameter, with a total depth of about 370 feet bgs. The test well is screened from 160 to 200 feet bgs and from 210 to 360 feet bgs.. The well construction permit, as-built construction details, lithologic logs and geophysical logs, and a summary of groundwater quality are presented in Appendix D.

4.1 City of Daly City

From its highest historical pumping of around 5,000 afy through most of the 1960's, Daly City's pumping was near constant, around 4,500 afy, through the 1970's and 1980's. Slightly more variable in the 1990's, when it generally declined to around 4,000 afy, Daly City's pumping has been most notably reduced since 2001, when it initially decreased to about 2,700 afy in 2002, followed by further decreases to between 700 and 1,500 afy in 2003 through 2005. The decreases in 2003 through 2005 were associated with the conjunctive use pilot program, which continued in Daly City through May 2007. Groundwater pumping in Daly City during calendar year 2008 totaled about 3,600 af compared to about 2,600 af for 2007 (when Daly City only pumped for a portion of the year). The history of pumping in Daly City is illustrated in Figure 3 and Figure 4.

4.2 City of South San Francisco

Municipal groundwater pumping in South San Francisco is provided by Cal Water, which also serves Colma and small parts of Daly City. Historical pumping by Cal Water decreased from the late 1940's through 2002, from about 2,200 afy to about 1,200 afy. As part of the pilot conjunctive use project with the SFPUC, Cal Water discontinued groundwater pumping for water supply purposes in 2003 and 2004. The conjunctive use pilot program ended in South San Francisco in early 2005. Cal Water resumed groundwater pumping in March 2008. Groundwater pumping by Cal Water during calendar year 2008 totaled 206 af.

4.3 City of San Bruno

Over the long term, groundwater pumping in San Bruno has generally ranged between about 550 and 3,100 afy since the late 1940's. As part of the conjunctive use pilot program, San

Bruno reduced pumping to approximately 550 af in 2003 and 2004. After cessation of the conjunctive use pilot program in San Bruno in early 2005, groundwater pumping in San Bruno increased to about 1,700 af for that year. Groundwater pumping in San Bruno has amounted to approximately 1,950 af for 2006, 2,350 af for 2007, and 2,100 af for 2008.

4.4 San Francisco Zoo

The San Francisco Zoo uses groundwater for irrigation and Zoo operations. Landscape irrigation along part of the Great Highway is also supplied by groundwater. Since the mid-1990s, the water needs of the Zoo and the landscaping along the Great Highway have been met by Well No. 5, which is located at the Zoo and is operated and maintained by the San Francisco Recreation and Park Department. Groundwater meter data started being recorded in February 2005. In 2005 and 2006, annual groundwater pumping was reported at approximately 400 af and approximately 350 af, respectively. For 2008, metered groundwater pumping at the Zoo was approximately 260 af. This amount compares to about 620 af for 2007, and represents a decrease of about 42% compared to 2007 pumping (Table 2). The reason for the significant decrease in pumping at the SF Zoo is not readily apparent. SFPUC and Zoo staff are reviewing 2008 groundwater and surface water use in an attempt to understand these differences in 2008 groundwater use compared to 2007.

4.5 Golden Gate Park and Pine Lake

Groundwater is pumped in Golden Gate Park for irrigation and to maintain artificial lakes within the park. The Golden Gate Park wells are operated and maintained by the San Francisco Recreation and Park Department. Groundwater is pumped from three wells located at Elk Glen Lake, near North Lake, and near the South Windmill. Historically groundwater pumping data were not maintained for the Golden Gate Park wells. In 2005 meters were installed in all three production wells to quantify groundwater pumping in the park. Historical groundwater pumping in Golden Gate Park has previously been estimated to be approximately 1,100 afy (Yates, et al., 1990). For 2008, approximately 1,300 af of metered groundwater was pumped at the South Windmill Replacement well, the North Lake well, and the Elk Glen Lake well. This compares to about 830 af pumped from these wells in 2007 and represents an increase of about 57% over 2007 values. Total metered pumping in 2008 was calculated based on weekly flowmeter readings collected by the SFPUC from the three afore mentioned production wells. In accordance with recommendations made in the 2007 Annual Report, the SFPUC coordinated with Rec Park and retained Jensen Instruments (a licensed contractor) to service and calibrate the electronic flow totalizers at the North Lake and South Windmill Replacement wells. Service and calibration was conducted under the observation of SFPUC and Rec Park staff in November 2008.

In addition to Golden Gate Park, we understand that the Recreation and Park Department intends to resume groundwater pumping at the newly rehabilitated Pine Lake well sometime in the near future, to once again augment levels at the Pine Lake. SFPUC will cooperate with the Recreation and Park Department to measure future groundwater pumping from the Pine Lake well.

4.6 Golf Courses

There are six (6) golf courses in the Westside Basin that use groundwater for irrigation. These include the Lake Merced Golf Club, the Olympic Club Golf Course, the San Francisco Golf Club, the California Golf Club, the Golden Gate Park Golf Course and the Green Hills Country Club. In 2004, recycled water was made available to Lake Merced Golf Club, the Olympic Club Golf Course, and the San Francisco Golf Club by adding a tertiary level of treatment at the North San Mateo County Sanitation District (a subsidiary of the City of Daly City) Wastewater Treatment Plant and by installing a distribution system from the treatment plant to these respective golf courses.

In 2008, a total of 516 af of recycled water and 91 af of pumped groundwater were used by the Olympic Club Golf Course and the San Francisco Golf Club to meet irrigation needs. According to data provided by the City of Daly City, the Lake Merced Golf Club used about 78 af of recycled water in 2008. Annual pumping data for 2008 was not available from the Lake Merced Golf Club. A summary of golf course water use is presented in Table 1. Groundwater pumping data have not been requested from the California Golf Club for this report. However, based on the Recycled Water Feasibility Study (Carollo Engineers, September 2008), the pumping is estimated at 206 af per year. The Golden Gate Park Golf Course is irrigated with groundwater as part of the overall park irrigation. No pumping data have been requested from the Green Hills Country Club, located in Millbrae, within the southwestern portion of the basin.

4.7 Cemeteries

There are about 600 acres of cemeteries in Colma, most of which have historically been, and continue to be, irrigated with groundwater. Based on the Recycled Water Feasibility Study (Carollo Engineers, September 2008), the average annual groundwater pumping by cemeteries in Colma is estimated at 787 afy. Golden Gate National Cemetery has not been irrigated using groundwater for more than 20 years (personal communication on 9/7/07 between Greg Bartow (SFPUC) and Clifford Schem (US Dept. of Veterans Affairs, Nat'l Cemetery Administration)).

4.8 Summary

Total 2008 groundwater pumping in the Westside Basin is estimated at 8,500 ² af. Metered water use indicates that the cities of Daly City, South San Francisco, and San Bruno used

12

approximately 5,900 af of groundwater in 2008, while the two metered golf courses in the Lake Merced area used approximately 91 af of groundwater and 516 af of recycled water during calendar year 2008. According to data provided by the City of Daly City, the Lake Merced Golf Course used approximately 78 af of recycled water in 2008. Annual pumping data for 2008 was not available from the Lake Merced Golf Club but is estimated at about 37 af based on 2007 metered groundwater use. A general comparison between the combinations of metered and estimated historical pumping, and more completely metered pumping in 2005, 2006, 2007 and 2008, is presented in Table 1 and 2.

Total 2008 reported metered pumping in the Westside Basin was approximately 8,550 af. This consists of metered pumping at the three wells in Golden Gate Park, the San Francisco Zoo well, Daly City, San Bruno, Olympic Club Golf Course, and San Francisco Golf Club, and estimated groundwater pumping at the Lake Merced Golf Club based on 2007 values. To date the SFPUC and cooperating municipal pumpers have not requested annual pumping information from the other irrigation pumpers in the Westside Basin. However, based on estimates compiled by Carollo Engineers (Carollo Engineers, September 2008), the other pumping in the South Westside Basin is estimated at about 1,000 afy. Pumping within the Westside Basin not described (e.g., private homeowner wells, groundwater remediation extraction wells, and construction dewatering wells) is assumed to be negligible compared to the municipal and large-scale irrigation uses.

5.0 GROUNDWATER MONITORING AND TESTING PROGRAM

Groundwater monitoring within the Westside Basin consists of groundwater elevation and water quality monitoring conducted on a semi-annual basis (conducted during the spring and fall each year). Monitoring of groundwater elevations and various water quality parameters is conducted throughout the Westside Basin to evaluate the potential for seawater intrusion, and define lake-aquifer interaction. The monitoring program is also conducted to assess general conditions in the basin resulting from ongoing pumping, the conjunctive use program pilot and the recycled water program. The groundwater elevation monitoring well network is listed in Table 3, and approximate well locations are shown on Figure 5. These include both dedicated monitoring wells and inactive production wells. Measurements are collected manually on a quarterly or semi-annual basis in some wells, and daily through the use of electronic pressure transducers in other wells. Groundwater elevation hydrographs of all the wells monitored in 2008 are presented in Appendix A. All groundwater elevations are presented relative to the North American Vertical Datum of 1988 (NAVD88).

In addition to monitoring groundwater elevation data, groundwater sampling and analysis were conducted from select wells to monitor concentrations of various analytes and physical parameters of groundwater within the Westside Basin. The groundwater quality testing network is shown on Figure 21. Results of these analyses are used to monitor and evaluate the potential for seawater intrusion and general groundwater quality. Groundwater samples collected by the SFPUC for the North Westside Basin were done so in accordance with the "Sampling and Testing Protocol" for the Westside Basin (Appendix C).

Select groundwater samples were tested for some or all of the following constituents:

- General Minerals including: total alkalinity, calcium, magnesium, sodium, potassium, bicarbonate as CaCO₃, chloride, and sulfate;
- Iron and manganese (total and dissolved fractions);
- Nitrate;
- General parameters including: specific conductance, pH, total dissolved solids (TDS), and hardness;
- Bromide;
- Orthophosphate, and
- Boron.

Select groundwater elevation data are summarized in hydrographs illustrated on Figures 6 to 15, and groundwater elevation contour maps are presented on Figures 16 to 19. Results of chemical analyses on select groundwater samples are summarized in Tables 6 to 9.

6.0 COASTAL AND BAY SIDE WATER LEVEL MONITORING

6.1 Coastal Water Level Monitoring

Groundwater level measurements are being collected from a coastal monitoring well network in the western part of the basin, along the Old Great Highway (near Kirkham, Ortega, and Taraval Streets), the north-western part of Golden Gate Park, at the Oceanside Wastewater Treatment Plant, at the San Francisco Zoo, at Fort Funston, and at Thornton Beach. Fieldwork was conducted in accordance with the "Sampling and Testing Protocol for the Westside Basin" presented in Appendix C.

Groundwater elevation hydrographs of the Kirkham, Ortega, Taraval, and Zoo monitoring wells are presented in Figures 6 through 9, respectively. These hydrographs also include chloride concentrations from the water quality monitoring conducted at these wells. The water quality data are further discussed in Section 7.1. Figures 6 through 9 show the history of groundwater levels in the coastal monitoring wells since installation of wells at those four sites.

Groundwater elevations within the Shallow aquifer at all four coastal wells increased slightly or remained virtually unchanged seasonally compared to observed 2007 levels, and continued to trend above sea level in all wells. Groundwater levels within the Primary Production aquifer and Deep aquifer at the following wells increased in 2008 from the observed seasonal low levels of 2007, as follows:

- Kirkham MW-255 (Figure 6b) increased from a seasonal low of 3.2 ft (September 2007) to 5.2 ft (July 22, 2008);
- Kirkham MW-385 (Figure 6c) increased from a seasonal low of 2.9 ft (September 2007) to 5.2 ft (September 22, 2008);
- Kirkham MW-435 (Figure 6d) increased from a seasonal low of -0.5 ft (September 2007) to 2.4 ft (June 2008);
- Groundwater levels in Ortega MW-475 (Figure 7d) increased from a seasonal low of -4.7 ft in September 2007 to 1.0 ft (May 2008).
- Taraval MW-530 (Figure 8d) increased from a seasonal low of -9.0 ft (September 2007) to -2.0 ft (May 2008); and
- Zoo Monitoring Well MW-565 (Figure 9c) increased from a seasonal low of -13.5 ft (September 2007) to -6.0 ft (May 2008);

At their lowest measured levels of 2008, groundwater elevations at Taraval MW-530 (-2.0 ft), and Zoo Monitoring Well MW-565 (-6.0 ft) were below sea level. In addition, observed groundwater levels at the South Windmill monitoring well MW-57 and MW-140 remained below sea level and were similar to the recorded 2007 levels (Appendix A). Groundwater levels in MW-57, located in close proximity to the South Windmill Replacement well, dropped below sea level for the first time in 2007 since water level measurement began in 1989.

The observed increase in water level elevations in the Primary Production and Deep aquifers at the Kirkham, Ortega, Taraval, and Zoo wells, are likely a result of the following factors:

- Decreased pumping of groundwater at the SF Zoo production well, from 616 af in 2007 to 260 af in 2008 (Table 2), resulting in reduced drawdown and impact on the nearby coastal monitoring wells screened in the Primary Production and Deep aguifer;
- Although total groundwater use at the Golden Gate Park increased from about 827 af in 2007 to 1,294 af in 2008 (Table 2), there was a slight shift in pumping patterns caused by the shutdown of the South Windmill Replacement production well to more inland locations at various times in 2008, and
- A corresponding increase in pumping at the North Lake production well in Golden Gate
 Park resulted in less observed drawdown of water levels in the coastal monitoring wells.
 Pumping at the North Lake production well increased from about 224 af in 2007 to 645
 af in 2008, while pumping at the South Windmill Replacement production well decreased
 from 596 af in 2007 to 558 af in 2008. Pumping at the Elk Glenn production well located
 in the central portion of the Golden Gate Park, increased from 7 af in 2007 to 91 af in
 2008.

With the exception of the South Windmill monitoring well MW-57 and MW-140, groundwater elevations measured at wells screened within the Shallow aquifer in 2008 were all above sea level. Groundwater elevation contours for the Shallow aquifer measured during the spring and fall 2008 monitoring events are presented on Figures 16 and 17, respectively.

Groundwater levels at coastal monitoring wells screened in the Primary Production aquifer increased in 2008 compared to observed 2007 levels. Groundwater elevation contours for the Primary Production aquifer measured during the spring and fall 2008 monitoring events are presented on Figures 18 and 19, respectively.

Groundwater levels at the two coastal wells screened in the Deep Aquifer (Taraval MW-530, and Zoo MW-565), increased compared to observed 2007 levels but remain below sea level.

In general, coastal groundwater levels in most of the wells on the Pacific Ocean side of the Westside Basin are sufficiently high (above sea level) to indicate a lack of potential for seawater

intrusion. However groundwater levels in monitoring wells near the southwestern corner of Golden Gate Park were below sea level in the Shallow aquifer (South Windmill monitoring well MW-57 and MW-140). In the Shallow and Primary Production aquifers, the continued depression of groundwater levels appears to be the result of increased and concentrated pumping in the western part of Golden Gate Park. In addition, below-normal winter precipitation in 2006, 2007 and 2008 further reduced aquifer recharge, and increased the need for irrigation pumping. Continued concentrated pumping in Golden Gate Park and the resulting depression of groundwater levels below sea level indicates a potential for seawater intrusion.

Increased water level elevations observed in all monitoring wells screened in the Primary Production and Deep aquifer within the coastal monitoring system for 2008 reinforces the goal for more sustainable and decentralized pumping at the SF Zoo and Golden Gate Park. This would allow previously depressed water levels to continue to rise and reduce the potential for sea water intrusion, and create more sustainable groundwater conditions in the North Westside Basin.

The coastal monitoring wells located at Fort Funston and Thornton Beach have groundwater elevations above sea level. The aquifers at these locations appear to be hydraulically separated from the main portion of the Westside Basin by faults and resultant steeply dipping geologic units, which act as hydraulic barriers to flow (LSCE, 2004). Groundwater elevations in the Fort Funston monitoring wells (Fort Funston –S and Fort Funston –M) continue to exhibit a generally increasing trend in the Upper Merced Formation and a virtually constant water level elevation in the Middle Merced Formation. Groundwater elevation monitoring at the Thornton Beach well MW 225 (screened in the Primary Production aquifer) and MW 670 (screened in the Deep aquifer) indicates that groundwater levels in both aquifers continue to rise in this area and remain well above sea level. Groundwater hydrographs for all wells monitored in 2008 are presented in Appendix A.

6.2 Bay Side Water Level Monitoring

Additional monitoring on the Bay Side of the Westside Basin was implemented by the City of San Bruno in 2006. In the fall of 2006, two new well clusters were installed and monitored by the City of San Bruno at locations in the San Francisco Airport (SFO) and within Burlingame (Figure 5). These wells were positioned to enhance monitoring of groundwater levels and water quality parameters along the San Francisco Bay side of the basin. Details of field activities, well installation activities and resulting monitoring in November 2006 and April 2007, were presented in "San Bruno Groundwater Monitoring Wells: Installation and Monitoring, An AB 303 Project Report", prepared for the City of San Bruno by WRIME, Inc. and dated April 2007.

In February 2008, groundwater elevations were measured in the two monitoring well clusters: SFO (S and D) and Burlingame (S, M, and D). Groundwater elevations measured during this

event in wells SFO-S and SFO-D were 2.29 and -29.18 feet (NAVD88), respectively. Groundwater elevations measured during this event in wells Burlingame (S, M, and D) were 3.37, 1.52, and -3.95 ft (NAVD88), respectively. Groundwater elevations measured during the August 2008 monitoring event in wells SFO-S and SFO-D were 1.78 and -30.07 ft (NAVD88), respectively. Groundwater elevations measured at wells Burlingame –S, M, and D during the August event; were 1.64, -0.82, and -4.65 ft (NAVD88), respectively. Fieldwork was conducted by WRIME Inc in accordance with the "San Bruno Seawater Intrusion Monitoring Wells: Sampling Plan", prepared for the City of San Bruno by WRIME, Inc. dated April, 2007.

6.3 Lake Merced and Lake-Aquifer Monitoring

The water level elevations in Lake Merced in 2009 ranged from about 16.27 feet to 18.30 feet (NAVD88 datum). Lake levels are presented on Figure 20. Observed 2008 lake levels are fairly similar to observed levels in 2007, and continue to show a generally upward trend from seasonal low levels in 2002. These lake level elevations are above the 14 to 16 foot (NAVD88) interim lake level range established by the SFPUC.

Lake-aquifer monitoring around Lake Merced is accomplished by a combination of continuous and periodic monitoring of water levels in each of the three lake bodies, and by a combination of continuous and intermittent monitoring of groundwater levels in a network of dedicated monitoring wells around the lake complex, as illustrated in Figure 5.

Measured groundwater elevations in wells screened in the Shallow aquifer around the Lake. during the spring 2008 event, ranged from 13.34 feet (LMMW-9SS) to 29.31 ft above sea level (LMMW-7SS). For the fall 2008 event groundwater elevations ranged from 12.76 feet (LMMW-9SS) to 28.75 feet (LMMW-7SS). In the underlying Primary Production aquifer, groundwater elevations in the vicinity of Lake Merced ranged from -5.75 feet (LMMW-3D) to 14.63 feet (LMMW-2D) during the spring 2008 event. For the fall 2008 event, measured groundwater elevations in the Primary Production aquifer in the vicinity of Lake Merced ranged from -9.01 feet (LMMW-3D) to 13.48 feet (LMMW-2D).

For 2008, Shallow aquifer groundwater elevations around the Lake ranged from about 1.2 ft below to 12.7 ft above the interim Lake levels. Groundwater levels in the Primary Production aquifer around the lake ranged from about 23 ft below to 0.5 ft below the interim Lake levels. Groundwater elevations in the Primary Production aquifer were also in general lower than levels measured in the Shallow aquifer and the lake, indicative of a potential for flow from the Shallow aquifer-Lake system toward the underlying aquifer in which nearby production wells are primarily completed.

Hydrographs of two wells screened in the Shallow and Primary Production aquifers (LMMW-1S and LMMW-1D, respectively) that monitor groundwater elevations in the vicinity of Lake Merced are presented on Figure 12. Groundwater elevations in both aquifers continue to exhibit a

generally upward trend from their 2002 levels. However groundwater levels in wells screened in the Primary Production and Deep Aquifer located near the southern portion of Lake Merced (e.g. LMMW-3D) decreased compared to 2007 values (Appendix A). This appears to be a result of increased and continued groundwater pumping by the City of Daly City.

6.4 South Westside Basin Water Level Monitoring

As part of the Westside Basin Monitoring Program, water levels in 9 wells screened in the Primary Production aquifer are typically monitored in the South Westside Basin. These wells were initially monitored by the San Mateo County Department of Environmental Health, starting in 2000. Since 2002 these wells have been monitored as part of the SFPUC's groundwater monitoring program. These wells consist of: LMMW-6D, DC 1 (Westlake), DC 8, and Park Plaza (MW-460) located in Daly City; SS1-02 and SS1-20 located in South San Francisco; SB-12 in San Bruno, and UAL 13C and UAL 13D located at the San Francisco International Airport. In 2006, two new well clusters (SFO and Burlingame) were installed by the City of San Bruno to fill data gaps in their own monitoring program. In the summer of 2007 SFPUC installed a monitoring well cluster consisting of 4 wells, at the South San Francisco Linear Park in South San Francisco.

In October 2008, SFPUC installed five new monitoring well clusters at the following locations:

- CUP-10A located within SFPUC Right of Way in Daly City;
- CUP-18 located within SFPUC Right of Way at Colma Blvd in Colma;
- CUP-19 located within SFPUC Right of Way at Serramonte Blvd in Colma;
- CUP-22A located within SFPUC Right of Way at Hickey Blvd at Camaritas Road, in South San Francisco; and
- CUP-36-1 located within SFPUC Right of Way at Southwood Drive in South San Francisco.

The five monitoring well clusters were completed at depths ranging from 151 to 710 feet bgs. These well clusters were installed as part of the Water System Improvement Program, Groundwater Conjunctive Use Project well installation and will be incorporated in the SFPUC's Westside Basin monitoring program. Permits, well construction details, lithologic logs and geophysical logs from these monitoring wells are presented in Appendix D.

Water level measurements for the wells screened within the Primary Production aquifer and monitored during the spring 2008 event [LMMW-6D, DC 1 (Westlake), Park Plaza MW-460, DC 8, SB-12, SS 1-02, and SSFLP MW-220] indicate that groundwater elevations were below sea level. Groundwater elevations ranged from -15.54 feet (LMMW-6D) to -185.23 feet (SB-12 Elm

Avenue) relative to mean sea level during the spring event. Groundwater elevation contours in the Primary Production aquifer for the spring 2008 event are presented on Figure 18. Groundwater elevations during the fall 2008 monitoring event indicate that elevations in these wells ranged from -19.84 feet (LMMW-6D) to -194.94 feet (SB-12 Elm Avenue). Groundwater elevation contours in the Primary Production aquifer for the fall 2008 event are presented on Figure 19. Groundwater elevation hydrographs for all the wells monitored during the spring and fall 2008 events are presented in Appendix A.

7.0 GROUNDWATER QUALITY MONITORING

Groundwater quality data for the Westside Basin are primarily from a combination of historical water quality analyses, mostly from municipal supply wells, and from the semi-annual monitoring program that was initiated throughout the basin in May 2000. The program has expanded to include additional wells as they have been constructed. Program wells are illustrated in Figure 21 and listed in Table 5, and they reflect the location of both production and dedicated monitoring wells. Results of groundwater quality monitoring in 2008 are presented below.

7.1 Coastal Groundwater Quality

Monitoring of groundwater levels and groundwater quality at the coastal monitoring wells located along the Great Highway near Kirkham, Ortega, and Taraval streets, and at the San Francisco Zoo, as well as in the southwestern portion of Golden Gate Park, is conducted to detect the potential for seawater intrusion. Groundwater samples from these wells were tested for specific conductance, total dissolved solids (TDS) and chloride in the spring and fall 2008. Results of groundwater quality testing for the coastal monitoring wells are presented in Table 6. Chloride concentrations and groundwater elevations in 2008, as well as records since the inception of coastal monitoring (2004), are plotted on hydrographs presented in Figures 6 through 9.

Chloride concentrations for 2008 ranged from 19 mg/l (SF#32-Ortega MW400) to 178 mg/l (SF#57-USGS South Windmill MW-57). Detected chloride concentrations in the coastal monitoring wells generally ranged from 19 mg/l to 69 mg/l, with the exception of the SF#57-USGS South Windmill MW-57, which had concentrations of 150 mg/l (spring 2008) and 178 mg/l (fall 2008). For the shallow coastal wells (screened between 50 to 150 feet), chloride concentrations ranged from 30 mg/l (SF#30-Grt Hyw/Ortega MW-125) to 178 mg/l (SF#57-USGS South Windmill MW-57) (Table 6).

The chloride concentrations measured in 2008 are within historical ranges at all the wells sampled, except for the USGS South Windmill MW-57 well. All chloride concentrations are below the state of California secondary drinking water standard of 250 mg/l and are also well below 500 mg/l, a commonly referenced concentration indicative of seawater intrusion. Although groundwater levels continue to be depressed below sea level in the deeper part of the aquifer system and chloride concentrations at the Zoo, and the USGS South Windmill MW-140 well located in the southwestern portion of Golden Gate Park are slightly higher than the other monitoring locations along the coast, none appear to be suggestive of seawater intrusion at the present time. The total dissolved solids (TDS) concentrations and specific conductance values

in these wells are all within historical ranges and below established secondary drinking water standards.

The chloride, TDS and specific conductance values in the USGS South Windmill MW-57 well show an increase in concentration that may be an early indication of seawater intrusion. Efforts are underway between the SFPUC and the SF Recreation and Park Department to develop a recycled water supply for Golden Gate Park, and to distribute groundwater pumping further away from the coast.

7.2 General Basin Conditions

Groundwater quality is monitored in a network of production and monitoring wells as described above and illustrated in Figure 21. Groundwater samples were collected from wells used to assess general basin conditions in the spring (April, May, and June) 2008. The analytical results are summarized in Tables 7 and 8. With the exception of nitrate (as N0₃) concentrations detected in DC#01 - A St (Daly City) and one of the South San Francisco wells SS#08 - SS 1-19, groundwater quality generally meets the maximum contaminant levels (MCLs) of primary drinking water standards set by California Department of Public Health.

The South San Francisco Linear Park (SSFLP) wells (MW-120, 220, 440, and 520) were sampled and analyzed for iron and manganese in the spring and fall 2008. Detected total iron concentrations ranged from 0.013 mg/l (SSFLP MW-520) to 0.161 mg/l (SSFLP MW-120), while detected total manganese concentrations ranged from 0.147 mg/l (SSFLP MW-220) to 0.825 mg/l (SSFLP MW-120). In addition groundwater samples from the well cluster at the South San Francisco Linear Park were tested for dissolved iron and manganese. Detected dissolved iron concentrations ranged from 0.005 (SSFLP MW-520) to 0.063 mg/l (SSFLP MW-120). Detected dissolved manganese concentrations at these wells ranged from 0.139 mg/l (SSFLP MW-220) to 0.805 mg/l (SSFLP MW-120). Detected concentrations of total and dissolved manganese in these wells exceed the secondary MCL of 0.05 mg/l. Detected iron and manganese concentrations are summarized on Table 8.

The 2008 water quality results for specific conductance, TDS, and chloride for Daly City well (DC#11 – Westlake DC2), South San Francisco well SS#08 - SS 1-19, and San Bruno well SB#06 - SB-17 Corporation Yard are combined with available historical data and illustrated in Figures 22 through 24, respectively. South San Francisco well SS#05 – SS 1-14, which is typically sampled as part of the monitoring program, was offline. Production well SS#08 – SS 1-19 located within the same well field was sampled instead. Results from this well have been appended to the historical data available from SS 1-14 and are presented in Figure 23 and 25. The 2008 and historical nitrate data for the above wells and the Vale well (Daly City) are illustrated in Figure 25.

7.2.1 City of Daly City

In Daly City, the available data extend back to the mid 1970's (Table 7 and Figures 22 and 25), but are too sporadic to derive any substantive conclusions about trends or changes. During the spring 2008 monitoring event, detected nitrate concentrations ranged from 10 mg/l in DC#06 - Jefferson to 131 mg/l in DC#01 - A St. Nitrate concentrations in DC#01 - A St exceeded the primary MCL of 45 mg/l. With the exception of well DC#06- Jefferson, which remained essentially unchanged (from 9.4 to 10 mg/l), detected nitrate concentrations decreased slightly with respect to the 2007 sampling results in three of the four wells sampled during this event. Specific conductance increased slightly in three of the four wells sampled compared to 2007 levels. Chloride concentrations ranged from 56 mg/l (DC#06-Jefferson) to 122 mg/l (DC#11 Westlake DC 2). Except for DC#06- Jefferson, which showed a decrease from 80 to 56 mg/l, detected chloride concentrations increased slightly in all of the Daly City wells sampled during this event. Ongoing monitoring will delineate whether the recent data are indicative of changing, temporary, or anomalous conditions in that area. The monitoring program will continue to examine these trends in subsequent events.

7.2.2 City of South San Francisco

For the South San Francisco area, records from Cal Water date back to the late 1950's (Table 7 and Figures 23 and 25). Chloride concentrations for the spring 2008 monitoring event ranged from 63 mg/l (SSFLP 440) to 176 mg/l (SSFLP 120). Chloride concentrations in the South San Francisco area, have consistently been higher than elsewhere in the basin. Historically specific conductance and TDS concentrations in well SS#05 SS 1-14 have fluctuated more than chloride and appeared to exhibit a generally upward trend since the 2000 monitoring event. During the 2008 spring monitoring event, wells SS#05-SS1-14, and SS#10-SS1-21 were undergoing repair and consequently were not sampled. Two other production wells SS #08-SS 1-19 and SS #09-SS 1-20 located in the same well field, were sampled in their place. The specific conductance at the two production wells sampled in South San Francisco during the spring 2008 monitoring event was 993 μ mhos/cm (SS#08 – SS 1-19) and 863 μ mhos/cm (SS#09 – SS 1-20). Analysis detected 47 mg/l (SS#08 – SS 1-19) and 35 mg/l (SS#09 – SS 1-20) of nitrate respectively. The detected nitrate concentration at well SS#08 – SS 1-19 is slightly above the primary MCL of 45 mg/l (Table 7). Ongoing monitoring will delineate whether the recent data are indicative of changing, temporary, or anomalous conditions in that area.

7.2.3 City of San Bruno

In San Bruno, available groundwater quality data extend back to 2000 (Table 7, Figures 24 and 25). Interpretation of the records since 2000 (Figure 24) suggests fairly constant conditions. For 2008, chloride concentrations were 57 mg/l and 84 mg/l at SB 17 Corporation Yard and SB 20

Lions Field Park, respectively. Reported chloride concentrations increased slightly at the SB-17 well and decreased at the Lions Field Park well, but remained within historical ranges. The nitrate concentrations were 6 mg/l and 1 mg/l in SB-17 and SB 20, respectively. Detected nitrate concentrations in the two wells sampled during the spring 2008 event are well below the primary MCL of 45 mg/l (Table 7 and Figure 25). At present, we understand that the City of San Bruno is treating groundwater pumped from well SB#08 - SB 20 for manganese.

As part of the City of San Bruno's Bay side monitoring program, the two well clusters installed in 2006 were sampled by WRIME, Inc in August 2008. A summary of chemical testing results was provided by WRIME Inc on behalf of the City of San Bruno (Figure 7). Chloride concentrations and groundwater elevations beginning in 2006 for the Burlingame and SFO wells are plotted on hydrographs presented in Figures 10 and 11 respectively.

7.3 Recycled Water

The initiation of recycled water deliveries in 2004 for golf course irrigation around Lake Merced, which resulted in meeting about most of irrigation demand at the private courses in 2008, had raised a question regarding potential impact of recycled water application on the underlying groundwater. Initial evaluation of this question in 2005 consisted of a comparison between recycled water quality and background (current) groundwater quality in monitoring wells near the golf courses. Groundwater monitoring of these four wells continued in 2008. Available data on recycled water quality collected in 2005, and nearby dedicated monitoring wells sampled at least annually between 2004 and 2008, are presented in Table 9. Based on comparison of those data, the water quality of recycled water and groundwater is sufficiently similar that no substantial change in groundwater quality would appear to be expected as a result of recycled water application. For the available data, constituent concentrations in the recycled water are within, or slightly higher than, those in the underlying groundwater (Table 9). Ongoing monitoring of recycled water quality and underlying groundwater will permit interpretation of changes that may occur in the future.

8.0 SUMMARY AND PROPOSED ACTIVITIES FOR 2009

This report is the annual report on groundwater conditions in the Westside Basin, prepared by the SFPUC in cooperation with Daly City, San Bruno, and Cal Water (cooperating agencies).

8.1 Groundwater Monitoring

The groundwater monitoring and reporting program will continue to be implemented in accordance with the recommendations presented in the 2005 annual report (LSCE, 2006). Semi annual sampling and various water level measurements will be conducted in 2009 to assess general groundwater conditions in the Westside Basin, as well as to continue to evaluate the adequacy of the entire program. In 2009, the cooperating agencies will assess the need for expanding the monitoring program within the southern part of the Basin, and continue to incorporate water level elevation and water quality data from any future wells installed within these jurisdictions (e.g. the five new well clusters installed in October 2008 in the southern portion of the basin as part of the Conjunctive Use Project). The scope and frequency of the groundwater monitoring program are presented on Tables 10 and 11.

8.2 Coastal Monitoring

Continued semi-annual monitoring of coastal water quality (primarily TDS, specific conductance, and chloride) conducted during the spring and fall (Table 11) will be coupled with quarterly-to-daily water level measurements from the existing coastal monitoring well locations (Table 10).

8.3 Lake Merced

For 2009 the existing monitoring program at Lake Merced will be continued, with collection of lake level data from South Lake and Impound Lake in accordance with recommendations of the 2005 annual report. Groundwater measurements will be recorded daily and quarterly in accordance with the current program (Table 10). More frequent measurements may be appropriate as part of any artificial water additions to the lake or aquifer hydraulic testing. Such changes will be implemented as necessary.

8.4 General Basin Conditions and In-Lieu Conjunctive Use Program

The SFPUC will continue to monitor daily water levels of key wells in the Daly City, South San Francisco, and San Bruno areas (Table 10), along with annual water quality monitoring (Table 11). In the southern portion of the Westside Basin, there remains a need for quantification of pumping at the cemeteries in Colma and at the California Country Club, to complete the current understanding of significant pumping in the Westside Basin.

8.5 Recycled Water Program

SFPUC will continue monitoring recycled water quality and groundwater quality in the areas of recycled water use on an annual basis (Table 11). Although initial data show recycled water quality and groundwater quality to be fairly similar, continued monitoring will provide data to evaluate whether any trends develop as a result of the use of recycled water for irrigation purposes. For 2009, we will add testing for nitrate as N0₃ to the monitoring of groundwater quality in areas of planned recycled water use (e.g. LMMW -2S and LMMW-2D located at the Harding Park Golf Course in San Francisco).

8.6 Bay Side Monitoring

The City of San Bruno will continue to monitor the Bay Side wells in the southeastern portion of the Westside Basin on a semi-annual basis, in general accordance with the Westside Basin monitoring program and transmit this data to the SFPUC for inclusion in the annual groundwater monitoring reports.

9.0 REFERENCES

Bartell, M.J., Underground Water Supply of San Francisco County, 1913.

Brabb, E. E. and Pampeyan, E. H., *Geologic Map of San Mateo County*, U.S. Geological Survey, Miscellaneous Investigations Series I-1257-A, Map Scale 1:62,500, 1983.

California Water Service Company, 2006 Urban Management Plan, South San Francisco District, dated December 15, 2006.

Carollo Engineers, Recycled Water Feasibility Study, dated September 2008.

Kennedy/Jenks Consultants, *Monitoring Well Installation Technical Memorandum South Westside Basin Conjunctive Use Project*, dated April 2009.

Kirker, Chapman & Associates, *Lake Merced Water Resource Planning Study,* San Francisco Water Department, 1972.

Luhdorff & Scalmanini Consulting Engineers, Inc. (LSCE), *Update on The Conceptualization of the Lake Aquifer System Westside Groundwater Basin San Francisco and San Mateo Counties,* dated April 2004.

Luhdorff & Scalmanini Consulting Engineers, Inc. (LSCE), *Hydrogeologic Conditions in the Westside Basin* – 2005, dated November 2006.

Robert Klinesteker, Email transmittal with Results of 2008 Groundwater Pumping and Recycled Water Use of the San Francisco Golf Club, dated February 4, 2009.

Phillips, S. P., Hamlin, S. N., and Yates, E. B., *Geohydrology, Water Quality, and Estimation of Groundwater Recharge in San Francisco, California, 1987-92,* U.S. Geological Survey, Water-Resources Investigations Report 93-4019, 1993.

San Francisco Public Utilities Commission, 2005 Urban Water Management Plan for the City and County of San Francisco, 2005.

San Francisco Public Utilities Commission, *Final Draft North Westside Groundwater Basin Management Plan*, dated April 2005.

San Francisco Public Utilities Commission, 2007 Annual Groundwater Monitoring Report Westside Basin, dated April 2008.

San Mateo County Environmental Health Services Agency, *Westside Basin Water Quality Sampling Results*, dated July 2000.

San Mateo County Environmental Health Services Agency, *Westside Basin Water Use,* dated July 2000.

Schem, C (US Dept. of Veterans Affairs, Nat'l Cemetery Administration), Verbal Correspondence to SFPUC staff during site visit on September 7, 2007.

Water Resources & Information Management Engineering, Inc. (WRIME), San Bruno Groundwater Monitoring Wells: Installation and Monitoring, an AB303 Project Report, dated April 2007.

Yates, E. B., Hamlin, S. N. and McCann, L. H., *Geohydrology, Water Quality, and Water Budgets of Golden Gate Park and the Lake Merced Area in the Western Part of San Francisco, California*, U.S. Geological Survey, Water-Resources Investigations Report 90-4080, 1990.

APPENDIX B SFPUC AGENDA ITEM FOR APPROVAL OF THE WATER SYSTEM IMPROVEMENT PROJECT OCTOBER 31, 2008

AGENDA ITEM Public Utilities Commission

City and County of San Francisco

DEPARTMENT	Water Enterprise	AGENDA NO.	
		MEETING DATE	October 30, 2008

SUMMARY OF PROPOSED COMMISSION ACTION

Approve the Phased Water System Improvement Program (Phased WSIP) Goals and Objectives and **Adopt** California Environmental Quality Act (CEQA) Findings, including a statement of overriding considerations and the Mitigation Monitoring and Reporting Program (MMRP).

DESCRIPTION OF ACTION

Program Approval

The Phased WSIP is a variant of the originally proposed WSIP and includes full implementation of the WSIP facility projects to ensure that the public health, water quality, seismic safety, and delivery reliability goals are achieved, with phased implementation of the water supply portion of the program. Under the Phased WSIP, the SFPUC will establish an interim, mid-term implementation horizon of 2018. The Phased WSIP includes water supply delivery to wholesale and retail customers through 2018.

The Phased WSIP goals and objectives are founded on two fundamental principles pertaining to the existing regional water system: (1) maintain a clean, unfiltered water source from the Hetch Hetchy system and (2) maintain a gravity-driven system.

The overall goals of the Phased WSIP for the regional water system are to:

- Maintain high-quality water and a gravity-driven system
- Reduce vulnerability to earthquakes
- Increase delivery reliability
- Meet customer water supply needs
- Enhance sustainability
- Achieve a cost-effective, fully operational system

APPROVAL:			
PERFORMING ORGANISATION		FINANCE	Todd Rydstrom
COMMISSION SECRETARY	Michael Housh	GENERAL MANAGER	Ed Harrington

Page 2 SFPUC Agenda Item Number:

Department: Water Enterprise

Project: CUW 38801, Water System Improvement Program EIR - Approval of Program, Adoption of CEQA Findings and MMRP.

A table presenting the Phased WSIP goals and objectives as they relate to the program goals is included in the Resolution for this action. The system performance objectives describe and, in some cases, more specifically quantify, what the regional water system proposes to achieve under the Phased WSIP. The performance objectives guide the water supply actions, facility improvements, operations, and maintenance requirements included in the Phased WSIP.

To meet the program goals and objectives the Phased WSIP includes the following program elements:

- Full implementation of WSIP facility improvement projects.
- Water supply delivery to regional water system customers through 2018 with an average annual target delivery of 265 mgd originating from the watersheds. This includes 81 mgd for the retail customers and 184 mgd for the wholesale customers.
- Water supply sources include: 265 mgd average annual delivery from the Tuolumne River watershed and the local watersheds plus 20 mgd of conservation, recycled water, and groundwater developed in the service area (10 mgd retail; 10 mgd wholesale).
- Implementation of delivery and drought reliability elements of the WSIP, including dry-year water transfers coupled with the Westside Groundwater Basin Conjunctive Use project, will meet the drought-year goal of limiting rationing to no more than 20 percent on a systemwide basis.
- Reevaluation of 2030 demand projections, potential regional system demand (purchase requests), and water supply options by 2018, and SFPUC decision in 2018 regarding regional water system deliveries after 2018.
- Financial incentives to limit water sales to an average annual amount of 265 mgd from the SFPUC watersheds.

Adoption of CEQA Findings

The City Planning Department prepared and the Planning Commission will be asked to certify on October 30, 2008, a Program Environmental Impact Report (PEIR) for the WSIP as required under CEQA, the CEQA Guidelines and Chapter 31 of the San Francisco Administrative Code. In order to comply with CEQA requirements, as part of the approval of the WSIP, the Commission must adopt the CEQA Findings, including a statement of overriding considerations, and the MMRP, attached to the Resolution as Attachments A and B, respectively.

The Final PEIR (consisting of the Draft PEIR and the Comments and Responses document) identified potentially significant impacts resulting from water supply and

Page 3 SFPUC Agenda Item Number:

Department: Water Enterprise

Project: CUW 38801, Water System Improvement Program EIR - Approval of Program, Adoption of CEQA Findings and MMRP.

system operations and construction of WSIP facility improvement projects. The potentially significant impacts that would result from implementation of the recommended Program, or the "Phased WSIP" are described in Chapter 13 of the Final PEIR and are included in the Findings. The Final PEIR identified mitigation measures to substantially reduce or eliminate many of the significant impacts identified in the PEIR. The CEQA Findings provide for adoption of the mitigation measures by the SFPUC and the MMRP provides information and allocates responsibility for implementing all of the mitigation measures proposed in the Final PEIR for the Phased WSIP.

Significant and unavoidable impacts are described in Section IV of the CEQA Findings attached to the Commission Resolution as Attachment A. Therefore, this Commission will need to adopt a Statement of Overriding Considerations, included in the CEQA Findings Section VI, explaining why the Commission has decided to approve the Phased WSIP notwithstanding these significant and unavoidable environmental impacts.

RECOMENDATION

SFPUC staff recommends that the Commission approve the Phased WSIP Goals and Objectives and adopt the CEQA Findings, including the statement of overriding considerations, and the MMRP.

CONTEXT OF THIS ACTION

The SFPUC began development of the Water System Improvement Program (WSIP) in the late 1990's through a series of studies, reports, and authorizations. In 1998, the SFPUC initiated a water supply planning effort, culminating in the Water Supply Master Plan (WSMP), issued in April 2000. The WSMP recommended a water resource strategy of demand management, facilities improvements, and development of additional supplies. Concurrent with the WSMP efforts, reliability studies of the water system facilities were performed to assess their vulnerability to earthquakes, landslides, fire, flood, and power outages.

These efforts led to the preparation of a Long-Term Strategic Plan for Capital Improvements, a Long-Range Financial Plan, and a Capital Improvement Program, approved and adopted by the San Francisco Public Utilities Commission on May 28, 2002 under Resolution No. 02-0101. The Capital Improvement Program identified 37 regional water system projects and 40 local (in-City) projects. The resolution authorized and directed the General Manager (GM) of the SFPUC to proceed with development and implementation of the strategic and financial plans, as well as the capital improvement program with such additions or changes as the GM and Commission deemed necessary or desirable.

Planning efforts for the Water System Improvement Program gained momentum in 2002 with the passage of Propositions A and E, San Francisco ballot measures that

Page 4 SFPUC Agenda Item Number:

Department: Water Enterprise

Project: CUW 38801, Water System Improvement Program EIR - Approval of Program, Adoption of CEQA Findings and MMRP.

approved financing for water system improvements and long-term stewardship of the public utilities. Specifically, Proposition A was a revenue bond authorizing the City of San Francisco to borrow money to pay for improvements to its water system. The improvements cited in the bond measure included: upgrading and retrofitting the system's infrastructure against earthquake damage; upgrading the regional system's ability to store and convey water to the Bay Area; ensuring future water quality standards are met; and increasing water system capacity.

Proposition E was a charter amendment related to Proposition A that reinforced the SFPUC's charge to rehabilitate the aging water system in order to ensure reliable water delivery in the future and provided the agency the ability to finance the improvements. Proposition E's goals and objectives included clauses maintaining SFPUC's stewardship of the system as well as the requirements to provide reliable water, optimize the system's ability to withstand disasters, and improve drinking water quality. In addition, the charter amendment required the development of long-term capital, financial, and strategic plans to ensure accountability by the SFPUC, ensuring that the utility is being operated efficiently in accordance with best public utility practices. Prior to the ballot measures, the SFPUC prepared long-term capital, financial, and strategic plans, which were adopted on May 28, 2002. These initiatives provided the impetus to move the WSIP forward, founding the system performance objectives in the water system reliability requirements of Proposition E.

Also in 2002, the state legislature approved three bills reflecting wholesale customer concerns over risk of failure of the water system in a major earthquake. Governor Davis approved these bills in September of 2002, including Assembly Bill No. 1823, the Wholesale Regional Water System Security and Reliability Act.

Additional studies refined the scope and magnitude of the Water System Improvement Program since completion of the WSMP. A November 2004 technical report on wholesale customer water demand projections updated 2030 planning horizon demands. A 2004 analysis of system performance under various operating conditions also assessed the effectiveness of the proposed regional water projects to meet program objectives. Concurrently, development of a draft regional operational strategy/principles document delineated current and future system operating goals, constraints, and strategies.

From October 2004 to January 2005, the Commission held a series of public workshops to present these studies. At the final workshop the Commission provided direction on system performance objectives for the program. Based upon the system performance objectives the scope, schedule, and budget of the program were refined, allowing the San Francisco Public Utilities Commission (SFPUC) to provide a description of the Water System Improvement Program. On February 28, 2005, the SFPUC endorsed the WSIP.

Subsequently, the San Francisco Planning Department prepared the PEIR to

Page 5 SFPUC Agenda Item Number:

Department: Water Enterprise

Project: CUW 38801, Water System Improvement Program EIR - Approval of Program, Adoption of CEQA Findings and MMRP.

evaluate the potential environmental effects of the WSIP pursuant to and in accordance with California Public Resources Code Sections 21000 et. Seq. (CEQA), Title 14 of the California Code of Regulations Sections 15000 et. seq. (CEQA Guidelines) and the provisions of Chapter 31 of the San Francisco Administrative Code. Attachment A to the Commission's Resolution approving the Program contains detailed information about the CEQA process and preparation of the PEIR.

During the environmental review process, the SFPUC and the Planning Department received many comments expressing strong concern about, and opposition to, a decision now to divert more water from the SFPUC watersheds. The SFPUC staff considered carefully those concerns and the long term needs of the water system, including the customers' needs as well as protection of natural resources. In order to accomplish urgently needed physical rehabilitation and maintenance of the system and to improve asset management and delivery reliability now, the SFPUC staff recommends immediate implementation of all of the WSIP facility improvement projects. In order to carefully consider the long term decision of whether to divert more water from the watersheds, the SFPUC staff believes that the water supply decision should now be a limited one for the next 10 years and then the SFPUC will reconsider the long term water supply decision by 2018. In the next 10 years, the SFPUC will explore and develop other water supply options, including conservation, recycling and groundwater programs.

The Phased WSIP Variant facility improvement projects remain the same irrespective of the water supply decision now and in 2018. To meet the system performance objectives for water quality, seismic reliability and delivery reliability, the SFPUC must implement the Phased WSIP Variant facility improvement projects that provide physical system capacities to meet the performance objectives. Design of WSIP project facilities is driven by all four of the program goals -- the need to improve system performance for seismic reliability and water delivery reliability as well as maintaining high water quality standards and meeting water supply goals. All four of these goals are factored in to the decision on how to size the WSIP's individual facilities. The SFPUC must move forward with the WSIP facilities as proposed, to meet average demand of up to 300 mgd, in order to improve seismic and water delivery reliability, meet current and future water quality regulations, provide for additional system conveyance for maintenance and meet water supply reliability goals for year 2030 and possibly beyond. The SFPUC must consider current needs as well as possible future changes and unplanned outages and design a system that achieves a balance among the numerous objectives, functions and risks a water supplier must face.

The Phased WSIP Variant also includes implementation of delivery and drought reliability elements of the WSIP, including dry-year water transfers coupled with the Westside Groundwater Basin Conjunctive Use project, to meet the drought-year goal of limiting rationing to no more than 20 percent on a systemwide basis. While average annual deliveries from the SFPUC watersheds would be limited to 265 mgd such that there would be no increase in diversions from the Tuolumne River to

Page 6 SFPUC Agenda Item Number:

Department: Water Enterprise

Project: CUW 38801, Water System Improvement Program EIR - Approval of Program, Adoption of CEQA Findings and MMRP.

serve additional demand, there would be a small increase in average annual Tuolumne River diversions of about 2 mgd over existing conditions in order to meet the delivery and drought reliability elements through 2018.

ATTACHMENTS:

SFPUC Resolution Attachment A – CEQA Findings Attachment B – Mitigation and Monitoring Reporting Program

Contact: Michael Carlin, Assistant General Manager

Water Enterprise

PUBLIC UTILITIES COMMISSION

City and County of San Francisco

|--|

WHEREAS, the San Francisco Public Utilities Commission approved and adopted a Long-Term Strategic Plan for Capital Improvements, a Long-Range Financial Plan, and a Capital Improvement Program on May 28, 2002 under Resolution No. 02-0101; and

WHEREAS, the San Francisco Public Utilities Commission determined the need for the Water System Improvement Program (WSIP) to address water system deficiencies including aging infrastructure, exposure to seismic and other hazards, maintaining water quality, improving asset management and delivery reliability, and meeting customer demands; and

WHEREAS, Propositions A and E passed in November 2002 by San Francisco voters and Assembly Bill No. 1823 was also approved in 2002 requiring the City and County of San Francisco to adopt a capital improvement program designed to restore and improve the regional water system; and

WHEREAS, the San Francisco Public Utilities Commission staff developed a variant to the WSIP referred to as the Phased WSIP; and

WHEREAS, the two fundamental principles of the program are 1) maintaining a clean, unfiltered water source from the Hetch Hetchy system, and 2) maintaining a gravity-driven system; and

WHEREAS, the overall goals of the Phased WSIP for the regional water system include 1) Maintaining high-quality water and a gravity-driven system, 2) Reducing vulnerability to earthquakes, 3) Increasing delivery reliability, 4) Meeting customer water supply needs, 5) Enhancing sustainability, and 6) Achieving a cost-effective, fully operational system; and

WHEREAS, on October 30, 2008, the Planning Commission reviewed and considered the Final Program Environmental Impact Report (PEIR) in Planning Department File No. 2005.0159E, consisting of the Draft PEIR and the Comments and Responses document, and found that the contents of said report and the procedures through which the Final PEIR was prepared, publicized and reviewed complied with the provisions of the California Environmental Quality Act (CEQA), the CEQA Guidelines and Chapter 31 of the San Francisco Administrative Code ("Chapter 31") and found further that the Final PEIR reflects the independent judgment and analysis of the City and County of San Francisco, is adequate, accurate and objective, and that the Comments and Responses document contains no significant revisions to the Draft PEIR, and certified the completion of said Final PEIR in compliance with CEQA, the CEQA Guidelines and Chapter 31 in its Motion No. _____; and

WHEREAS, this Commission has reviewed and considered the information contained in the Final PEIR, all written and oral information provided by the Planning

Department, the public, relevant public agencies, SFPUC and other experts and the administrative files for the WSIP and the PEIR; and

WHEREAS, the WSIP and Final PEIR files have been made available for review by the San Francisco Public Utilities Commission and the public, and those files are part of the record before this Commission; and

WHEREAS, San Francisco Public Utilities Commission staff prepared proposed findings, as required by CEQA, (CEQA Findings) and a proposed Mitigation, Monitoring and Reporting Program (MMRP), which material was made available to the public and the Commission for the Commission's review, consideration and action; and

WHEREAS, the Phased WSIP includes the following program elements: 1) full implementation of all WSIP facility improvement projects; 2) water supply delivery to regional water system customers through 2018; 3) water supply sources (265 million gallons per day (mgd) average annual from SFPUC watersheds, 10 mgd conservation, recycled water, groundwater in San Francisco, and 10 mgd conservation, recycled water, groundwater in the wholesale service area); 4) dry-year water transfers coupled with the Westside Groundwater Basin Conjunctive Use project to ensure drought reliability; 5) reevaluation of 2030 demand projections, regional water system purchase requests, and water supply options by 2018 and a separate SFPUC decision by 2018 regarding water deliveries after 2018; and, 6) provision of financial incentives to limit water sales to an average annual 265 mgd from the SFPUC watersheds through 2018; and

WHEREAS, the SFPUC staff has recommended that this Commission make a water supply decision only through 2018, limiting water sales from the SFPUC watersheds to an average annual of 265 mgd; and

WHEREAS, before 2018, the SFPUC would engage in a new planning process to re-evaluate water system demands and water supply options. As part of the process, the City would conduct additional environmental studies and CEQA review as appropriate to address the SFPUC's recommendation regarding water supply and proposed water system deliveries after 2018; and

WHEREAS, by 2018, this Commission will consider and evaluate a long-term water supply decision that contemplates deliveries beyond 2018 through a public process; and

WHEREAS, the SFPUC must consider current needs as well as possible future changes, and design a system that achieves a balance among the numerous objectives, functions and risks a water supplier must face, including possible increased demand in the future; now, therefore, be it

RESOLVED, this Commission hereby adopts the CEQA Findings, including the Statement of Overriding Considerations, attached to this Resolution as Attachment A and incorporated herein as part of this Resolution by this reference thereto, and adopts the Mitigation Monitoring and Reporting Program attached to this Resolution as Attachment B and incorporated herein as part of this Resolution by this reference thereto; and, be it

FURTHER RESOLVED, this Commission hereby approves a water system improvement program that would limit sales to an average annual of 265 mgd from the watersheds through 2018, and the SFPUC and the wholesale customers would

collectively develop 20 mgd in conservation, recycled water, and groundwater to meet demand in 2018, which includes 10 mgd of conservation, recycled water, and groundwater to be developed by the SFPUC in San Francisco, and 10 mgd to be developed by the wholesale customers in the wholesale service area; and, be it

FURTHER RESOLVED, As part of the Phased WSIP, this Commission hereby approves implementation of delivery and drought reliability elements of the WSIP, including dry-year water transfers coupled with the Westside Groundwater Basin Conjunctive Use project, which meets the drought-year goal of limiting rationing to no more than 20 percent on a system-wide basis; and, be it

FURTHER RESOLVED, This Commission hereby approves the Phased Water System Improvement Program, which includes seismic and delivery reliability goals that apply to the design of system components to improve seismic and water delivery reliability, meet current and future water quality regulations, provide for additional system conveyance for maintenance and meet water supply reliability goals for year 2018 and possibly beyond; and, be it

FURTHER RESOLVED, This Commission hereby approves the following goals and objectives for the Phased Water System Improvement Program:

Phased WSIP GOALS AND OBJECTIVES

-	
Program Goal	System Performance Objective
Water Quality – maintain high water quality	 Design improvements to meet current and foreseeable future federal and state water quality requirements.
	 Provide clean, unfiltered water originating from Hetch Hetchy Reservoir and filtered water from local watersheds.
	 Continue to implement watershed protection measures.
Seismic Reliability –	 Design improvements to meet current seismic standards.
reduce vulnerability to earthquakes	• Deliver basic service to the three regions in the service area (East/South Bay, Peninsula, and San Francisco) within 24 hours after a major earthquake. Basic service is defined as average winter-month usage, and the performance objective for design of the regional system is 229 mgd. The performance objective is to provide delivery to at least 70 percent of the turnouts in each region, with 104, 44, and 81 mgd delivered to the East/South Bay, Peninsula, and San Francisco, respectively.
	 Restore facilities to meet average-day demand of up to 300 mgd within 30 days after a major earthquake.

 Meet the estimated average annual demand of up to 300 mgd under the conditions of one planned shutdown of a major facility for maintenance concurrent with one unplanned facility outage due to a natural disaster, emergency, or facility failure/upset. Meet average annual water demand of 265 mgd from the SFPUC watersheds for retail and wholesale customers during non -drought
 Provide operational flexibility and system capacity to replenish local reservoirs as needed. Meet the estimated average annual demand of up to 300 mgd under the conditions of one planned shutdown of a major facility for maintenance concurrent with one unplanned facility outage due to a natural disaster, emergency, or facility failure/upset. Meet average annual water demand of 265 mgd from the SFPUC watersheds for retail and wholesale customers during non -drought
 Meet the estimated average annual demand of up to 300 mgd under the conditions of one planned shutdown of a major facility for maintenance concurrent with one unplanned facility outage due to a natural disaster, emergency, or facility failure/upset. Meet average annual water demand of 265 mgd from the SFPUC watersheds for retail and wholesale customers during non -drought
 the conditions of one planned shutdown of a major facility for maintenance concurrent with one unplanned facility outage due to a natural disaster, emergency, or facility failure/upset. Meet average annual water demand of 265 mgd from the SFPUC watersheds for retail and wholesale customers during non -drought
watersheds for retail and wholesale customers during non -drought
years for system demands through 2018.
• Meet dry-year delivery needs through 2018 while limiting rationing to a maximum 20 percent system-wide reduction in water service during extended droughts.
• Diversify water supply options during non-drought and drought periods.
• Improve use of new water sources and drought management, including groundwater, recycled water, conservation, and transfers.
• Manage natural resources and physical systems to protect watershed ecosystems.
• Meet, at a minimum, all current and anticipated legal requirements for protection of fish and wildlife habitat.
 Manage natural resources and physical systems to protect public health and safety
• Ensure cost-effective use of funds.
Maintain gravity-driven system.
• Implement regular inspection and maintenance program for all facilities.
DLVED, This Commission authorizes and directs SFPUC staff to P facility improvement projects consistent with the Phased WSIP

I hereby certify that the foregoing	resolution was adopted by the Public Utilities
Commission at its meeting of	October 30, 2008

APPENDIX C SFPUC WATER SYSTEM IMPROVEMENT PROJECT INFORMATION (PEIR SUMMARY; APRIL TO JULY QUARTERLY REPORT AND WSIP PROGRESS TO DATE)

SUMMARY

Sections	Figures	Tables
S.1 Introduction and Purpose of	S.1 Overview of SFPUC Regional	S.1 WSIP Goals and Objectives
the PEIR S.2 Program Description	System and Water Supply Watersheds	S.2 WSIP Facility Improvement Projects
S.3 Environmental Effects	S.2 SFPUC Water Service Area – San Francisco and SFPUC	S.3 Summary of WSIP Facility
S.4 Areas of Controversy and Issues to be Resolved	Wholesale Customers	Construction and Operation Impacts
S.5 Required Actions and Approvals	S.3 Annual Average Historical and Projected Customer Purchase Requests	S.4 Summary of Facility Mitigation Measures by Impact
S.6 WSIP Variants	S.4 WSIP Water Supply Sources, Nondrought Years	S.5 Summary of Water Supply Impacts and Mitigation Measures –
S.7 Alternatives to the Proposed Program	S.5 WSIP Water Supply Sources, Drought Years	Tuolumne River System and Downstream Water Bodies
	S.6a Location of WSIP Facility Improvement Projects – Sunol	S.6 Summary of Water Supply Impacts and Mitigation Measures – Alameda Creek Watershed
	Valley, Bay Division, Peninsula, and San Francisco Regions	S.7 Summary of Water Supply Impacts and Mitigation Measures –
	S.6b Location of WSIP Facility Improvement Projects –	Peninsula Watersheds
	San Joaquin Region	S.8 Summary of Water Supply Impacts and Mitigation Measures –
	S.6c Location of WSIP Facility Improvement Projects – Hetch	Westside Groundwater Basin
	Hetchy Region	S.9 Summary of Water Supply Impacts and Mitigation Measures –
	S.7 Preliminary WSIP Construction Schedule	Cumulative Water Supply

S.1 Introduction and Purpose of the PEIR (Chapter 1)

The San Francisco Public Utilities Commission (SFPUC) proposes to adopt and implement the Water System Improvement Program (WSIP or proposed program) to increase the reliability of the regional water system that serves 2.4 million people in San Francisco and the San Francisco Bay Area. The WSIP would improve the regional system with respect to water quality, seismic response, water delivery, and water supply to meet water delivery needs in the service area through the year 2030 and would establish level of service goals and system performance objectives. The WSIP would implement a proposed water supply option, modify system operations, and construct a series of facility improvement projects. The proposed program area

spans seven counties—Tuolumne, Stanislaus, San Joaquin, Alameda, Santa Clara, San Mateo, and San Francisco.

The San Francisco Planning Department, Major Environmental Analysis (MEA) Division, determined that implementation of the WSIP could have a significant effect on the environment and therefore required preparation of a Program Environmental Impact Report (PEIR) in compliance with the California Environmental Quality Act (CEQA). This PEIR is intended to provide the public and responsible and trustee agencies with information about the potentially significant environmental effects of the proposed program, to identify possible ways to minimize the potentially significant effects, and to describe and evaluate feasible alternatives to the proposed program.

S.2 Program Description (Chapter 3)

Need for and Objectives of the Program

The City and County of San Francisco (CCSF), through the SFPUC, owns and operates a regional water system that extends from the Sierra Nevada to San Francisco and serves retail and wholesale customers in San Francisco, San Mateo, Santa Clara, Alameda, and Tuolumne Counties. The existing regional system includes over 280 miles of pipelines, over 60 miles of tunnels, 11 reservoirs, 5 pump stations, and 2 water treatment plants. The SFPUC currently delivers an annual average of about 265 million gallons per day (mgd) of water to its customers. The source of the water supply is a combination of local supplies from streamflow and runoff in the Alameda Creek watershed and in the San Mateo and Pilarcitos Creeks watersheds (referred to together as the Peninsula watersheds), augmented with imported supplies from the Tuolumne River watershed. Local watersheds provide about 15 percent of total supplies and the Tuolumne River provides the remaining 85 percent. **Figure S.1** shows the general location of the SFPUC regional system and water supply watersheds.

The SFPUC serves about one-third of its water supplies directly to retail customers, primarily in San Francisco, and about two-thirds of its water supplies to wholesale customers by contractual agreement. The wholesale customers are largely represented by the Bay Area Water Supply and Conservation Agency (BAWSCA), which consists of 27 total customers, shown in **Figure S.2**. Some of these wholesale customers have other sources of water in addition to what they receive from the SFPUC regional system, while others rely completely on the SFPUC for supply.

While the SFPUC has historically met and is currently serving its customers' water demands, there are numerous factors contributing to the need for a comprehensive, systemwide program such as the WSIP. In order to continue to provide reliable water service to its customers, the SFPUC must plan for the future as well as address existing, known deficiencies, including the following:

 <u>Aging Infrastructure</u>. Many of the components of the SFPUC regional water system were built in the 1800s and early 1900s. As the system ages, its reliability decreases and the risk of failure increases.

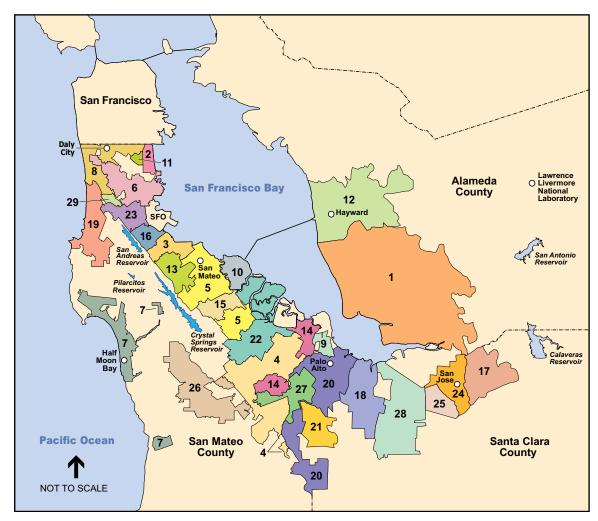

SFPUC Water System Improvement Program . 203287

Figure S.1

Overview of SFPUC Regional Water System and Water Supply Watersheds

SOURCE: ESA + Orion

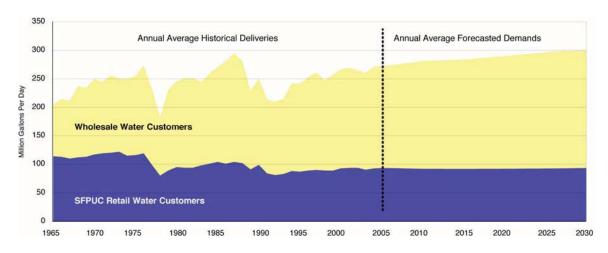
S-3

Legend

(Wholesale customers and members of Bay Area Water Supply and Conservation Agency)

- 1 Alameda County Water District
- 2 City of Brisbane
- 3 City of Burlingame
- 4 CWS Bear Gulch
- 5 CWS Mid-Peninsula
- 6 CWS South San Francisco
- 7 Coastside County Water District
- 8 City of Daly City
- 9 City of East Palo Alto
- 10 Estero Municipal Improvement District
- 11 Guadalupe Valley Municipal Improvement District
- 12 City of Hayward
- 13 Town of Hillsborough
- 14 City of Menlo Park
- 15 Mid-Peninsula Water District

- 16 City of Millbrae
- 17 City of Milpitas
- 18 City of Mountain View
- 19 North Coast County Water District
- 20 City of Palo Alto
- 21 Purissima Hills Water District
- 22 City of Redwood City
- 23 City of San Bruno
- 24 City of San Jose (North)
- 25 City of Santa Clara
- 26 Skyline County Water District
- 27 Stanford University
- 28 City of Sunnyvale
- 29 Westborough Water District


NOTE: For the purposes of this PEIR, the California Water Service (CWS) Company is a single wholesale customer with three different water service districts.

SFPUC Water System Improvement Program . 203287

Figure S.2

SFPUC Water Service Area - San Francisco and SFPUC Wholesale Customers

- Exposure to Seismic and Other Hazards. The system crosses five active earthquake faults, and many of the existing facilities do not meet modern seismic standards. The California Division of Safety of Dams (DSOD) imposed operating restrictions on two of the system's reservoirs, Calaveras and Lower Crystal Springs Reservoirs, due to seismic and flood control safety hazards, respectively. The restricted operations at these reservoirs reduce local storage capacity and impair normal system operations.
- <u>Water Quality</u>. The regional system currently meets or exceeds existing water quality standards. However, system upgrades are needed to improve the SFPUC's ability to maintain compliance with current water quality standards and to meet anticipated future water quality standards.
- <u>Delivery Reliability</u>. The system requires additional redundancy (i.e., backup) of some critical facilities to ensure sufficient operational flexibility to carry out adequate system inspection and maintenance and to be adequately prepared in the event of an earthquake, system failure, or other emergency. These critical facilities are necessary to meeting day-to-day customer water supply needs, and increased operational flexibility is needed in order to maintain service to all customers during a full range of operating conditions.
- <u>Customer Water Demand</u>. The regional system currently has insufficient water supply to meet customer demand during a prolonged drought, and this situation will worsen in the future without the WSIP. Additional supplies are needed to satisfy current demand in drought years as well as to meet future demand. Water demand among SFPUC retail and wholesale customers is projected to increase over the next 25 years, from an average annual demand of about 366 mgd to 417 mgd in 2030. Of this total projected demand in the SFPUC service area, retail and wholesale customers would purchase an annual average of about 300 mgd from the SFPUC system in 2030, compared to 265 mgd in 2005, as shown in **Figure S.3**. Thus, the SFPUC would need to provide additional water supplies to serve a projected average annual increase in purchase requests of 35 mgd by 2030.

SOURCE: SEPUC 2007b

Figure S.3
Annual Average Historical and
Projected Future Customer Purchase Requests

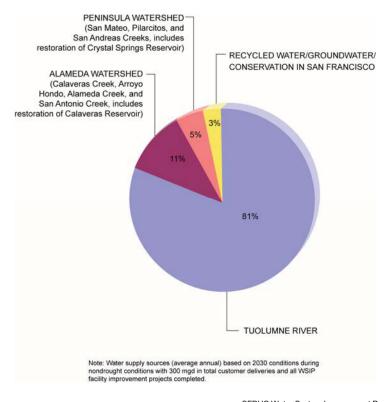
To address these challenges, the SFPUC must replace or upgrade numerous system facilities, add some new facilities, and expand its water supply portfolio—thus the need for the WSIP. In 2005, the SFPUC developed goals and objectives for the WSIP based on a planning horizon through 2030. The goals and objectives are founded on two fundamental principles pertaining to the existing regional water system: (1) maintaining a clean, unfiltered water source from the Hetch Hetchy system, and (2) maintaining a gravity-driven system. The overall goals of the WSIP are to:

- Maintain high-quality water
- Reduce vulnerability to earthquakes
- Increase delivery reliability and improve the ability to maintain the system
- Meet customer water supply purchase requests in nondrought and drought periods
- Enhance sustainability in all system activities
- Achieve a cost-effective, fully operational system

To further these program goals, the WSIP includes objectives that address system performance in the areas of water quality, seismic reliability, delivery reliability, and water supply through the year 2030. **Table S.1** presents the WSIP goals and objectives. The WSIP also includes proposed levels of service for the regional water system, which are intended to further define the system performance objectives through 2030 and provide design guidelines for the facility improvement projects. The levels of service (shown in Table 3.5, in Chapter 3, Program Description) address water quality, seismic response after a major earthquake, delivery during system maintenance, average annual water supply, regional system firm yield, and drought-year rationing.

Key program elements are summarized below and described in more detail in Chapter 3 (also see the SFPUC's 2006 *Water System Improvement Program* and 2007 *Water Supply Options* reports).

- <u>Water Supply</u>. Proposed water supply option to meet customer purchase requests during both nondrought and drought years.
- <u>System Operations</u>. Proposed system operations strategy to achieve water quality, seismic response, and delivery reliability performance objectives under a range of operating conditions, including the following scenarios: day-to-day, maintenance, unplanned outage, earthquake or other emergencies, and drought.
- <u>Facilities</u>. Proposed facility improvement projects to repair, upgrade, and, in some cases, expand the regional system facilities to reliably meet level of service goals and system performance objectives and to provide a cost-effective, fully operational water system.


Proposed Water Supply

Under the WSIP, the SFPUC proposes to meet the increased 35 mgd in purchase requests by continuing to maximize use of local watershed supplies, increasing diversions from the Tuolumne River under its existing water rights, and developing new local resources consisting of a combination of additional conservation, water recycling, and groundwater supply programs in

TABLE S.1 WSIP GOALS AND OBJECTIVES

Program Goal	System Performance Objective
Water Quality – maintain high water quality	Design improvements to meet current and foreseeable future federal and state water quality requirements.
	 Provide clean, unfiltered water originating from Hetch Hetchy Reservoir and filter all other surface water sources.
	Continue to implement watershed protection measures.
Seismic Reliability –	Design improvements to meet current seismic standards.
reduce vulnerability to earthquakes	 Deliver basic service to the three regions in the service area (East/South Bay, Peninsula, and San Francisco) within 24 hours after a major earthquake. Basic service is defined as average winter-month usage, and the performance objective for the regional system is 229 million gallons per day (mgd). The performance objective is to provide delivery to at least 70 percent of the turnouts (i.e., water diversion connecting points from the regional system to customers) in each region, with 104, 44, and 81 mgd delivered to the East/South Bay, Peninsula, and San Francisco regions, respectively.
	 Restore facilities to meet average-day demand of 300 mgd within 30 days after a major earthquake.
Delivery Reliability – increase delivery reliability	 Provide operational flexibility to allow planned maintenance shutdown of individual facilities without interrupting customer service.
and improve the ability to maintain the system	 Provide operational flexibility to minimize the risk of service interruption due to unplanned facility upsets or outages.
	 Provide operational flexibility and system capacity to replenish local reservoirs as needed.
	 Meet the estimated average annual demand of 300 mgd for 2030 under the conditions of one planned shutdown of a major facility for maintenance concurrent with one unplanned facility outage.
Water Supply – meet customer water needs in	Meet average annual water purchase requests of 300 mgd from retail and wholesale customers during nondrought years for system demands through 2030.
nondrought and drought periods	 Meet dry-year delivery needs through 2030 while limiting rationing to a maximum 20 percent systemwide reduction in water service during extended droughts.
	Diversify water supply options during nondrought and drought periods.
	 Improve use of new water sources and drought management, including use of groundwater, recycled water, conservation, and transfers.
Sustainability – enhance	Manage natural resources and physical systems to protect watershed ecosystems.
sustainability in all system activities	Meet, at a minimum, all current and anticipated legal requirements for protection of fis and other wildlife habitat.
	Manage natural resources and physical systems to protect public health and safety.
Cost-effectiveness –	Ensure cost-effective use of funds.
achieve a cost-effective, fully operational system	Maintain gravity-driven system.
•	Implement regular inspection and maintenance program for all facilities.

San Francisco, as shown in **Figure S.4**. The water recycling and groundwater supply programs would be developed as part of the proposed facility improvement projects. This combination of water supply sources is expected to fully meet customer purchase requests during nondrought years through 2030. However, based on recent experience, these water supply sources would not be adequate during drought periods. The WSIP level of service goals include a policy to limit customer rationing to a maximum of 20 percent systemwide in any one year of a drought.

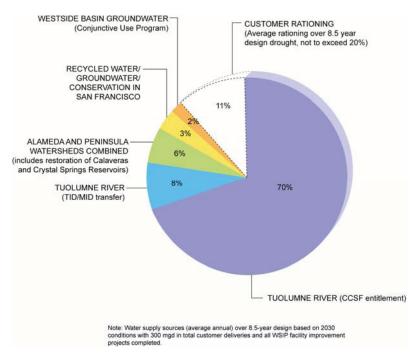

SFPUC Water System Improvement Program .203287

Figure S.4

WSIP Water Supply Sources, Nondrought Years

To provide adequate water supply to customers during a prolonged drought, the WSIP includes supplemental sources to augment the nondrought-year water supplies described above. The SFPUC proposes to secure a water transfer with the Turlock Irrigation District (TID) and/or Modesto Irrigation District (MID) to provide supplemental dry-year water from the Tuolumne River. Further, the SFPUC proposes to implement a groundwater banking program in the Westside Groundwater Basin in San Mateo County. Under this program, SFPUC wholesale customers that utilize the Westside Groundwater Basin would use supplemental surface water supplies in nondrought years to reduce their groundwater pumping and allow for in-lieu groundwater banking; these wholesale customers could then increase their groundwater pumping in drought years and reduce their demand for surface water supply in those years. In addition, two of the WSIP facility improvement projects involve the restoration of historical operating

capacities at two of the system reservoirs, Calaveras and Lower Crystal Springs Reservoirs, which would further augment drought supplies for the regional system. As shown in **Figure S.5**, during drought years under the WSIP, the SFPUC would also include up to 20 percent systemwide rationing.

SFPUC Water System Improvement Program .203287

Figure S.5 WSIP Water Supply Sources, Drought Years

Proposed System Operation Strategy

Operation of the regional water system is affected by numerous factors, including fluctuations in customer demand; meteorological and hydrologic conditions; physical facilities and infrastructure capacity and maintenance requirements; and multiple institutional parameters. The WSIP addresses the condition of the physical facilities and infrastructure while planning for and taking into account these various factors. The operating strategy addresses four components of system operation: water supply and storage, water quality, water delivery, and asset management.

Under the WSIP, general day-to-day operation of the regional water system would be similar to existing operations but would provide for additional facility maintenance activities and improved emergency preparedness. Implementation of the program would allow for a refinement of the operations strategy to meet the WSIP goals and objectives and would thereby increase system reliability and provide additional flexibility for scheduling repairs and maintenance. The proposed operations strategy would also include a multistage drought response program during an extended

drought. Under the WSIP, regional system operations would continue to comply with all applicable institutional and planning requirements, including:

- Complying with all water quality, environmental, and public safety regulations
- Maximizing the use of water from local watersheds
- Assigning a higher priority to water delivery over hydropower generation
- Meeting all downstream flow requirements

Proposed Facility Improvement Projects

The WSIP includes 22 facility improvement projects along the regional system, from Oakdale Portal in Tuolumne County on the east end to San Francisco on the west. The projects, described in **Table S.2**, have been identified as necessary to achieve the level of service goals and system performance objectives of the WSIP. **Figure S.6** indicates the location of each facility improvement project.

Standard Construction Measures

The SFPUC has established standard construction measures that would be implemented as part of all WSIP projects. The main objective of these measures is to minimize potential disruption of surrounding neighborhoods during construction and to reduce impacts on environmental resources to the extent feasible. The construction measures would be implemented individually for the facility improvement projects; some measures might not be applicable to some projects, while some projects would require the development of more detailed construction measures and implementation steps as the individual projects are designed. The standard construction measures to be included in WSIP construction contracts address the following topics: neighborhood notice, seismic and geotechnical studies, onsite air and water quality measures during construction, groundwater, traffic, noise, hazardous materials, biological resources, cultural resources, and project site (i.e., the use of non-CCSF-owned land during construction).

Proposed Construction Schedule

Figure S.7 presents a preliminary master schedule of the construction phases for the facility improvement projects. The SFPUC developed the preliminary schedule to assure that water delivery service is maintained throughout construction of the numerous projects, but is preparing schedule refinements and adjustments as the projects are further developed and more information is known about construction requirements. All WSIP projects are scheduled to be completed by the end of 2014. The acquisition of supplemental water supplies during droughts would be implemented as needed to match the water supply needs of the retail and wholesale customers (see Chapter 5, Section 5.1) and is not included on the construction schedule.

TABLE S.2 WSIP FACILITY IMPROVEMENT PROJECTS

No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project [©]	Project Description
San Joaqı	San Joaquin Region			
SJ-1	Advanced Disinfection	Treatment / Water Quality	Tesla Portal	This project would provide for the planning, design, and construction of a new advanced disinfection facility for the Hetch Hetchy water supply to comply with the new federal drinking water regulatory requirements contained in the Long Term 2 Enhanced Surface Water Treatment Rule. This regulation is designed to provide treatment for the parasite <i>Cryptosporidium</i> . The project is in the planning phase and the SFPUC is evaluating applicable technologies and possible locations to identify the most technologically sound and cost-effective alternative.
				In addition, the project includes planning and conceptual engineering for providing advanced disinfection facilities at the Sunol Valley and Harry Tracy Water Treatment Plants (WTPs). This project may be combined with the Tesla Portal Disinfection Station project along with portal modifications, and the need for the Lawrence Livermore Supply Improvements project may be affected by the location and technology selected for this project.
SJ-2	Lawrence Livermore Supply Improvements	Treatment / Water Quality	Thomas Shaft	This project includes design and construction of treatment upgrades for the water supplied to the Lawrence Livermore Laboratory. The project would construct water treatment facilities from the Thomas Shaft of the Coast Range Tunnel. An advanced disinfection facility planned at an upstream location under the Advanced Disinfection project could affect project design.
SJ-3	San Joaquin Pipeline	Pipeline / Water Supply, Delivery Reliability		The preferred project would generally be located within the existing San Joaquin Pipeline (SJPL) right-of-way and would include:
	System		Pipeline corridor	 Construction of a new 6.4-mile-long, up to 86-inch-diameter fourth San Joaquin Pipeline parallel to the existing three pipelines at the east end of the pipelines, starting at Oakdale Portal, and associated portal modifications.
				 Construction of two additional crossover facilities between the San Joaquin Pipelines within the existing right-of-way, both located in Stanislaus County, with one about 20 miles east of Modesto and the other about 15 miles west of Modesto, and improvements at the existing Roselle Crossover.
				 Construction of a new 10-mile-long, up to 86-inch-diameter fourth San Joaquin Pipeline parallel to the existing three pipelines at the west end of the pipelines ending at Tesla Portal.
				This project would provide additional facilities to upgrade the hydraulic capacity of the San Joaquin Pipeline system to 314 mgd (and a 271-mgd average during system maintenance when a pipeline segment must be taken out of service) and to provide redundancy for prestressed concrete cylinder pipe for reliability. Note: While the current preferred alternative would construct 16 miles of pipeline, as much as 22 miles of pipeline could be constructed depending on the results of a conditions assessment of the existing pipelines.
SJ-4	Rehabilitation of Existing San	Pipeline / Water Supply, Delivery Reliability	Rehabilitation could occur anywhere along the	Reconditioning/rehabilitation of the existing San Joaquin Pipelines. There are three existing pipelines, each 47.7 miles long, extending from Oakdale Portal to Tesla Portal:
	Joaquin Pipelines		pipeline corridor, which extends from Oakdale Portal to Tesla Portal	 SJPL-1, riveted steel pipe, 56- to 72-inch internal diameter SJPL-2, reinforced concrete pipe and welded steel pipe, 61- to 62-inch internal diameter SJPL-3, prestressed concrete cylinder pipe and welded steel pipe, 78-inch internal diameter

TABLE S.2 (Continued) WSIP FACILITY IMPROVEMENT PROJECTS

N 0.8	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project ^c	Project Description
San Joaqu	San Joaquin Region (cont.)			
S-LS	Tesla Portal Disinfection Station	Treatment / Water Quality, Seismic Reliability	Tesla Portal	This project includes the planning, design, and construction of new disinfection facilities for the Hetch Hetchy water supply. The project would replace and upgrade the existing disinfection facilities at the Tesla Portal Disinfection Facility to meet current seismic, safety/fire, and building code standards. The preferred project would include construction of: New control building and storage room Pump houses Chemical storage tanks and feed equipment and sampling systems Emergency generator, including primary and standby power supplies Access road It should be noted that the design and location of the Advanced Disinfection project would affect the design and location of this project.
Sunol Valley Region	ey Region			
SV-1	Alameda Creek Fishery Enhancement	Other / Water Supply, Sustainability	Structural Alternatives: Alameda Creek in Sunol Valley, downstream of Calaveras Dam	This project would recapture the water released as part of the Calaveras Dam project and return it back to the regional system for use. A number of structural and non-structural recovery alternatives are under consideration for this project, including: a water recapture facility downstream of the Sunol Valley WTP, conjunctive groundwater use, horizontal collector wells, or other groundwater recovery systems yet to be defined. Other alternative designs for this project could be developed.
SV-2	Calaveras Dam Replacement	Storage / Water Supply, Delivery and Seismic Reliability	Sunol Valley, immediately downstream of existing dam	This project would provide for the planning, design, and construction of a replacement dam at Calaveras Reservoir to meet seismic safety requirements. The new dam would provide for a reservoir with the same storage capacity as the original reservoir (96,800 acre-feet), but the replacement dam would be designed to accommodate enlargement of the dam in the future. The preferred project would include construction of: • New earthfill dam • New intake tower and new outlet valve for water releases for instream flow requirements • New or rehabilitated outlet works for seismic safety and improved operations and maintenance As part of this project, Calaveras Reservoir would be operated to release up to 6,300 acre-feet per year (5.5 mgd) of water to Alameda Creek in support of fisheries.
SV-3	Additional 40-mgd Treated Water Supply	Treatment / Water Quality, Delivery Reliability	Sunol Valley WTP and pipeline to connect to the Alameda Siphons or Irvington Tunnel	This project would provide for the planning, design, and construction of an additional 40 mgd of treatment capacity at the Sunol Valley WTP. The project would increase the sustainable capacity of the Sunol Valley WTP to 160 mgd. The planning-level study would evaluate treatment operations protocol and an alternative treatment process. The project would include either retrofitting the existing facilities with a membrane treatment process or expanding the existing facilities with: New flocculation and sedimentation system Upgrade of existing filters or addition of three new filters and a new flow distribution chamber

ESA+Orion / 203287 June 2007

No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project [©]	Project Description
Sunol Valle	Sunol Valley Region (cont.)			
SV-3 (cont.)				New filtered water and backwash piping Additionally, the project would include:
				New chemical feed and piping system
				 Upgrade of the electrical supply system
				 Miscellaneous piping, valves, and mechanical and electrical work
				 Approximately two miles of 78-inch-diameter pipe to connect to the Alameda Siphons or Irvington Tunnel
SV-4	New Irvington Tunnel	Tunnel / Delivery and Seismic Reliability	Sunol Valley to Fremont, parallel to and just south of the existing Irvington Tunnel	This project would construct a new tunnel parallel to and just south of the existing Irvington Tunnel to convey water from the Hetch Hetchy system and the Sunol Valley WTP to the Bay Area. The new tunnel would be a redundant water transmission facility to the existing Irvington Tunnel. The preferred project would include construction of:
				 New 18,200-foot-long, 10-foot-diameter tunnel
				 New portal at the east end adjacent to the existing Alameda West Portal in the Sunol Valley with connections to the existing Alameda Siphons and proposed new siphon
				 New portal at the west end adjacent to the existing Irvington Portal in Fremont with connections to the existing Bay Division Pipelines and proposed new pipeline (Bay Division Pipeline Reliability Upgrade)
				 Valves and equipment to control and monitor flows
				 Modifications to the existing Alameda West and Irvington Portals
SV-5	SVWTP – Treated Water Reservoirs	Storage and Treatment / Delivery Reliability	North of the Sunol Valley WTP	This project would provide for the planning, design, and construction of new treated water storage reservoirs at the Sunol Valley WTP to comply with requirements of the California Department of Health Services. The preferred project would include construction of:
				 One 5-million-gallon chlorine contact basin
				 Two 8.75-million-gallon storage basins
				 New inlet and outlet piping and reservoir drainage system
				 Pipe bridge over Alameda Creek
				 Chemical (ammonia and chlorine) storage and feed system
				 Backup filter washwater supply and filter washwater supply system
				 Instrumentation and controls and miscellaneous pumping appurtenances to integrate the reservoirs into the existing treatment plant
				 Expansion of the existing Sunol Valley WTP electrical substation
				 Two 750-kilowatt diesel-powered emergency generators

ESA+Orion / 203287 June 2007

			- IDA	WORL TACKET HINT NO BEING THE TACKET OF THE
No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project ^c	Project Description
Sunol Vall	Sunol Valley Region (cont.)			
9-/\S	San Antonio Backup Pipeline	Pipeline / Delivery and Seismic Reliability	Sunol Valley between San Antonio Reservoir and San Antonio Pump Station	This project would consist of three proposed facilities: (1) San Antonio Backup Pipeline, a new pipeline (size undetermined) from San Antonio Reservoir to San Antonio Pump Station, about two miles long; (2) San Antonio Creek discharge facilities (improvements allowing for the discharge of Hetch Hetchy water and associated road improvements); and (3) Alameda East Portal vent overflow pipeline and portal modifications.
Bay Divisi	Bay Division Region			
BD-1	Bay Division Pipeline Reliability Upgrade	Pipeline and Tunnel / Water Supply, Delivery and Seismic Reliability	Along existing Bay Division Pipelines Nos. 1 and 2 easement from Fremont to Redwood City	This project would construct a new Bay Division Pipeline No. 5 (BDPL No. 5) from Irvington Tunnel Portal in Fremont to Pulgas Tunnel Portal near Redwood City, consisting of 16 miles of new pipeline and 5 miles of tunnel under San Francisco Bay. Portions of the section of BDPL No. 1 between Edgewood Valve Lot and Pulgas Valve Lot would be removed (approximately 1.4 miles), and existing aboveground and submarine sections of BDPL Nos. 1 and 2 over the five-mile-long section from Newark Valve House to Ravenswood Valve House would be decommissioned (decommissioning is not part of this project). The redundancy provided by the project would increase the overall transmission capacity of the Bay Division Pipeline system. The preferred project would include construction of:
				 New welded-steel pipeline, approximately 72 inches in diameter, extending along the seven-mile reach from Irvington Portal to Newark Valve Lot, located within the existing SFPUC right-of-way of BDPL Nos. 1 and 2
				 New "Bay Tunnel" segment of BDPL No. 5, approximately 120 inches in diameter, extending five miles from Newark Valve Lot to Ravenswood Valve Lot, crossing under San Francisco Bay and adjacent marshlands; BDPL Nos. 1 and 2 would tie into the tunnel at both ends and would be decommissioned between Newark and Ravenswood Valve Lots
				 New welded-steel pipeline, approximately 60 inches in diameter extending along the nine-mile reach from Ravenswood Valve Lot to Pulgas Portal, located within the existing SFPUC right-of- way of BDPL Nos. 1 and 2
				 New facilities at eight valve vault lots along the alignment, containing new concrete vaults and control structures that house electrical control panels, isolation valves, mechanical equipment, and cross-connections between BDPL No. 5 and the existing Bay Division Pipelines
				 Two flow metering vaults at or near Mission Boulevard (in Fremont) and Pulgas Portal areas
				New Isolation valves and piping for connecting BDPL No. 5 to Irvington and Pulgas Portals

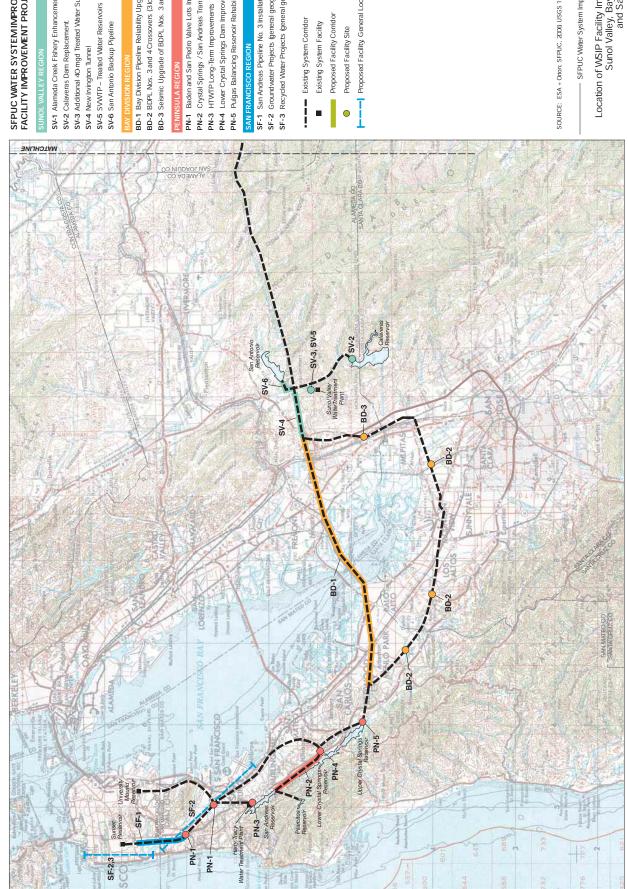
ESA+Orion / 203287 June 2007

			Worl Facili	WOIL FACILITY INFROVEMENT PROJECTS
No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project ^c	Project Description
Bay Divisi	Bay Division Region (cont.)			
BD-2	BDPL Nos. 3 and 4 Crossovers	Valve House / Delivery and Seismic Reliability	Three locations adjacent to where BDPL Nos. 3 and 4 traverse Guadalupe River, Barron Creek, Bear Gulch Reservoir	This project would construct three additional crossover facilities along BDPL Nos. 3 and 4 to provide operational flexibility for maintenance or during emergencies. The new crossover facilities would reduce the length of pipe to be removed from service, either for maintenance or for emergencies, and would reduce the duration of outages. Each crossover facility would include construction of: • Four mainline valves and one cross-connect valve • Automatic controlled actuators • Discharge facilities to enable release of water that meets water quality discharge requirements within discrete pipeline segments to surface waters, either for maintenance or emergencies
BD-3	Seismic Upgrade of BDPL Nos. 3 and 4 at Hayward Fault	Pipeline / Seismic Reliability	Along existing BDPL Nos. 3 and 4 in Fremont	This project would provide for the planning, design, and construction of upgraded, seismically resistant sections of the BDPL Nos. 3 and 4 where they cross the Hayward fault. The replacement pipelines would be located between the two new crossover/isolation valves that would be built as part of BDPL Nos. 3 and 4 Crossover/Isolation Valve at Hayward Fault project (a WSIP project determined to be independent of the PEIR). In addition to the replacement pipelines, a new bypass pipeline between the two new crossover/isolation valve vaults could also be built as part of one of the several alternatives being considered for this project.
Peninsula Region	Region			
PN-1	Baden and San Pedro Valve Lots Improvements	Valve House / Delivery and Seismic Reliability	Baden Valve Lot, South San Francisco, San Pedro Valve Lot, Daly City	This project would upgrade valve vaults, valves, and piping at the existing Baden and San Pedro Valve Lots to meet current seismic standards. Work could also be performed at the Pulgas Pump Station and Pulgas Valve Lot as part of transmission reliability. The project would include a new pressure-reducing valve at one of the locations to allow transfer of water between high and low pressure zones from the Harry Tracy WTP to the Peninsula under an emergency scenario.
PN-2	Crystal Springs/ San Andreas Transmission Upgrade	Pipeline / Delivery and Seismic Reliability	Lower Crystal Springs Reservoir to San Andreas Reservoir, including Crystal Springs Pump Station	This project would consist of seismic improvements of facilities that convey water from Crystal Springs Reservoir to the Harry Tracy WTP. This project would increase the transmission capacity of the existing raw water pipeline from Crystal Springs Reservoir to San Andreas Reservoir in order to reliably supply 140 mgd of raw water for treatment at the Harry Tracy WTP. The project would include: • Repair of Upper Crystal Springs Dam discharge culverts
				Upgrade and repair of Lower Crystal Springs Dam outlet structures and tunnels conveying water to Crystal Springs Pump Station
				 Replacement or refurbishment of Crystal Springs Pump Station
				 Upgrade and repair of the chemical system and Crystal Springs chlorine emergency feed
				 Improvements to the Crystal Springs/San Andreas Pipeline, including replacement of approximately 1,350 feet of 66-inch-diameter pipeline, general renewal of the remaining pipeline, and addition of new manholes, blowoff valves, and isolation valves; or construction of a new redundant_pipeline along a new alignment.

No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project [©]	Project Description
Peninsula	Peninsula Region (cont.)			
PN-2				Seismic and hydraulic upgrade and repair of San Andreas outlet facilities
(cont.)				 Addition of fish screens on the outlet structures for both Crystal Springs and San Andreas Reservoirs
				 Repair of two pipelines that convey raw water from San Andreas Reservoir to the Harry Tracy WTP raw water pump station
PN-3	HTWTP Long-Term Improvements	Treatment / Water Quality, Delivery and Seismic Reliability	Harry Tracy WTP	This project would be a seismic retrofit and rehabilitation of the existing building and facility to provide long-term reliability and process improvements. The project would increase the sustained treatment capacity of the plant from 120 to 140 mgd for 60 days. The proposed improvements would include:
				 Replacement and upgrade of the ozone generation system for primary disinfection
				 Replacement or upgrade of the existing sedimentation basins at the same location
				 Improvements to sludge handling facilities
				 New, redundant pipeline from the treatment works to the finished water storage reservoir
				 Raw water pump station improvements
				 Upgrade and replacement of electrical and instrumentation components, including improvements to process and plant security facilities
PN-4	Lower Crystal Springs Dam Improvements	Storage / Water Supply and Delivery Reliability	Lower Crystal Springs Dam	This project would consist of major repairs and improvements to Lower Crystal Springs Dam to provide adequate protection of the dam and downstream areas from the probable maximum flood, as defined by the California Division of Safety of Dams (DSOD). The DSOD has placed operational restrictions on the dam, and the capacity of the reservoir is limited to 58,400 acre-feet. The project would restore the historical reservoir capacity of 69,300 acre-feet. The project would be coordinated with San Mateo County, which is concurrently planning the replacement of the existing county bridge built above the crest of the dam. Project elements would include:
				 Lowering the existing parapet wall on either side of the existing spillway to lengthen the overflow weir (central spillway) from the reservoir
				 Raising the remaining parapet walls and adding two new spillway bays, one on each side of the existing central spillway
				 Enlarging the spillway stilling basin to accommodated the probable maximum flood
				 Installing four gates (with control building) or installing a fixed weir within the spillway to restore the historical storage capacity

ESA+Orion / 203287 June 2007

No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project ^c	Project Description
Peninsula F	Peninsula Region (cont.)			
PN-5	Pulgas Balancing Reservoir Rehabilitation	Storage / Water Quality, Delivery and Seismic Reliability	Pulgas Balancing Reservoir and mouth of Laguna Creek at south end of Upper Crystal Springs Reservoir	This project would provide for the planning, design, and construction of improvements to the existing Pulgas Balancing Reservoir and associated facilities. The project would include: • Modifications to the inlet/outlet piping (Phase 1, currently under construction) • Design and construction to rehabilitate and/or expand the discharge channel to Crystal Springs Reservoir (or to install a parallel channel) (Phase 2) • Geotechnical investigations, design, and construction of recommended seismic improvements, including repair/replacement of the reservoir walls, floor, and roof (Phase 3) • Restoration of a six- to eight-acre sediment catchment basin in Laguna Creek to also serve as sustainable habitat for San Francisco garter snake and California red-legged frog, including culvert replacement, sediment removal, revegetation, and protective measures to avoid impacts on sensitive species (Phase 4) • Modification of the existing dechlorination process, including modifications to the chemical feed system to enable pH adjustment and dechlorination system to operate reliably (Phase 5)
San Franci	San Francisco Region			
SF-1	San Andreas Pipeline No. 3 Installation	Pipeline / Delivery and Seismic Reliability	Daly City to San Francisco	This project would replace the out-of-service Baden-Merced Pipeline, which is beyond repair, and would construct a new pipeline extension of the existing San Andreas Pipeline No. 3 from San Pedro Valve Lot in Daly City to Merced Manor Reservoir in San Francisco. It would also connect the existing San Andreas Pipeline No. 2 at Sloat Boulevard in San Francisco and install an additional pipeline to serve the water turnouts along San Andreas Pipeline No. 2. The project would provide seismic reliability and system redundancy for Peninsula and San Francisco customers. The project would include: • New 3.8-mile-long, 36-inch-diameter pipeline • Approximately 0.27 mile of 36-inchdiameter pipeline for three connections between San Andreas Pipelines Nos. 2 and 3 • Removal of the Baden-Merced Pipeline where the new San Andreas Pipeline No. 3 alignment matches the Baden-Merced alignment • Less than 0.1 mile of 12- to 16-inch-diameter new pipeline for five branch connections to user turnouts (three turnouts to Daly City, two turnouts to San Francisco distribution lines) • Installation of line valves and vaults, manholes, cathodic protection and monitoring stations, sample taps, air valves, blowoffs, and other pipeline appurtenances
SF-2	Groundwater Projects	Other / Water Supply	West side of San Francisco and northern San Mateo County	This project includes three groundwater projects: Lake Merced, Local Groundwater, and Regional Groundwater. • The Lake Merced project would address raising the level of Lake Merced in San Francisco using a supplemental source of water, such as treated stormwater, recycled water, groundwater, or SFPUC system water.


No. ^a	Project Title	Principal Type of Facility/ Objectives ^b	Location of Preferred Project ^c	Project Description
San Franc	San Francisco Region (cont.)			
SF-2 (cont.)				 The Local Groundwater Projects would include development of 2 mgd of new local groundwater for blending with water in the potable water system in San Francisco. An estimated four wells and well stations would be constructed to develop this new local groundwater. This project would also include the use of an additional 2 mgd of groundwater through replacement of existing irrigation wells at the San Francisco Zoo, Golden Gate Park, and/or other locations, once recycled water were available for irrigation (to be developed under the Recycled Water Projects). Two existing wells would be modified to enable emergency supply to local residents in the event of a major earthquake or other disaster. This project would include the pipelines, water treatment equipment, and controls needed to add the groundwater to the municipal supply. The additional water supply developed under this project would be used during both nondrought and drought years.
				 As part of a regional conjunctive-use project, the SFPUC would construct about 10 new groundwater production wells in San Mateo County to develop about 6 mgd of potable groundwater for use as a supplemental drought-year supply. In nondrought years under this project, the SFPUC would provide potable water from the regional system to customers in Daly City, San Bruno, and South San Francisco to substitute for groundwater currently used for municipal purposes, thereby reducing groundwater pumping and allowing the groundwater basin to recharge naturally. In drought years, the groundwater would be available for local use to supplement the regional system water. This project would require agreements with the affected agencies see (Section 3.13).
SF-3	Recycled Water Projects	Other / Water Supply, Sustainability	Various locations on west side of San Francisco	This project includes recycled water projects in San Francisco and other locations. Projects include Westside Baseline and Harding Park/Lake Merced. This project would provide treatment, storage, and distribution facilities for about 4 mgd of recycled water to users on the west side of San Francisco. Primary users would include Golden Gate Park, Lincoln Park, Lincoln Park Golf Course, Harding Park Golf Course, San Francisco Zoo, Sunset Boulevard medians, and San Francisco State University. As described under Groundwater Projects, the SFPUC is also investigating appropriate sources of supply for increasing and maintaining Lake Merced lake levels, including recycled water that has undergone advanced treatment.

^a The numbering system is consistent, to the extent possible, with that presented in the Notice of Preparation (NOP) regarding preparation of an environmental impact report on the WSIP issued in September 2005. However, due to a regrouping of the projects after publication of the NOP, some projects have been renumbered.

^b General types of facilities. Objectives refer to the WSIP objectives met by each project; see Table S.1 for a complete description of WSIP goals and objectives.

^c See Figure S.6 for the approximate locations of preferred projects; many of the projects are still in development, and the SFPUC may ultimately consider other design options.

SOURCE: SFPUC, 2006.

SFPUC WATER SYSTEMIMPROVEMENT PROGRAM, FACILITY IMPROVEMENT PROJECTS

SV-1 Alameda Creek Fishery Enhancement (not shown)

SV-2 Calaveras Dam Replacement

SV-3 Additional 40-mgd Treated Water Supply SV-4 New Irvington Tunnel

SV-6 San Antonio Backup Pipeline

BD-1 Bay Division Pipeline Reliability Upgrade

BD-2 BDPL Nos. 3 and 4 Crossovers (3 locations)

BD-3 Seismic Upgrade of BDPL Nos. 3 and 4 at Hayward Fault

PN-1 Baden and San Pedro Valve Lots Improvements (2 locations)

PN-2 Crystal Springs / San Andreas Transmission Upgrade

PN-4 Lower Crystal Springs Dam Improvements

PN-5 Pulgas Balancing Reservoir Rehabilitation

SF-1 San Andreas Pipeline No. 3 Installation

SF-2 Groundwater Projects (general geographic area indicated)

SF-3 Recycled Water Projects (general geographic area indicated) Existing System Corridor

Existing System Facility

Proposed Facility Corridor

Proposed Facility Site 0

---- Proposed Facility, General Location

SOURCE: ESA + Orion; SFPUC, 2009 USGS 1978

SFDUC Water System Improvement Program. 200287
 Figure S.Ga
 Location of WSIP Facility Improvement Projects-Sunol Valley, Bay Division, Peninsula and San Francisco Regions

SFPUC WATER SYSTEMIMPROVEMENT PROGRAM, FACILITY IMPROVEMENT PROJECTS

MATCHLINE

- SJ-1 Advanced Disinfection
- SJ-2 Lawrence Livermore Supply Improvements
- SJ-3 San Joaquin Pipeline System
- SJ-4 Rehabilitation of Existing San Joaquin Pipelines
- SJ-5 Tesla Portal Disinfection Station
- Existing System Corridor
- Proposed Facility Corridor

---- Proposed Facility, General Location

S-1-3

MATCHLINE

SJ-4

Testa Portal SJ-3

SJ-2

- SJ-1, SJ-5

SOURCE: ESA + Orion; SFPUC, 2008; USGS 1969

0

--- Existing System Corridor Existing System Facility

Proposed Facility Corridor

Proposed Facility Site

---- Proposed Facility, General Location

NOTE: No WSIP facilities are proposed in this region.

0 YOSEMITE NATIONAL PARK SIERRA NATIONAL AKUSLAUS NANAL

SOURCE: ESA + Orion; SFPUC, 2008 USGS 1970

SOURCE: SFPUC, 2006

Region	No.	Project Title	2006	2007	2008	2009	2010	2011	2012	2013	2014
	SJ-1	Advanced Disinfection									
	SJ-2	Lawrence Livermore Supply Improvements									
olo:	SJ-3	San Joaquin Pipeline System									
ы	SJ-4	Rehabilitation of Exisitng San Joaquin Pipelines					-				
	SJ-5	Tesla Portal Disinfection Station									
	SV-1	Alameda Creek Fishery Enhancement									
	SV-2	Calaveras Dam Replacement					-				
NOI:	SV-3	Additional 40-mgd Treated Water Supply									
	SV-4	New Irvington Tunnel				_					
_	SV-5	SVWTP – Treated Water Reservoirs			_						
	SV-6	San Antonio Backup Pipeline				_					
	BD-1	Bay Division Pipeline Reliability Upgrade					_				
RAY VISIO	BD-2	BDPL Nos. 3 and 4 Crossovers					-				
	BD-3	Seismic Upgrade of BDPL Nos. 3 and 4 at Hayward Fault									
	PN-1	Baden and San Pedro Valve Lots Improvements									
NC	PN-2	Crystal Springs/San Andreas Transmission Upgrade									
SUI SNII	PN-3	HTWTP Long-Term Improvements									
В	PN4	Lower Crystal Springs Dam Improvements									
	PN-5	Pulgas Balancing Reservoir Rehabilitation									
,	SF-1	San Andreas Pipeline No. 3 Installation									
NOIS	SF-2	Groundwater Projects - Local and Lake Merced					_				
_	SF-2	Groundwater Projects - Regional					-				
	SF-3	Recycled Water Projects						-			

POWER

GAVIN NEWSOM

ANN MOLLER CAEN PRESIDENT

F.X. CROWLEY VICE PRESIDENT

FRANCESCA VIETOR

JULIET ELLIS COMMISSIONER

ANSON R. MORAN COMMISSIONER

ED HARRINGTON GENERAL MANAGER

SAN FRANCISCO PUBLIC UTILITIES COMMISSION

Julie Labonte, Director - Water System Improvement Program 1155 Market Street, 6th Floor, San Francisco, CA 94103 • Tel. (415) 554-1856 • Fax (415) 551-4515

DATE:

August 20, 2009

TO:

The Honorable Ann Moller Caen, President The Honorable F.X. Crowley, Vice President

The Honorable Francesca Vietor

The Honorable Juliet Ellis

The Honorable Anson B. Moran

THROUGH: Ed Harrington, General Manage

FROM:

Michael Carlin, Deputy General Manager

Harlan L. Kelly, Jr., Assistant General Manager

Julie L. Labonte, WSIP Director 1

RE:

WSIP Regional Projects Quarterly Report

4th Quarter / Fiscal Year 2008-2009

Enclosed is the Water System Improvement Program (WSIP) Regional Projects Quarterly Report for the 4th Quarter of Fiscal Year 2008-2009. The primary intent of the report is to provide the Commission, stakeholders and the public with a status summary of the program's regional projects for the period of April 5, 2009 through July 1, 2009.

Report Organization

The report has three main sections. The Program Summary section includes a program overview and performance summary, and a program update on the following topics: program management, planning/design, environmental, right-ofway, construction and project achievements. The Regional Summary section provides a regional performance summary for each WSIP region, and an update on each region's planning, environmental, design and construction efforts. The Project Status section contains the Quarterly Project Status Reports (PSRs) for all regional projects.

June 2009 Revised WSIP

This Quarterly Report incorporates all changes to the WSIP Regional Program made in the June 2009 Revised WSIP and approved by the San Francisco Public Utilities Commission (SFPUC) on July 28, 2009, including project name changes, modification of the WSIP organizational structure, the addition of a new regional project, and revised budgets and schedules.

The names of two regional projects were changed as part of the adoption of the June 2009 Revised WSIP. The name changes are as follows:

HETCH HETCHY WATER SYSTEM IMPROVEMENT **PROGRAM**

- Project CUW30103: Groundwater Project C South Westside Basin changed to Regional Groundwater Storage and Recovery
- Project CUW35201: Alameda Creek Fishery Enhancement changed to Upper Alameda Creek Filter Gallery

In the June 2009 Revised WSIP and as reflected in the enclosed report, all of the WSIP Water Supply Region Projects, except for Project CUW30103: Regional Groundwater Storage and Recovery Project, moved from the Regional Program to the Local Program. Project CUW30101: Regional Groundwater Storage and Recovery Project was moved to the San Francisco Regional Region.

One regional project was added as part of the adoption of the June 2009 Revised WSIP to ensure the program continues to meet the level of service (LOS) goals established for the program. Project CUW36702: Peninsula Pipelines Seismic Upgrade, which was included in the Peninsula Region, will provide the seismic reliability required for key transmission pipelines that transport water from the Harry Tracy Water Treatment Plant (HTWTP).

It should be noted that the approved June 2009 Revised WSIP does not include revisions to all project budgets and schedules. Projects with cost and schedule variances that can potentially be mitigated were not re-baselined (i.e., changes to the budget and schedule of these projects were not made). Therefore the Baseline (Approved) Budget and/or and Baseline (Approved) Schedule for those projects remain the same and cost and/or schedule variances are recorded in the enclosed report based on the latest project forecasts.

Major changes were made to the scope, schedule, and/or budget of four regional projects as part of the June 2009 Revised WSIP. These changes are summarized below.

Significant scope changes were made to the WSIP's two San Joaquin Pipelines (SJPLs) projects to maximize the reliability of the overall system, provide additional maintenance flexibility and facilitate construction.

Project CUW37301: San Joaquin Pipeline System – The revised project scope includes the addition of a 6.7-mile, 78-inch diameter pipeline (referred to as the Eastern Segment) from Oakdale Portal to a new connection point corresponding to the end of the pre-stressed concrete cylinder pipe (PCCP) segment of SJPL No. 3. This change allowed for the downsizing of the 10.3-mile Western Segment from a 96-inch to a 78-inch diameter pipeline. Also added to the project scope are new valve facilities on SJPL Nos. 3 & 4 along the Eastern Segment to allow for better control of system pressure. The project budget has been increased \$7,708,570 to \$278,055,413. The project approved completion date remains the same (March 25, 2014) and the first construction contract for this project will be advertised in November 2009.

Project CUW37302: Rehabilitation of Existing San Joaquin Pipelines – The benefits provided by the increased scope of the SJPL System Project allowed for a reduction of the scope of this project without compromising levels of service. The revised project scope includes the rehabilitation of the Roselle Crossover Facility, the repair of the system's cathodic protection system, and the upgrade of the system's SCADA system. It also

includes more detailed development of the SJPL Condition Assessment and Maintenance Program to enhance system sustainability. Finally, project funding is also set aside for additional priority work on the existing pipelines, which will be identified upon conclusion of the conditions assessment in December 2009. This resulted in a reduction of the project budget of \$58,147,236 to \$31,852,309. The project approved completion date remains the same (June 30, 2014). Bids for the first construction package for the Roselle Crossover Facility were received in June 2009 and contract award is scheduled for July 2009.

Project CUW37401: Calaveras Dam Replacement – The scope has been revised to include a flow bypass tunnel at the Alameda Creek Diversion Dam to provide minimum bypass flow in Alameda Creek. This additional scope was one of the mitigation requirements adopted as part of the WSIP Programmatic Environmental Impact Report (EIR). Delivery of this project has been impacted significantly by the need to address the potential presence of steelhead trout in the Alameda Creek Watershed and the presence of high concentrations of Naturally Occurring Asbestos (NOA) at the project site. It should be noted that formal consultation with the National Marine Fisheries Service (NMFS) is now required for this project. These issues have a substantial cumulative effect on both ongoing preconstruction activities and upcoming construction work in the field that resulted in a 42-month delay in the project schedule (revised completion date of December 4, 2015), and a \$101,688,640 increase in the project budget (revised project budget of \$409,444,761). The project schedule calls for publication of the project Draft EIR in September 2009 and advertisement for construction in August 2010.

Project CUW36701: Harry Tracy Water Treatment Plant (HTWTP) Long-Term Improvements — The discovery of a new strand of the Serra Fault in the vicinity of the plant's two treated water reservoirs (TWRs) triggered the need for additional investigations which confirmed that additional improvements were required to address seismic risks and ensure compliance with the program's Levels of Service (LOS) goals. As a result, the following scope revisions were proposed and adopted: abandon two existing TWRs and build a new 11.0 mg TWR, seismically retrofit pipelines in the vicinity of the Serra Fault, and build interim improvements to address short-term seismic risks. The scope changes resulted in a \$183,303,228 increase in the project budget (revised project budget of \$359,063,409). The project approved completion date remains the same (June 12, 2014). The project EIR is being prepared and 35% design has been completed. Advertisement for construction is scheduled for April 2011.

It is important to underscore that the project scopes in the June 2009 Revised WSIP continue to meet all the LOS goals established for the system. No changes were made to the program's LOS goals to accommodate project scope revisions.

Status and Performance Summary

The program performance metrics for planned and actual performance had to be updated following approval of the June 2009 Revised WSIP. It should be noted that incorporation of the revised schedule and cost baselines resulted in a slight reduction of the planned and actual performance metrics from what was reported in the previous WSIP Quarterly Report. Overall, actual performance (16.6%) on the program is tracking very close to planned performance (16.7%). Planning activities are nearing completion at 96%, whereas

environmental, design and construction efforts are 67%, 75% and 6% complete, respectively. As of July 1, 2009, there are two (2) regional projects in the Planning Phase, eleven (11) in the Design Phase, six (6) in the Bid & Award Phase, five (5) in the Construction Phase, two (2) in the Close-Out Phase, eight (8) regional projects have been completed, one (1) project has not been initiated, and eleven (11) are active in multiple phases.

The approved WSIP Regional Program completion date is December 4, 2015 and the current forecast completion date is the same. The approved WSIP Regional Program budget is \$3,514,026,000 and the current forecast at completion is \$3,532,336,000 (\$18,310,000 over the approved budget). The total approved WSIP budget (Local and Regional Programs including Finance Cost) is \$4,585,556,000 and the current total forecast at completion is \$4,608,583,000 (\$23,027,000 over the approved budget).

Major program milestones reached during this reporting quarter include:

Environmental Approvals:

• CUW36103: Pulgas Balancing - Structural Rehabilitation and Roof Replacement (Mitigated Negative Declaration)

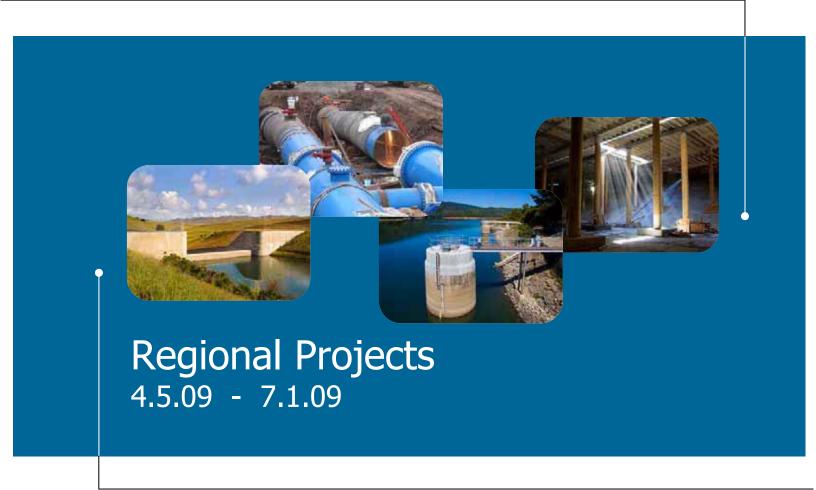
Construction Contract Advertised:

- CUW36103: Pulgas Balancing Structural Rehabilitation and Roof Replacement
- CUW36401: Lawrence Livermore Water Quality Improvement
- CUW38001: BDPL No. 3 and 4 Crossovers
- CUW37901: San Andreas Pipeline No. 3 Installation
- CUW38601: San Antonio Pump Station Upgrade

Construction Contract Awarded:

- CUW35901: Alameda Siphon #4
- CUW37201: University Mound Reservoir North Basin
- CUW37901: San Andreas Pipeline No. 3 Installation
- CUW38001: BDPL Nos. 3 and 4 Crossovers

Construction Notice to Proceed Issued


- CUW36102: Pulgas Balancing Discharge Channel Modifications
- CUW39101: Baden & San Pedro Valve Lot Improvements

The WSIP Team continues to work collaboratively with other City Departments, the SFPUC Regional Wholesale customers, and all program stakeholders to ensure the successful delivery of the WSIP.

Quarterly Report

Q4 FY 2008 | 2009

Rebuilding Today for a Better Tomorrow

Published: 8.20.09

TABLE OF CONTENTS

- 1.0 PROGRAM SUMMARY
 - 1.1 Program Overview
 - **1.2** Program Performance
 - 1.3 Program Update
- 2.0 REGIONAL SUMMARY
 - 2.1 San Joaquin
 - 2.2 Sunol Valley
 - 2.3 Bay Division
 - 2.4 Peninsula
 - 2.5 San Francisco Regional
 - 2.6 System-Wide
- 3.0 PROJECT STATUS
 - 3.1 San Joaquin
 - 3.2 Sunol Valley
 - 3.3 Bay Division
 - 3.4 Peninsula
 - 3.5 San Francisco Regional
 - 3.6 System-Wide
- 4.0 MILESTONE REPORT
- 5.0 WSIP RISK MITIGATION ACTION PLAN

APPENDICES

- A How To Read Project Status Reports
- **B** Project-Level Approved Budget
- C Project-Level Approved Schedule
- D Schedule Variance of WSIP Regional Projects
- **E** Cost Variance of WSIP Regional Projects

1.1 PROGRAM OVERVIEW

The Water System Improvement Program (WSIP) is a multi-billion dollar, multi-year capital program to upgrade the City of San Francisco's regional and local drinking water systems. The program will deliver improvements that enhance the City's ability to provide reliable, affordable, high quality drinking water to its 27 wholesale customers and regional retail customers in Alameda, Santa Clara, and San Mateo Counties, and to 800,000 retail customers in San Francisco, in an environmentally sustainable manner. The proposed WSIP is structured to cost-effectively meet water quality requirements, improve seismic and delivery reliability, and achieve water supply goals.

This Fourth (4th) Quarterly Report for Fiscal Year (FY) 2008-2009 presents the progress made on the WSIP regional projects between April 5, 2009 and July 1, 2009. The program's schedule and budget were last approved by the San Francisco Public Utilities Commission (SFPUC or Commission) on July 28, 2009.

June 2009 Revised WSIP:

Consistent with other large and complex infrastructure programs, the WSIP needs to periodically go through a comprehensive review and revision. The process of formally approving new project scopes, schedules and budgets is referred to as re-baselining. Making periodic adjustments in the WSIP through a re-baselining process is required to:

- incorporate the latest available information, including new project scopes, risk mitigation measures and value engineering proposals;
- capture low construction bids in revised project budgets;
- provide more realistic project baselines for performance measurements;
- ensure that adequate funding is available in future supplemental appropriations; and
- ensure compliance with the California Water Code #73500 (Assembly Bills 1823 and 2437).

The adjustments to the program scope, schedule and budget reflected in the June 2009 Revised WSIP were based on an analysis of monthly forecasting and change management data over the past two quarters and a program re-alignment review undertaken by the WSIP Senior Management Team in April 2009. A Notice of Public Hearing describing proposed changes to regional project schedules and scopes was posted on June 26, 2009, in compliance with the notification requirements of the California Water Code. Additional material of proposed cost changes were subsequently posted on July 23, 2009. The June 2009 Revised WSIP was adopted by the SFPUC Commission on July 28, 2009. The approval included an endorsement of recommendations made by the Bay Area Water Supply and Conservation Agency

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 1

Publication Date: August 20, 2009

(BAWSCA). For more information on the program changes adopted by the SFPUC Commission, refer to documents posted on the SFPUC Website under following headings:

Web Address: (http://sfwater.org/detail.cfm/MC_ID/35/MSC_ID/397/C_ID/4660)

- Notice of public Hearing 7/28/09: Proposed Revisions to the WSIP-2
- Notice of public Hearing 7/28/09: Proposed Revisions to the WSIP-1

This Quarterly Report incorporates all changes to the WSIP Regional Program approved as part of the June 2009 Revised WSIP, including project name changes, modification of the WSIP organizational structure, the addition of a new regional project, and revised budgets and schedules.

The name of two regional projects was changed as part of the adoption of the June 2009 Revised WSIP. The name changes are as follows:

- Project CUW30103: Groundwater Project C South Westside Basin changed to Regional Groundwater Storage and Recovery
- Project CUW35201: Alameda Creek Fishery Enhancement changed to Upper Alameda Creek Filter Gallery

In the June 2009 Revised WSIP, all of the WSIP Water Supply Region Projects, except for CUW30103 – Regional Groundwater Storage and Recovery Project, moved from the Regional Program to the Local Program. The CUW30101 - Regional Groundwater Storage and Recovery Project was moved to the San Francisco Regional Region.

One regional project was added as part of the adoption of the June 2009 Revised WSIP to ensure the program continues to meet the (LOS) goals established for the program. CUW36702 - Peninsula Pipelines Seismic Upgrade, which was included in the Peninsula Region, will provide the seismic reliability required for key transmission pipelines that transport water from the Harry Tracy Water Treatment Plant (HTWTP).

It should be noted that the approved June 2009 Revised WSIP does not include revisions to all project budgets and schedules. Projects with cost and schedule variances that can potentially be mitigated were not re-baselined (i.e., changes to the budget and schedule of these projects were not made). Therefore the Baseline (Approved) Budget and/or and Baseline (Approved) Schedule for those projects remain the same and cost and/or schedule variances continue to be reported based on the latest project forecasts.

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 2 Publication Date: August 20, 2009

1.2 PROGRAM PERFORMANCE

The overall performance of the WSIP at the program and regional level is assessed using the Earned Value Management (EVM) method. EVM has the unique ability to combine measurements of scope, schedule, and cost in a single integrated system. It allows the WSIP Management Team to (1) measure the amount of work actually performed on the program, (2) forecast the program's cost and completion date using historical and statistical projections, (3) determine how well the program is "performing" compared to its original plan, and (4) forecast how well the program will perform in the future. The Earned Value (or Budgeted Cost of Work Performed) is the cost originally budgeted to accomplish the work completed by the report date. In other words, it is the value of the work completed and it is defined as the percent of work accomplished multiplied by the Approved Budget for that work. Planned Value (or Budgeted Cost of Work Scheduled) is the budgeted cost for the work scheduled to be performed by the report date. The Actual Cost (or Actual Cost of Work Performed) is cost incurred to accomplish the work completed by the report date. EVM uses a number of calculations, indices and variances to assess performance. The Schedule Performance Index (SPI) reported herein is a measure of how well the program is doing in terms of following the WSIP approved schedule. It is calculated by dividing the Earned Value by the Planned Value.

At the project-level, WSIP performance is measured using both the EVM and the reporting of schedule and cost variances. These variances are not based on EVM calculations but instead on an overall progress assessment by Project Managers. Appendices D and E include a summary of schedule and cost variances for all WSIP Regional Projects. The "Schedule Variance of WSIP Regional Project" Table in Appendix D summarizes the schedule variance between the projects' Approved Finish Date and the Current Forecast at Completion (or Forecasted Completion Date). The "Cost Variance of WSIP Regional Projects" Table in Appendix E summarizes the cost variance between the projects' Approved Budget and Current Forecast at Completion (or Forecasted Cost at Completion).

Current Program Performance

WSIP activities during the reporting quarter continued to focus primarily on environmental review and design efforts. To date, planning of the WSIP Regional Program is approximately 96% complete, whereas environmental review/permitting, design and construction efforts are about 67%, 75% and 6% complete, respectively. The Schedule Performance Index (SPI) for the Regional Program is 0.99, indicating that 99% of the overall work planned was performed as of the end of this reporting quarter.

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 3 Publication Date: August 20, 2009

Earned Value exceeds Actual Cost to date by \$31.5 million. The Planned versus Actual % Completion of all phases of the WSIP Regional Program are summarized in Table 1.1.

Table 1.1 Program Performances (1, 2)

			July 1	, 2009
			% Planned	% Actual
Project Management			42.6%	42.8%
Planning			97.3%	96.4%
Environmental	Comparison	with last	70.1%	66.5%
Right-of-Way	quarter data	not provided gram baseline	33.4%	30.4%
Design	was changed	d and such	75.8%	74.6%
Bid & Award	comparison meaningful.	would not be	39.0%	39.9%
Construction Management			6.1%	6.1%
Construction			6.1%	6.2%
Close-Out			23.4%	21.8%
Program Management			36.0%	35.9%
Program Cumulative			16.7%	16.6%

Notes:

- 1. Includes performance from San Joaquin, Sunol Valley, Bay Division, Peninsula, and San Francisco Regional Regions.
- 2. See Appendix A.2 (Definition and How to Read PSR's) for explanation of percentage calculations.

Overall, the actual performance of the Project Management, Planning, Design, Bid & Award, Construction Management, Construction, and Program Management Phases is tracking planned performance relatively well. The Environmental, Right-of-Way, and Close-out Phases are slightly behind schedule.

The overall Environmental Phase delay is associated with the complex environmental issues to be thoroughly analyzed under the California Environmental Quality Act (CEQA). No delays have been experienced to date in the environmental permits to be issued by various Federal, State and Regional Resource Agencies prior to construction. The delay recorded for the Environmental Phase is due to the addition of a 3rd Admin

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 4 Publication Date: August 20, 2009

Draft EIR, a screen check review, and extended review periods requested by Division of Major Environmental Analysis for CUW35901 - New Irvington Tunnel, CUW38101 - SVWTP Expansion & Treated Water Reservoir, and CUW35401 - Lower Crystal Springs Dam Improvements Projects. It should be noted that CUW35901 - New Irvington Tunnel and CUW38101 - SVWTP Expansion & Treated Water Reservoir projects were not rebaselined for schedule under the June 2009 Revised WSIP.

The delay recorded for the ROW Phase is to a great extent a carryover from the delay in the Environmental Phase since some land entitlement and encroachment removal actions cannot be initiated until after a project has formally been approved following CEQA certification. It should be noted that the ROW Phase has not delayed any project to date.

The delay recorded for the Close-Out Phase is attributed to 2 projects – CUW37001 – Pipeline Repair & Readiness Improvements, and CUW35801 – Sunset Reservoir – North Basin. In both cases, additional construction work had to be completed, which delayed the Close-Out Phase. It should be noted that both projects were not re-baselined for schedule under the June 2009 Revised WSIP.

The relative progress of the different regions is summarized in Table 1.2.

July 1, 2009 % Planned % Actual San Joaquin Region 17.1% 16.7% Sunol Valley Region 12.3% 12.0% Comparison with last quarter data not provided **Bay Division Region** 14.6% 14.8% because program baseline Peninsula Region was changed and such 14.8% 14.8% comparison would not be San Francisco Regional Region 48.7% 48.5% meaningful. System-Wide 29.0% 30.1% **Regional Program Cumulative** 16.7% 16.6%

Table 1.2 Regional Performance (1)

Notes:

1. See Appendix A.2 (Definition and How to Read PSR's) for explanation of percentage calculations

Q4-FY2008-2009 (04/05/09 – 07/01/09)

Section 1, Page 5 Publication Date: August 20, 2009

All regions are tracking within +/_ 10% of early planned performance, which is considered acceptable. The delay recorded for San Joaquin Region is due to slippage in attainment of the Draft Environmental Impact Report (DEIR) certification for CUW37301 - San Joaquin Pipeline System Project, which was resulted from a couple of weeks delay in completion of response to public review comments. However, the San Francisco Planning Commission certified the EIR for the CUW37301 - San Joaquin Pipeline System Project on 07/14/09. The overall delay recorded for the Sunol Valley Region is due to delays in the Environmental Phase of the CUW35901 - New Irvington Tunnel and CUW38101 - SVWTP Expansion & Treated Water Reservoir Projects. The delay recorded for the San Francisco Regional is due to delay in completion of Close-out phase for CUW35801 – Sunset Reservoir – North Basin. However, the Sunset Reservoir was placed in active service on January 16, 2009. The delay recorded for the System-Wide Region is due to delay in the Planning Phase of CUW39401 - Watershed Environmental Improvement Program. It should be noted that in accordance with the June 2009 Revised WSIP adopted by the SFPUC Commission on July 28, 2009, the baseline (approved) schedules for all above mentioned projects were not changed.

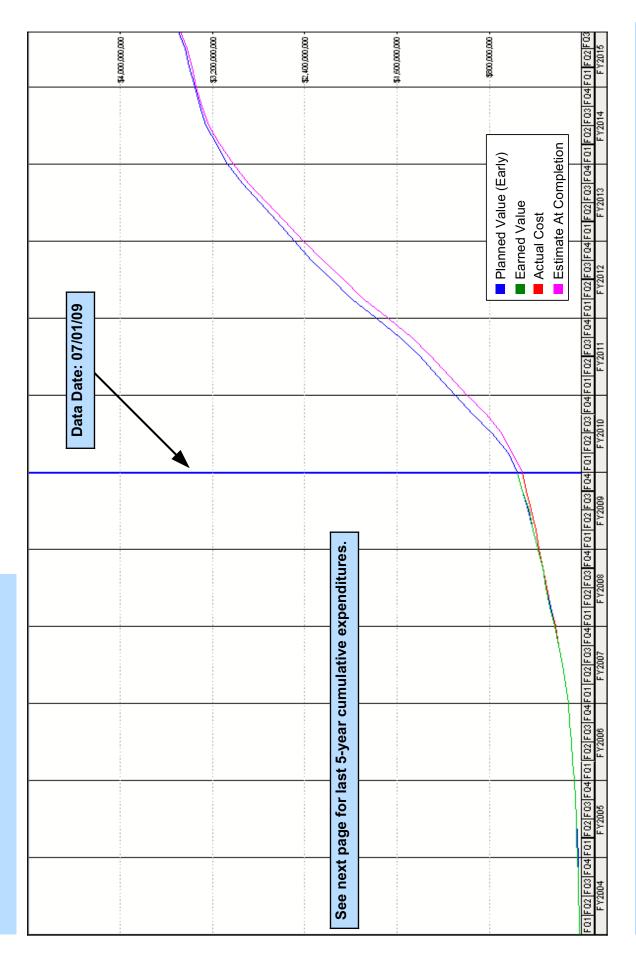
Project Phase Status

As of July 1, 2009, there are two (2) projects in the Planning Phase, eleven (11) projects in the Design Phase, six (6) projects in the Bid and Award Phase, five (5) projects in the Construction Phase, two (2) projects in the Close-Out Phase, eight (8) projects are completed, one (1) project has not been initiated, and eleven (11) projects have multiple active phases. As of July 1, 2009, one (1) project has not initiated their Environmental Phase, twenty (20) are undergoing environmental review, and twenty-two (22) have completed their Environmental Phase.

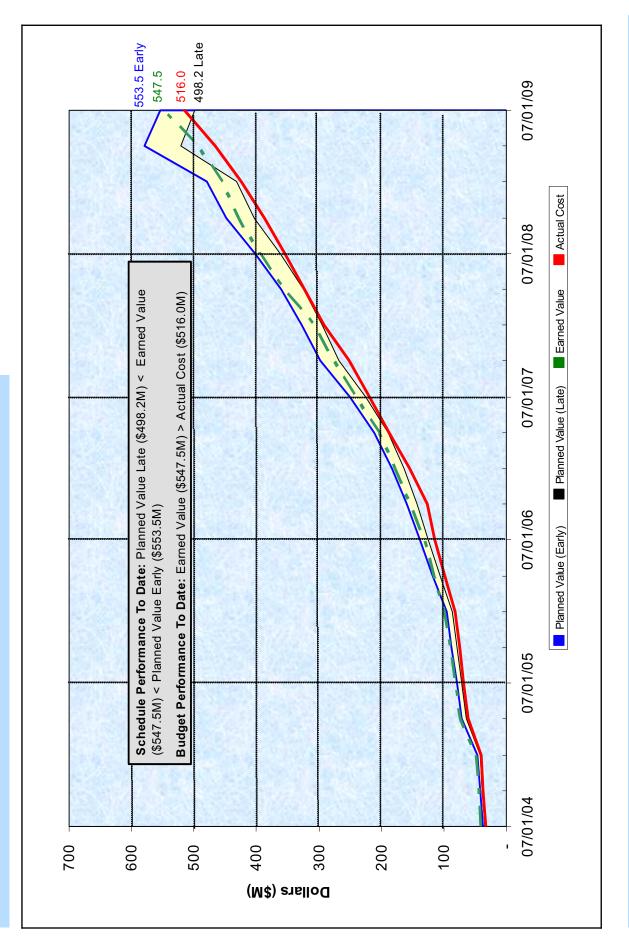
Section 1, Page 6 Publication Date: August 20, 2009

Table 1.3 Projects Status

CUW	Project	Active Phase	Environmental Phase
San Jo	aquin Region		
36401	Lawrence Livermore Water Quality Improvement	Bid & Award	Completed
37301	San Joaquin Pipeline System	Design	Active
37302	Rehabilitation of Existing San Joaquin Pipelines	Planning, Design, Bid & Award	Active
38401	Tesla Treatment Facility	Design, Construction	Completed
38701	Tesla Portal Disinfection Station (combined with 38401)	Combined with 38401	Not Applicable
Sunol	Valley Region		
35201	Upper Alameda Creek Filter Gallery	Planning	Active
35501	Standby Power Facilities - Various Locations	Construction	Completed
35901	New Irvington Tunnel	Design	Active
35902	Alameda Siphon #4	Bid & Award	Active
37001	Pipeline Repair & Readiness Improvements	Completed	Completed
37401	Calaveras Dam Replacement	Design	Active
37402	Calaveras Reservoir Upgrades (Completed)	Completed	Completed
37403	San Antonio Backup Pipeline	Design	Active
38101	SVWTP Expansion & Treated Water Reservoir	Design	Active
38102	SVWTP Calaveras Road (Deleted)	Deleted	Not Applicable
38103	SVWTP New Pipeline	Combined with 38101	Not Applicable
38201	SVWTP Treated Water Reservoir (Combined with CUW38101)	Combined with 38101	Not Applicable
38601	San Antonio Pump Station Upgrade	Bid & Award	Completed
Bay Di	vision Region		
35301	BDPL Nos. 3 & 4 Crossover/Isolation Valves	Close-Out	Completed
35302	Seismic Upgrade of BDPL Nos. 3 & 4	Design	Active


Section 1, Page 7 Publication Date: August 20, 2009

CUW	Project	Active Phase	Environmental Phase
36301	SCADA System - Phase II	Design, Bid & Award, Construction	Active
36302	System Security Upgrades	Planning, Design, Bid & Award, Construction	Active
36801	BDPL Reliability Upgrade - Tunnel	Design, Bid & Award	Active
36802	BDPL Reliability Upgrade - Pipeline	Design, Bid & Award	Part of 36801
36803	BDPL Reliability Upgrade - Relocation of BDPL Nos. 1 & 2	Bid & Award	Completed
38001	BDPL Nos. 3 and 4 Crossovers	Bid & Award, Construction	Completed
38901	SFPUC/EBMUD Intertie	Close-Out	Completed
39301	BDPL No. 4 Condition Assessment PCCP Sections	Completed	Completed
Penins	ula Region		
35401	Lower Crystal Springs Dam Improvements	Design	Active
35601	New Crystal Springs Bypass Tunnel	Construction	Completed
35701	Adit Leak Repair - Crystal Springs/Calaveras (Completed)	Completed	Completed
36101	Pulgas Balancing - Inlet/Outlet Work (Completed)	Completed	Completed
36102	Pulgas Balancing - Discharge Channel Modifications	Construction	Completed
36103	Pulgas Balancing - Structural Rehabilitation and Roof Replacement	Design, Bid & Award	Active
36104	Pulgas Balancing - Laguna Creek Sedimentation (Closed)	Closed	Completed
36105	Pulgas Balancing - Modifications of the Existing Dechlorination Facility	Design	Active
36501	Cross Connection Controls	Completed	Completed
36601	HTWTP Short-Term Improvements - Demo Filters (Completed)	Completed	Completed
36602	HTWTP Short-Term Improvements - Remaining Filters (Combined with CUW36603)	Combined with 36603	Not Applicable


Section 1, Page 8 Publication Date: August 20, 2009

CUW	Project	Active Phase	Environmental Phase
36603	HTWTP Short-Term Improvements - Coagulation & Flocculation/ Remaining Filters	Construction	Completed
36701	HTWTP Long-Term Improvements	Design	Active
36702	Peninsula Pipelines Seismic Upgrade	Not Initiated	Not Initiated
36901	Capuchino Valve Lot Improvements (Completed)	Completed	Completed
37101	Crystal Springs/San Andreas Transmission Upgrade	Design	Active
37801	Crystal Springs Pipeline No. 2 Replacement	Design	Active
37901	San Andreas Pipeline No. 3 Installation	Bid & Award	Completed
39101	Baden and San Pedro Valve Lots Improvements	Construction	Completed
San Fr	ancisco Regional Region		
30103	Regional Groundwater Storage and Recovery	Design, Bid & Award, Construction	Active
35801	Sunset Reservoir - North Basin	Construction, Close-Out	Completed
37201	University Mound Reservoir - North Basin	Bid & Award	Completed
System	n-Wide Region		
38801	Programmatic EIR	Completed	Completed
38802	Habitat Reserve Program	Design, Construction	Active
39401	Watershed Environmental Improvement Program	Planning	Not Initiated

CUMULATIVE EXPENDITURES

CUMULATIVE EXPENDITURES (LAST 5 YEARS)

Phase Approved Start			Schedule	dule						Budget			
ment 03/31/00 03/31/00A 12/04/15 12/04/15 8 g 03/31/00 03/31/00A 12/30/10 12/30/10 8 lamental 10/14/02 10/14/02A 12/31/12 12/31/12 8 f-Way 03/27/06 03/27/06A 09/13/12 12/31/12 81 10/01/01 10/01/01A 10/31/12 10/31/12 81 10/01/01 10/01/01A 04/30/13 04/30/13 81 ement 07/01/03 07/01/03A 06/03/15 06/03/15 81 2/04/15 12/04/15 8 ement 03/05/04 03/31/00A 12/04/15 12/04/15 8 ement 03/31/00 03/31/00A 12/04/15 12/04/15 \$5 al Total 03/31/00 03/31/00A 12/04/15 12/04/15 \$5	hase	Approved Start	Current	Approved Finish	Current Finish	Planned Expenditure To Date	Planned % Complete	Expended To Date	Actual % % Expended	Actual Progress % % % Complete	Earned Value Cost	Approved Budget	Current Forecast
g g g 03/31/00 03/31/00A 12/30/10 12/30/10 8 mental 10/14/02 10/14/02A 12/31/12 12/31/12 8 f-Way 03/27/06 03/27/06A 09/13/12 09/13/12 81 10/01/01 10/01/01A 10/31/12 10/31/12 81 ction 01/18/05 01/18/05A 06/03/15 06/03/15 81 out 10/06/05 10/06/05A 12/04/15 12/04/15 8 al Total 03/31/00 03/31/00A 12/04/15 12/04/15 85	roject	03/31/00	03/31/00A	12/04/15	12/04/15	\$57,870,000	42.6	\$53,302,000	39.2	42.8	\$58,107,000	\$135,886,000	\$135,323,000
F-Way 03/27/06 03/27/06A 09/13/12 12/31/12 \$ F-Way 03/27/06 03/27/06A 09/13/12 09/13/12 I 0/01/01	lanning	03/31/00	03/31/00A	12/30/10	12/30/10	\$62,756,000	97.3	\$61,403,000	94.8	96.4	\$62,183,000	\$64,789,000	\$65,053,000
F-Way 03/27/06 03/27/06A 09/13/12 09/13/12 10/01/01	nvironmental	10/14/02			12/31/12	\$62,899,000	70.1	\$52,394,000	57.3	66.5	\$59,689,000	\$91,473,000	\$91,279,000
1Award 10/01/01 10/01/01A 10/31/12 10/31/12 1Award 03/05/04 03/05/04A 04/30/13 04/30/13 1Award 01/18/05 06/03/15 06/03/15 1Ament 07/01/03 07/01/03A 06/03/15 06/03/15 1At 10/06/05 10/06/05A 12/04/15 12/04/15 1At 08/01/05 08/01/05A 12/04/15 12/04/15 1At 03/31/00 03/31/00A 12/04/15 12/04/15	ight-of-Way	03/27/06	03/27/06A	09/13/12	09/13/12	\$7,823,000	33.4	\$6,329,000	27.0	30.4	\$7,126,000	\$23,406,000	\$23,386,000
ward 03/05/04 03/05/04A 04/30/13 04/30/13 on 01/18/05 01/18/05A 06/03/15 06/03/15 snt or 07/01/03 07/01/03A 06/03/15 06/03/15 \$1 0/06/05 10/06/05A 12/04/15 12/04/15 snt 08/01/05 08/01/05A 12/04/15 12/04/15 \$	esign	10/01/01	10/01/01A	10/31/12	10/31/12	\$155,172,000	75.8	\$141,502,000	69.1	74.6	\$152,655,000	\$204,917,000	\$204,854,000
on 01/18/05 01/18/05A 06/03/15 06/03/15 \$ snt on 07/01/03 07/01/03A 06/03/15 06/03/15 \$1 10/06/05 10/06/05A 12/04/15 12/04/15 \$ snt Total 03/31/00 03/31/00A 12/04/15 12/04/15 \$5	id and Award	03/05/04	03/05/04A		04/30/13	\$2,190,000	39.0	\$1,654,000	29.3	39.9	\$2,238,000	\$5,644,000	\$5,531,000
on 07/01/03 07/01/03A 06/03/15 06/03/15 \$1 10/06/05 10/06/05A 12/04/15 12/04/15 08/01/05 08/01/05A 12/04/15 12/04/15 \$ Total 03/31/00 03/31/00A 12/04/15 \$5	onstruction	01/18/05	01/18/05A			\$18,468,000	6.1	\$16,306,000	5.4	6.1	\$18,395,000	\$302,875,000	\$303,327,000
10/06/05 10/06/05A 12/04/15 12/04/15 snt O8/01/05 08/01/05A 12/04/15 12/04/15 \$ Total 03/31/00 03/31/00A 12/04/15 \$55	onstruction	07/01/03	07/01/03A		06/03/15	\$144,764,000	6.1	\$146,030,000	5.7	6.2	\$145,703,000	\$2,566,573,000	\$2,566,573,000 \$2,585,086,000
nent 17.04/15 08/01/05A 12/04/15 12/04/15 17.04/15 17.04/15 17.04/15 17.04/15 17.04/15 17.04/15 17.04/15	lose-Out	10/06/05	10/06/05A	12/04/15	12/04/15	\$1,858,000	23.4	\$783,000	6.6	21.8	\$1,732,000	\$7,937,000	\$7,972,000
03/31/00 03/31/00A 12/04/15 12/04/15	rogram fanagement	08/01/05	08/01/05A		12/04/15	\$39,747,000	36.0	\$36,336,000	32.9	35.9	\$39,688,000	\$110,525,000	\$110,525,000
	egional Total	03/31/00	03/31/00A	12/04/15	12/04/15	\$553,548,000	16.7	\$516,039,000	14.7	16.6	\$547,516,000	\$3,514,026,000	\$3,532,336,000
Local Total 01/02/01 01/02/01A 10/14/14 10/14/14 \$231,105,00	ocal Total	01/05/01	01/02/01A	$\overline{}$	10/14/14	\$231,105,000	40.5	\$227,164,000	37.9	40.3	\$230,106,000	\$599,830,000	\$604,547,000

 Budgeted Finance Cost:
 \$471,700,000
 \$471,700,000

 WSIP Total Cost:
 \$4,585,556,000
 \$4,608,583,000

1.3 PROGRAM UPDATE

Program Management

During the reporting quarter, WSIP Program Management efforts continued to focus on several key activities including program level contracts, various ongoing program control initiatives, and system shutdown planning and public and contractor outreach efforts. In addition, efforts were spent on addressing follow up comments provided by regulatory agencies and the Bay Area Water Supply & Conservation Agency (BAWSCA) on the WSIP proposed changes, as well as on a number of other activities related to the implementation of the program.

The 2nd Quarter - Fiscal Year 2008-2009 (Q2-FY08/09) Regional Projects Quarterly Report listed commitments that were made to the California Department of Public Health (CDPH) and the California Seismic Safety Commission (CSSC) in response to their concerns about the program changes approved in 2008. Progress was made during the last quarter on some of the commitments to CDPH that were included in a letter to them from the SFPUC on November 13, 2008, as reported below:

Conduct independent technical review for the CUW35902 - Alameda Siphon #4 project to assure seismic reliability; investigate potential additional capital and operational response improvements that may increase seismic reliability in the Sunol Valley; create and implement a seismic response strategy for the Sunol Valley, as well as update Operational Response Plans to address response procedures including operation of WSIP facilities following major seismic events. A review by seismic design experts was performed for the Alameda Siphon #4 project, focusing on the adequacy of the design to withstand a Calaveras design earthquake. In the draft report "Draft: Seismic Review of Alameda Siphon #4 Project" (URS, March 12, 2009), the Review Team concluded that an "acceptable standard of care" was applied to the design, and that the "project uses appropriate technology to achieve the WSIP goals." The report was finalized May 21, 2009. In addition to this review, the Sunol Valley Seismic Reliability Assessment final draft was completed May 2009. It presents the results of various reviews and evaluations that the SFPUC has conducted regarding the level of seismic reliability that will be provided in the Sunol Valley following completion of the WSIP. The intent is to:

- Verify the adequacy of the existing and proposed facilities and operational requirements to meet their intended purposes in satisfying the seismic reliability level of service (LOS) goals.
- Identify potential weaknesses.

• Identify additional improvements that might increase reliability beyond the requirements of the seismic reliability LOS goals.

There has been a significant amount of detailed evaluation and design performed to date on the individual facilities in the Sunol Valley so that these facilities comply with the seismic reliability LOS goals. However, in some cases, reliability may be further increased through a combination of synergistic improvements to multiple projects, including both capital and operational, that would not be achievable by a single project. Key recommendations from the document have been incorporated or are being considered for incorporation in several projects.

Progress was made during the last quarter on the SFPUC's commitments to the CSSC that were included in a letter to the CSSC dated November 13, 2008. During the past quarter, SFPUC facilitated URS Consultants' presentation on their approach to the design of a seismically reliable pipeline at the Bay Division Pipelines Nos. 3 and 4 Hayward Fault crossing to the independent Seismic Safety Task Force (SSTF), as well as AECOM's approach to seismic reliability modeling and analysis. The Seismic Safety Task Force will be following up with written recommendations regarding "Revised General Seismic Requirements for Design of New Facilities and Upgrade of Existing Facilities – Revision 1" (SFPUC, December 22, 2008) in the next quarter. In addition, they will also provide their written recommendations regarding the proposed reduction of redundant seismically reliable pipeline at the Bay Division Pipelines Nos. 3 and 4 Hayward Fault crossing.

SFPUC staffs are scheduling to meet with the SSTF again in the next quarter to follow up on two remaining items:

- a) Magnitude of design earthquakes for WSIP projects impacted by the Calaveras Fault;
- b) Size and consistency of design fault displacements at pipeline crossings. The SSTF confirmed in a meeting on May 11, 2009 that the size of design fault displacements used for WSIP projects is reasonable and consistency has been maintained among projects, and the SSTF indicated they will be providing written recommendations in the upcoming quarters.

During the CSSC meeting on October 28, 2008, the SFPUC concurred with the CSSC that two issues warranted evaluations by external experts/consultants:

a) Redundancy of the Alameda Siphon Project and alternative connections between the Sunol Valley Water Treatment Plant and the Irvington Tunnel. A

draft report titled, "Sunol Valley Seismic Reliability Assessment" by CH2M Hill has been completed. The final draft report was completed in May 2009. As discussed above, key recommendations from the document have been incorporated or are being considered for incorporation in several projects.

b) Faulting and slope stability issues at the Harry Tracy Water Treatment Plant (HTWTP): Status of the two reports for HTWTP is as follows:

- "Draft Seismic Risk Assessment for Treated Water Reservoirs" by Exponent Failure Analysis Associates (December 2008). Final draft report was submitted to SFPUC at the end of June 2009. The consultant will issue the final report this quarter.
- "Supplemental Fault Rupture Hazard Assessment" by William Lettis & Associates, Inc. was finalized in March 2009.

The SFPUC continued to prepare a Preliminary Official Statement in anticipation of issuing the second round of WSIP bonds in August 2009. The expected total bond size is an estimated \$375 million in one or more series and proceeds will be used to defease outstanding commercial paper as well as continue funding WSIP capital projects.

During this reporting period, ongoing efforts aimed at improving the WSIP Program Controls System and processes included the following accomplishments: (1) Performing a thorough and systematic analysis of program scope, cost and schedule to generate the proposed program changes; (2) establishing detailed project baselines for monitoring, controlling and reporting purposes; (3) providing online "dashboard" access to the Construction Management Consultants to view respective projects schedule at the program level; and (4) holding cost estimating training sessions.

Planning efforts associated with system shutdowns continued during the reporting quarter. The WSIP Management Team held multiple meetings with the SFPUC Water Enterprise to coordinate the planning, scheduling, staffing, and work-around plans for the WSIP system shutdowns required through 2014. A number of special shutdown meetings were also held to plan for the Coast Range Tunnel shutdown in January 2010. The WSIP Master System Shutdown schedule and a summary of the changes made to the schedule since it was last updated in October 2008 was issued and distributed to the BAWSCA on May 8, 2009.

WSIP Communications orchestrated two major groundbreaking events for regional projects in the Peninsula and San Joaquin Regions during the quarter. These events resulted in significant media coverage regarding WSIP. Additionally, Communications collaborated with the WSIP Construction Management team in the first of several

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 15

orientation trainings for staff and consultant teams managing WSIP projects in construction. Communications also activated its program consultant to audit Communications planning and execution in all regions and implement new action plans and procedures for WSIP communications in the field.

The groundbreaking for the CUW35601- New Crystal Springs Bypass Tunnel coincided with the anniversary of the 1906 earthquake and was collaboration with US Geological Survey as well as San Mateo Board of Supervisors. The event received widespread media coverage. In May 2009, the USGS prominently displayed WSIP projects and efforts to seismic retrofit the regional water system as part of its annual open house that drew 10,000 guests. In San Joaquin, the Mayor of San Francisco and President of the San Joaquin Board of Supervisors along with representatives of the U.S. Environmental Protection Agency (EPA) broke ground for the CUW38401 - Tesla Treatment Facility Project near Tracy, CA. Again, this event brought significant media attention to WSIP around the state.

San Joaquin regional Communications Liaison coordinated briefings before the Stanislaus and San Joaquin Board of Supervisors, Riverbank City Council and respective Irrigation Districts' Commissions. In the Sunol region, briefings continue with key Alameda County representatives and the Sunol Citizens Advisory Committee. Additionally, Communications is planning an event with the Sunol School to kick-off the first WSIP project in the Sunol Valley: CUW35902 - Alameda Siphon #4. As the Bay Division region prepares for environmental certification hearings, Communications is taking the lead to arrange final meetings with all municipalities and counties on the Memorandums of Understanding (MOU) for CUW36801/36802 - BDPL Reliability Upgrade - Tunnel/Pipeline Projects. In the Peninsula region, Communications is onsite regularly at New Crystal Springs Tunnel site, as well as focusing on outreach around Daly City and Sawyer Camp Trail projects. With final approval of CUW 37901 - San Andreas Pipeline #3 Installation Project, Communications is refining outreach plans for 4.4 mile pipeline between Daly City and San Francisco's Stonestown neighborhood.

Coordination with the Arts Commission Civic Design Review Committee has produced a design charrette for water supply groundwater projects. This innovative solution will help streamline approvals for more than 20 ground well sites in northern San Mateo County and within San Francisco.

Social marketing continues to be an increasingly popular platform to promote the WSIP projects among neighbors and others. Upcoming refinements to the WSIP website will enable visitors to access blogs quicker for project updates. Additionally, WSIP will add

an environmental section to highlight environmental management on projects throughout the regions.

Contracting Outreach staff held a successful Contractor's Fair on April 1 in San Mateo, coordinating with both the Peninsula Builder's Exchange and the WSIP Small Business Advisory Committee. More than 75 contractors and primes from the area attended as did San Mateo Supervisor Rose Jacobs Gibson. Throughout the quarter, this team certified 13 new local business enterprise (LBE) contractors and subcontractors in the regions. Since July 1, 2008, 103 LBE contractors have been certified.

Contracting Outreach also assisted with numerous pre-bid conferences for WSIP Projects. In June, the team hosted another successful Contractor's Breakfast with a film highlighting labor's successful involvement within WSIP and the strides SFPUC has made to improve the contracting process. WSIP's presence at Rapid Excavation and Tunneling Conference (RETC), also in June, provided national exposure to several upcoming WSIP projects that will be out for bid in the coming year.

Planning/Design

Planning and design efforts continue with most projects achieving their key scheduled milestones. All regional projects with the exception of two projects (CUW35201 – Upper Alameda Creek Filter Gallery and CUW39401 – Watershed Environmental Improvement Program) have now entered the Design Phase. During this reporting period, the Design Phase for the CUW37901 - San Andreas Pipeline No. 3 Installation, and CUW38601 - San Antonio Pump Station Upgrade Projects were completed. The 35% design package for the CUW35302 – Seismic Upgrade of BDPL Nos. 3 & 4 Project, and the 95% design package for the CUW38401 – Tesla Treatment Facility, CUW36301 – SCADA System – Phase II, CUW35401 – Lower Crystal Springs Dam Improvements, CUW38101 – SVWTP Expansion & Treated Water Reservoir, and CUW5901 – New Irvington Tunnel Projects were all completed.

In addition, the construction bid packages for the CUW36401 - Lawrence Livermore Water Quality Improvement, CUW37302 - Rehabilitation of Existing San Joaquin Pipelines (Roselle Crossover), CUW37901 - San Andreas Pipeline No. 3 Installation, CUW36103 -Pulgas Balancing - Structural Rehabilitation and Roof Replacement, and CUW38601 - San Antonio Pump Station Upgrade Projects were advertised.

A Cooperative Agreement with Caltrans District 4 for proposed improvements in connection with WSIP within the State Highway System ROW was executed on February 19, 2009, and will be effective through December 31, 2017. To date, WSIP has received

sixteen (16) encroachment permits from Caltrans. As a part of this agreement, the SFPUC agreed to establish a Construction Zone Enhancement Enforcement Program (COZEEP), working with the California Highway Patrol (CHP) for traffic safety on State highways. This quarter, an agreement with the California Highway Patrol (CHP) to provide the COZEEP services during construction of the improvements has been drafted. This agreement will help facilitate construction around State highways by providing supplemental CHP officers to assist the SFPUC and its contractors in the management of traffic in order to enhance the safety of motorists, pedestrians, and construction workers.

To ensure all WSIP projects share a common contract basis, the Engineering Management Bureau (EMB) has completed work on the "baseline template" for the Division 0 (Procurement and Contracting Requirements) and Division 1 (General Requirements) Specifications.

Environmental

Keeping the environmental review process on track with scheduled performance has been one of the program's greatest challenges. This challenge encompasses the following factors: (1) the early decision to conduct the Pre-Construction Phases (planning, design, and environmental) for the WSIP in parallel. Although this approach saves time overall and is practiced on major infrastructure programs, it requires several iterations of environmental reviews as design progresses and projects scopes are modified. Preparation of the Draft PEIR in parallel with individual project EIRs. Additional time was needed to accomplish the necessary level of consistency of individual documents (3) New environmental resource issues surfaced during report with the PEIR. preparation that was initially excluded from consideration. For example, Steelhead fisheries analyses, previously anticipated to be completed under a separate permitting process, are now required for completion of the environmental review for the CUW37401 - Calaveras Dam Replacement Project. (4) Inadequate consultant resources have resulted in prolonged document reviews by the Major Environmental Analysis Division of the San Francisco Planning Department (MEA) and termination of two consultant contracts. Having released two consulting firms, the transition to new consultants extended the schedule. (5) Several projects were delayed as a result of the decision by MEA to prepare EIRs instead of Mitigated Negative Declarations (MNDs) on some projects, thus prolonging the Environmental Phase.

The SFPUC Bureau of Environmental Management (BEM) continues to work closely with the SFPUC Water Enterprise, MEA, the Office of the City Attorney and the environmental consultants to mitigate delays in the environmental review process. In

addition to hiring new consultants for some projects, additional consultants have been hired to supplement MEA's staff and to supplement some existing consulting contracts.

During the reporting quarter, significant progress was made in certification of several Environmental Impact Reports (EIRs), completion and publication of several Draft EIRs and receipt of other California Environmental Quality Act (CEQA) clearances. Specific CEQA review accomplishments include the following:

The San Francisco Planning Department approved the Mitigated Negative Declaration (MND) for the CUW36103 – Pulgas Balancing - Structural Rehabilitation and Roof Replacement Project on May 14, 2009.

The San Francisco Planning Commission certified the Environmental Impact Report for the CUW37901 – San Andreas Pipeline No. 3 Installation - Project on April 2, 2009

Response to Comments documents were published for the CUW37301 - San Joaquin Pipeline System and CUW36801/CUW36802 - BDPL Reliability Upgrade - Tunnel/Pipeline Projects on May 14, 2009 and June 18, 2009 respectively.

The Notice of Preparation (NOP) document for the Environmental Impact Report for CUW30103 - Regional Groundwater Storage and Recovery Project was published on June 22, 2009.

Draft Environmental Impact Reports (EIR) were published for the CUW35901 – New Irvington Tunnel and CUW38101 – SVWTP Expansion & Treated Water Projects, both on June 1, 2009.

Resource agency permitting involves the environmental permits that must be obtained prior to construction from the following agencies: US Army Corps of Engineers (USACE), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), the State Historic Preservation Officer (SHPO), the California Department of Fish and Game (CDFG), and the Regional Water Quality Control Board (RWQCB).

Significant progress was made on environmental permitting activities. Specific permitting accomplishments during the reporting period are summarized below.

Permits Applications Submitted:

- CUW36801 BDPL Reliability Upgrade Tunnel:
 - USACE submitted Letter to SHPO for 106 concurrence

- CUW 35901 New Irvington Tunnel:
 - Submitted 404 Application to USACE
 - o Submitted Biological Assessment to USFWS
- CUW37401 Calaveras Dam Replacement:
 - Submitted Draft Biological Assessment to NMFS
 - Submitted Section 404 Individual Permit Application to the USACE
 - Submitted Biological Assessment to USFWS
- CUW 38101 SVWTP Expansion & Treated Water Reservoir:
 - Submitted 404 Application to USACE
 - o Submitted Biological Assessment to USFWS

Permits Received:

- CUW35902 Alameda Siphon #4:
 - o Completed 401 Water Quality Certification from the RWQCB
- CUW37401 Calaveras Dam Replacement:
 - Received Approval on Second Supplemental Wetland Delineation Report for verification

Environmental Construction Compliance Management

During this reporting period, the WSIP Environmental Construction Compliance Manager (ECCM) coordinated completion of the Environmental Mitigation Section of the Contract Specifications for one (1) project (CUW36801 – BDPL Reliability Upgrade – Tunnel (East Bay Segment)) and four (4) others are in progress (CUW35901 – New Irvington Tunnel, CUW37301 - San Joaquin Pipeline System, CUW36801 – BDPL Reliability Upgrade – Tunnel (Peninsula Segment), and CUW38101 – SVWTP Expansion & Treated Water Reservoir Projects). Preconstruction planning efforts focused on finalizing environmental construction compliance contracts for Peninsula Region and performing other tasks supporting the environmental compliance program for this region. In addition, agency coordination/reporting and minor project modification approvals supported pre-construction and construction phases for the CUW35601 - New Crystal Springs Bypass Tunnel, CUW38401 - Tesla Treatment Facility, CUW36102-Pulgas Balancing - Discharge Channel Modifications, CUW39101 - Baden and San Pedro Valve Lots Improvements, and CUW38001 - BDPL No. 3 & 4 Crossovers Projects. A training manual for Environmental Inspectors was developed.

Right-of-Way

The ROW engineering, surveys and appraisals have been completed for the CUW36801 - BDPL Reliability Upgrade - Tunnel Project. The project passes through the lands of

Q4-FY2008-2009 (04/05/09 – 07/01/09)

USFWS, State Lands, Mid-Peninsula Open Space, Sam-Trans and Leslie Salt. Each of these ownerships will involve different and challenging land acquisition processes.

Encroachment removal activities continues for the CUW36802 - BDPL Reliability Upgrade - Pipeline Project. The Right-of-Way (ROW) Team is now focusing on the remaining difficult encroachments and is diligently working with the City Attorney's Office to find solutions for removal which may include litigation if absolutely necessary. The ROW Team is also mapping and appraising the Bay Road parcel and the City of Fremont Access Road.

The appraisal process was completed for the CUW38001 - BDPL No. 3 & 4 - Crossovers Project and the land acquisition process is underway. Negotiations resulted in a successful settlement on the Guadalupe site in Santa Clara. Discussions continue with Cal Water.

The ROW Team received the final alignment for the CUW35901 - New Irvington Tunnel Project and the ROW mapping has been completed. A significant portion of the appraisal work is underway on this project and the Project Team is meeting with the property owners to explain the ROW process. Initial relocation planning has also commenced.

A ROW Encroachment Team was set up for the CUW37301 - San Joaquin Pipeline System Project. Sixty-nine (69) encroachments have been identified and contact has been initiated via letter and personally. ROW engineering and surveys work have commenced and are ongoing. The appraisal process was also initiated on this project.

Overall, the ROW Team is making steady progress; however, delays in the environmental review of some projects have impacted the ROW Team's ability to initiate some tasks that require CEQA approval first.

Construction

Significant efforts continued on implementing the construction management (CM) approach, structure, processes, procedures and systems, and recruiting the consultants and staffing required managing all upcoming construction activities.

Pre-construction planning:

Pre-construction planning efforts focused on: (1) finalizing of CM Procedures based on the WSIP CM Plan: 46 out of 49 procedures are posted as final on the WSIP section of the SFPUC website (sfwater.org/WSIP) and the SFPUC network drives; (2) implementing

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 21 Publication Date: August 20, 2009

the SFPUC revised construction specifications (Perfectus Version 3 for Division 0 and Division 1) on WSIP projects; (3) updating the CM Staffing Plan to manage consultant needs and internal hiring/re-assignment requirements based on schedule update of several WSIP projects and the transition of City staff to CMB; and (4) implementing the WSIP CM Management Information System (CMIS) to provide efficient and consistent management of various CM processes such as submittals, requests for information, written communications, and changes. Preparation of CM Construction Procedures is 98% complete as of the end of the reporting quarter. A thorough QA review has been completed and revisions to incorporate all comments are currently in progress for the WSIP Business Processes, CM Procedures, and the CM Plan.

Construction Management Information System (CMIS):

The WSIP CMIS continued to be transitioned into use on WSIP projects. The CMIS was implemented on the following projects:

- CUW35601 New Crystal Springs Bypass Tunnel Project, which had its NTP in December 2008.
- CUW38401 Tesla Treatment Facility Project, which had its construction NTP in March 2009.
- CUW39101 Baden and San Pedro Valve Lot Improvements Project, which had its NTP in April 09.
- CUW36102 -Pulgas Balancing Discharge Channel Modifications Project, which had its NTP in April 09.

As of this reporting quarter, a total of about 80 individuals consisting of construction contractors, CM Consultants and SFPUC WSIP employees had received CMIS training.

CM Contract Agreements and Progress:

Significant efforts were made continuing to select and put in place Construction Management Consultants for the WSIP. As of the end of the quarter, the following CM Contract Agreements were in effect:

- CS-910: Construction Management (CM) Services for WSIP San Francisco Region/Local;
- CS-912: Construction Management (CM) Services for WSIP New Crystal Springs Bypass Tunnel Project;
- CS-913: Construction Management (CM) Services for WSIP Bay Tunnel Project;

- CS-914: Construction Management (CM) Services for WSIP Bay Division Region;
- CS-917: Construction Management (CM) Services for WSIP San Joaquin Region

Two other Contract Agreements for CM services were awarded and were in process of negotiations:

- CS-915R: Sunol Regional Construction Management (CM) Services and
- CS-918: Construction Management (CM) services for WSIP New Irvington Tunnel Project.

An additional contract Agreement for CS-916: Peninsula Regional Construction Management (CM) Services has been advertised and is in the selection process for ranking and award to the most qualified proposer.

Three (3) other Construction Management (CM) services RFPs have yet to be advertised: CS-911R Calaveras Dam, HTWTP Long-term Improvement project and Seismic Upgrade of BDPL No. 3 & 4. (CS numbers have not been assigned to the last two projects).

Partnering/Disputes Review Advisors (DRA)/Disputes Review Boards (DRB):

Formal partnering and informal partnering is being conducted with Project CM teams including CM Consultants, City CM Staff and Construction Contractors. Additionally, alternative dispute resolution methods involving independent third party Disputes Review Advisors or Disputes Review Boards are being put into place on all medium to large WSIP construction contracts.

Supplier Quality Surveillance (SQS):

During this reporting period, Parsons as a part of their Pre-construction services has developed SQS Plans for scoping independent third party quality assurance in SFPUC and Construction Contractor vendor fabrication facilities which are providing permanent plant equipment and materials for WSIP construction projects. This is being done to assure that complex equipment and equipment critically needed as a prerequisite to major system shutdowns is delivered on time and to specified quality requirements. SQS Plans for the following projects were developed this reporting period:

- CUW38401 Tesla Treatment Facility
- CUW37301 San Joaquin Pipeline System (Contract 1)
- CUW35902 Alameda Siphon #4
- CUW38001 BDPL Nos. Crossovers
- CUW39101 Baden and San Pedro Valve Lots Improvements

Q4-FY2008-2009 (04/05/09 - 07/01/09)

Section 1, Page 23 Publication Date: August 20, 2009

Program Construction Management:

AECOM began work as Program Construction Management (PCM) team in March, 2009 providing management oversight of construction and implementation of the WSIP CM Plan and processes at the program level. As of June 30, 2009, the PCM team is fully mobilized.

WSIP Construction Management Training:

The first Construction Management (CM) Orientation and Training Session was conducted in June, 2009. The session provided a one-day hands-on workshop to provide a practical overview and working knowledge of the WSIP CM Plan and Procedures, key contractual and regulatory requirements, and the CM role in implementing these in a correct and consistent manner. These sessions will continue to be provided as Project CM teams are mobilized and put in place.

Project Achievements

Planning Phase Completed:

None

Environmental Phase Completed:

- CUW37901 San Andreas Pipeline No. 3 Installation
- CUW38801 Programmatic EIR

<u>Design Phase Started</u>:

None

Design Phase Completed:

- CUW37901 San Andreas Pipeline No. 3 Installation
- CUW38601 San Antonio Pump Station Upgrade

Construction Contract Advertised:

- CUW36103 Pulgas Balancing Structural Rehabilitation and Roof Replacement
- CUW36401 Lawrence Livermore Water Quality Improvement
- CUW38001 BDPL No. 3 and 4 Crossovers
- CUW37901 San Andreas Pipeline No. 3 Installation
- CUW38601 San Antonio Pump Station Upgrade

Construction Contract Awarded:

Q4-FY2008-2009 (04/05/09 - 07/01/09) Sect

- CUW35901 Alameda Siphon #4
- CUW37201 University Mound Reservoir North Basin
- CUW37901 San Andreas Pipeline No. 3 Installation
- CUW38001 BDPL Nos. 3 and 4 Crossovers

Construction Final Completion:

• None

Section 1, Page 25 Publication Date: August 20, 2009

2.0 SUB PROGRAM SUMMARY

2.5 WATER SUPPLY

Overall, the Water Supply projects are on schedule with an actual completion of 8.0% as compared to a planned completion of 8.8%. The Schedule Performance Index (SPI) for the Region is 0.91. This indicates that 91% of the work planned was performed as of the end of the reporting quarter. Earned Value exceeds actual costs to date by \$2.1 million. The table below summarizes the overall progress of the Water Supply Sub Program during the reporting quarter.

July 1, 2009 % Planned % Actual 26.5% 24.6% Project Management 65.6% 63.7% Planning 27.3% 16.0% Environmental Comparison with last quarter data not provided 3.0% 0.5% Right-of-Way because program baseline 7.8% 7.2% Design was changed and such comparison would not be 0.0% 0.0% Bid & Award meaningful. 2.3% 2.3% Construction Management 2.2% 2.2% Construction 0.0% 0.0% Close-Out 8.8% 8.0% **Program Cumulative**

Table 2.5 Sub Program Performance - Water Supply

In accordance with the June 2009 Revised WSIP adopted by the SFPUC Commission on July 28, 2009, a Water Supply sub program comprising of seven (7) projects was added to the Local projects. The following changes were made to the Baseline (Approved) Budget and Schedule of the seven (7) projects in this sub program:

Projects with Changes to Baseline (Approved) Schedule and Budget

- CUW30201 San Francisco Westside Recycled Water
- CUW30204 Harding Park Recycled Water

Projects with Changes to Baseline (Approved) Schedule

2.0 SUB PROGRAM SUMMARY

CUW30102 – San Francisco Groundwater Supply

Projects with Changes to Baseline (Approved) Budget

- CUW30101 Lake Merced Water Levels Restoration
- CUW30202 Recycled Water Project Pacifica (Closed)

Projects with No Changes to Baseline (Approved) Budget and Schedule

• CUW39001 - SF Bay Area Desalination Plant (On Hold)

Additionally, one (1) new project, CUW30205 – San Francisco Eastside Recycled Water was added to this sub program.

Planning

Planning phase is slightly behind schedule with an actual completion of 63.7% versus 65.6% for planned. Planning Phase activities for the CUW30201 – San Francisco Westside Recycled Water-completed the Final Preliminary Project Scope Description. Planning activities for the CUW30101 –Lake Merced Water Levels Restoration involve revision to the Draft CER.

Environmental

Environmental phase is behind schedule with an actual completion of 16.0% versus 27.3% for planned. Environmental Phase activities for the CUW30201 –Recycled Water Project – San Francisco Project resumed this quarter after the scope revision. The Administrative Draft EIR was issued for internal review for CUW30204 – Harding Park Recycled Water.

<u>Design</u>

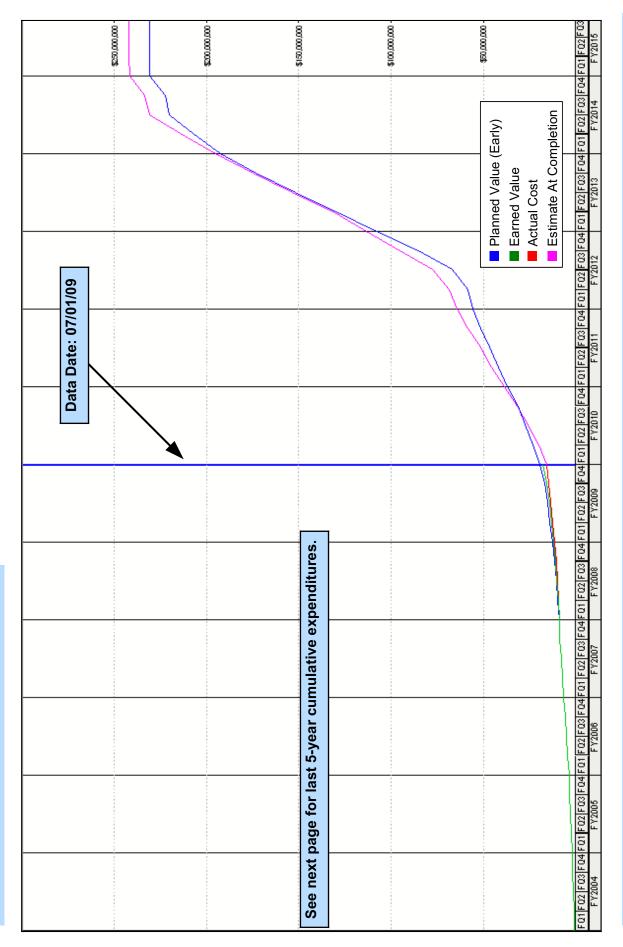
Design phase is behind schedule with an actual completion of 7.2% versus 7.8% for planned. CUW30102 – San Francisco Groundwater Supply project team completed the 35% design milestone this quarter. For CUW30204 – Harding Park Recycled Water, 95% design completion is anticipated by next quarter.

Construction

Construction phase is on schedule with an actual completion of 2.2% versus 2.2% for planned. There were no significant Construction Phase activities on any of the projects in the Water Supply Sub Program.

Q4-FY2008-2009 (04/05/09-07/01/09)

Section 2, Page 22 Publication Date: August 20, 2009


2.0 SUB PROGRAM SUMMARY

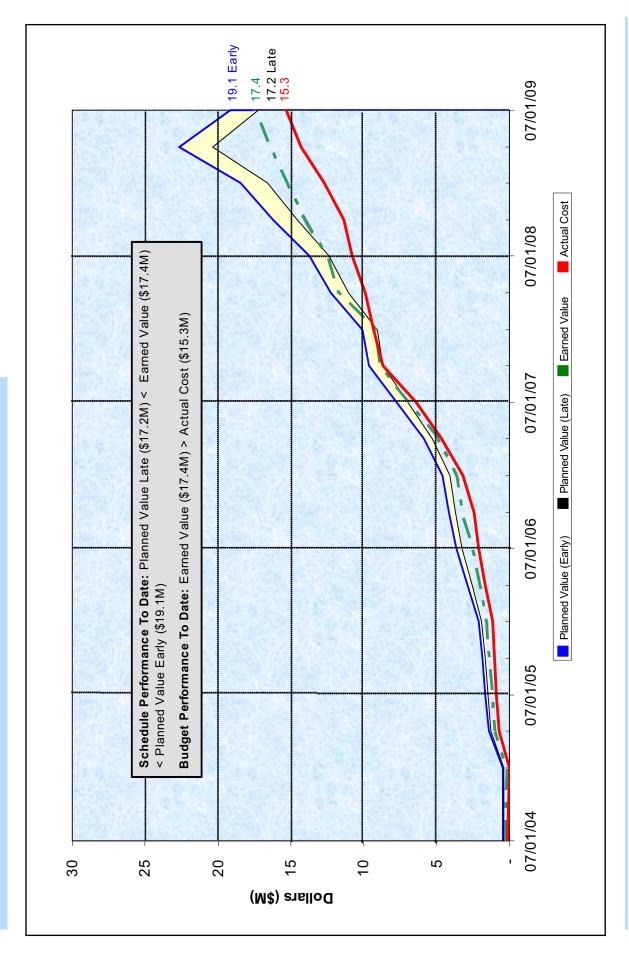


Figure 2.7 San Francisco Groundwater Supply Test Well Drilling

Section 2, Page 23 Publication Date: August 20, 2009

CUMULATIVE EXPENDITURES

SUB PROGRAM SUMMARY

		3 1	Schedule						Budget			
Phase	Approved Start	Current	Current Approved Start Finish	Current Finish	Planned Expenditure To Date	Planned % Complete	Expended To Date	Actual Progress % % Expended Complete	Progress % Complete	Earned Value Cost	Approved Budget	Current Forecast
Project Management	01/06/03	01/06/03A 10/14/14	10/14/14	10/14/14	\$3,982,000	26.5	\$3,493,000	23.3	24.6	\$3,689,000	\$15,017,000	\$15,017,000
Planning	01/06/03	01/06/03A	10/03/11	10/03/11	\$6,944,000	9:59	\$6,208,000	58.2	63.7	\$6,738,000	\$10,672,000	\$10,672,000
Environmental	10/13/03	10/13/03A	04/08/13	04/08/13	\$2,463,000	27.3	\$1,351,000	14.4	16.0	\$1,447,000	\$9,375,000	\$9,375,000
Right-of-Way	02/02/07	02/02/07A	05/20/13	05/20/13	\$21,000	3.0	80	0.0	0.5	\$4,000	\$697,000	\$697,000
Design	05/12/04	05/12/04A 04/11/13	04/11/13	04/11/13	\$2,387,000	7.8	\$1,236,000	4.0	7.2	\$2,205,000	\$30,845,000	\$30,845,000
Bid and Award	04/18/05	04/18/05A 09/24/13	09/24/13	09/24/13	80	0.0	80	0.0	0.0	80	\$450,000	\$450,000
Construction	10/20/04	10/20/04A	04/15/14	04/15/14	\$439,000	2.3	\$439,000	2.3	2.3	\$439,000	\$18,802,000	\$18,802,000
Construction	08/02/04	08/02/04A	04/15/14	04/15/14	\$2,896,000	2.2	\$2,561,000	1.8	2.2	\$2,896,000	\$144,501,000	\$149,218,000
Close-Out	11/05/09	06/30/09A	10/14/14	10/14/14	80	0.0	80	0.0	0.0	80	\$730,000	\$730,000
Water Supply Cumulative	01/06/03	01/06/03A	10/14/14	10/14/14	\$19,133,000	8.8	\$15,289,000	9.9	8.0	\$17,418,000	\$231,088,000	\$235,805,000

As of July 1, 2009

3.5 WATER SUPPLY

As of July 1, 2009

Title: CUW30101 - Lake Merced Water Level Restoration

PE: Debra Temple, DP PM: Betsey Eagon CM: Ben Leung Phone: 415-554-1871 EPM: Yin Lan Zhang AB1823: No PCE: JP Torres

PROJECT STATUS:

Project Description:

The project consists of the development of a plan for operations and maintenance; construction of a stormwater treatment wetland, which will yield approximately 315 acre-feet (103 MG) per year for lake augmentation; and installation of up to two groundwater wells that will be used as the secondary water source to fill the lake.

Planning Status:

- * The project is in the conceptual engineering phase. The Draft Conceptual Engineering Report (CER) is currently being revised, and the lake demand and a lake level response model were updated.
- * The Final CER and the Planning Phase are expected to be completed by 10/01/09.

Environmental Status:

- * The San Francisco Planning Department determined that this project requires an Environmental Impact Report (EIR).
- * Environmental review is underway.

Right-of-Way Status:

- * This project requires no land acquisitions and no encroachment removal actions.
- Discussions are being held with SFPUC Real Estate Services, City Attorney's office, and landowners to determine potential Right-of-Way and land acquisition/leasing issues.

Design Status:

- * The Design Phase was initiated and procurement of the design consultant is underway.
- * Bid Advertisement Date: Current Forecast: 04/23/12 / Approved: 10/17/11

Construction Status:

- * Construction NTP Date: Current Forecast: 09/24/12 / Approved: 03/26/12
- * The main Construction Phase has yet to be initiated. Construction costs to date reflect installation of an interim lake fill de-chlorination system completed in early 2005.

Major Issues/Potential Obstacles and Recommended Solutions:

* None at this time.

Schedule Variances:

In accordance with the June 2009 Revised WSIP adopted by the SFPUC Commission on July 28, 2009, the baseline (approved) schedule for this project was not changed.

The following variances are between the <u>Current Forecast Date</u> and <u>Approved Finish Date</u>:

- * The 1-month variance for the Planning Phase is due to the additional work required for updating the design criteria and completing the conceptual design.
- * The 6-month variance for the Project Management, Bid & Award, Construction Management, Construction and Closeout Phases is due to the inclusion of a Right-of-Way Phase.

Cost Variances:

None at this time.

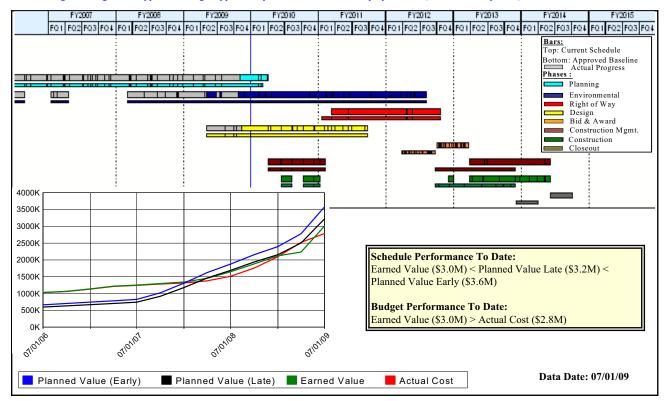
04 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 2

As of July 1, 2009

Title: CUW30101 - Lake Merced Water Level Restoration

PE: Debra Temple, DPW PM: Betsey Eagon CM: Ben Leung Phone: 415-554-1871 EPM: Yin Lan Zhang AB1823: No PCE: JP Torres


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management	06/16/03	06/16/03	07/19/11	09/27/13	04/04/14	04/04/14
Planning	06/16/03	06/16/03	08/31/07	09/01/09	09/01/09	10/01/09
Environmental	10/22/04	10/22/04	02/18/09	02/02/12	02/02/12	02/02/12
Right-of-Way		07/20/10		04/20/12	04/20/12	04/20/12
Design	05/12/04	05/12/04	09/04/09	03/24/11	03/24/11	03/24/11
Bid and Award	08/27/04	09/23/11	02/01/10	03/23/12	09/21/12	09/21/12
Construction Management	10/20/04	10/20/04	02/01/11	05/31/13	12/04/13	12/04/13
Construction	10/20/04	08/02/04	02/01/11	05/31/13	12/04/13	12/04/13
Close-Out	02/02/11	06/03/13	07/19/11	09/27/13	04/04/14	04/07/14

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management	\$723,000	\$940,000	49.2	\$843,000	44.1	47.6	\$1,911,000	\$1,911,000	\$1,911,000
Planning	\$903,000	\$1,838,000	93.1	\$1,493,000	75.6	90.7	\$1,975,000	\$2,005,000	\$1,975,000
Environmental	\$332,000	\$667,000	30.2	\$348,000	15.5	8.6	\$2,250,000	\$2,250,000	\$2,250,000
Right-of-Way		\$0	0.0	\$0	0.0	0.0	\$175,000	\$175,000	\$175,000
Design	\$564,000	\$38,000	1.7	\$11,000	0.5	0.9	\$2,418,000	\$2,388,000	\$2,418,000
Bid and Award	\$190,000	\$0	0.0	\$0	0.0	0.0	\$50,000	\$50,000	\$50,000
Construction Management	\$610,000	\$43,000	1.9	\$43,000	1.9	1.9	\$2,269,000	\$2,269,000	\$2,269,000
Construction	\$1,903,000	\$48,000	0.2	\$48,000	0.2	0.2	\$21,409,000	\$21,409,000	\$21,409,000
Close-Out	\$38,000	\$0	0.0	\$0	0.0	0.0	\$209,000	\$209,000	\$209,000
Total:	\$5,264,000	\$3,574,000	11.7	\$2,786,000	8.5	9.8	\$32,668,000	\$32,668,000	\$32,668,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

As of July 1, 2009

CM: Ben Leung

PCE: JP Torres

Title: CUW30102 - San Francisco Groundwater Supply

PM: Jeff Gilman Phone: 415-551-2952

EPM: Yin Lan Zhang AB1823: No

PROJECT STATUS:

Project Description:

This project consists of two phases, each delivering an annual average of 2 mgd. The first phase consists of building three or four new groundwater well stations in the San Francisco Sunset District or Golden Gate Park. All stations will include a building to house the well pump and electrical equipment, with two stations having an additional room for chemical disinfection. Buried piping will be installed to connect the well stations to the Sunset Reservoir. The second phase, consisting of improvements or replacement of two or more irrigation wells in Golden Gate Park, will be operational when the existing wells are no longer needed for irrigation (after implementation of the CUW30201 – San Francisco Westside Recycled Water Project). The facilities in Golden Gate Park will allow groundwater currently used for irrigation to be used as a potable water source. Improvements to the facilities at the existing San Francisco Zoo Well No. 5 have been completed, allowing this well to serve as an emergency potable water source.

Planning Status:

* The Planning Phase was completed on 12/12/06.

Environmental Status:

- The San Francisco Planning Department determined that this project requires an Environmental Impact Report (EIR).
- Environmental review is underway.

Right-of-Way Status:

- * This project requires no land entitlement actions and no encroachment removal actions. However, funding is allocated for encroachment permits and other similar activities.
- * Completed a Memorandum of Understanding with the San Francisco Recreation and Park Department (RPD) to address use of existing wells, selection of additional well station sites, pipeline routes and groundwater management in Golden Gate Park.

Design Status:

- * Completed the 35% design of well stations and pipelines for the South Sunset Playground, West Sunset Playground, and Lake Merced Pump Station (first project phase). The 65% design for this phase is expected to be completed in the next reporting quarter.
- * Began review of two existing irrigation wells and well stations in Golden Gate Park (second project phase) and the conceptual design for modifications to use these wells as a potable supply.
- * Bid Advertisement Date: Current Forecast: 07/01/11 / Approved: 07/01/11

Construction Status:

- * Construction NTP Date: Current Forecast: 12/19/11 / Approved: 12/19/11
- * The main Construction Phase has yet to be initiated. Construction costs to date reflect installation of coastal groundwater monitoring wells, construction of Zoo Well No. 5 improvements, and construction of test wells at South Sunset Playground, West Sunset Playground and Lake Merced Pump Station.

Major Issues/Potential Obstacles and Recommended Solutions:

* Reaching concurrence with the RPD on a new well station site and pipeline routes in Golden Gate Park. Additional meetings with RPD staff and resolution of well site/pipeline routes are anticipated in the next reporting quarter.

Schedule Variances:

* None at this time.

Cost Variances:

In accordance with the June 2009 Revised WSIP adopted by the SFPUC Commission on July 28, 2009, the baseline (approved) construction budget for this project was not changed.

* The \$4.7M variance between the Current Forecast Cost and the Approved Budget for the Construction Phase is due to revising the pipeline construction estimates based on increased lengths of pipeline routes and to the escalation associated with the extended environmental review period.

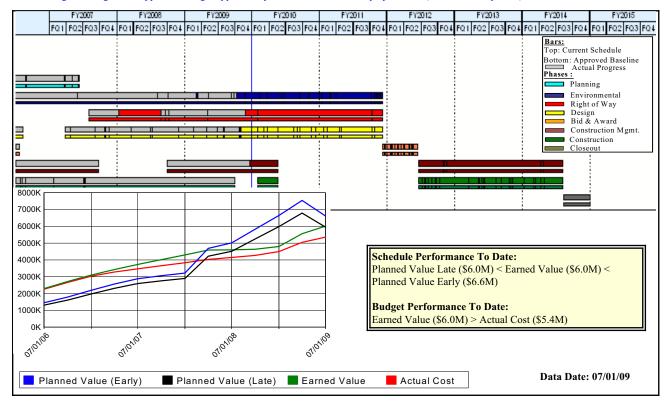
04 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 4

As of July 1, 2009

Title: CUW30102 - San Francisco Groundwater Supply

PE: Debra Temple, DPW PM: Jeff Gilman CM: Ben Leung Phone: 415-551-2952 EPM: Yin Lan Zhang AB1823: No PCE: JP Torres


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management	07/01/05	06/16/03	04/30/13	07/01/14	07/01/14	07/01/14
Planning	07/01/05	06/16/03	06/01/06	12/12/06	12/12/06	12/12/06 A
Environmental	07/01/05	07/01/05	05/05/09	06/07/11	06/07/11	06/07/11
Right-of-Way		02/02/07		06/09/11	06/10/11	06/09/11
Design	10/11/06	10/01/04	11/19/09	06/07/11	06/07/11	06/07/11
Bid and Award	11/20/09	04/18/05	05/18/10	12/16/11	12/16/11	12/16/11
Construction Management	05/19/10	08/15/05	11/13/12	02/06/14	02/06/14	02/06/14
Construction	05/19/10	08/15/05	11/13/12	02/06/14	02/06/14	02/06/14
Close-Out	11/15/12	02/07/14	04/30/13	07/01/14	07/01/14	07/01/14

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management	\$854,000	\$942,000	43.4	\$742,000	34.2	32.8	\$2,170,000	\$2,170,000	\$2,170,000
Planning	\$788,000	\$910,000	100.0	\$910,000	100.0	100.0	\$910,000	\$910,000	\$910,000
Environmental	\$599,000	\$724,000	42.7	\$393,000	22.2	31.2	\$1,771,000	\$1,771,000	\$1,771,000
Right-of-Way	\$0	\$21,000	14.4	\$0	0.0	2.6	\$145,000	\$145,000	\$145,000
Design	\$1,677,000	\$886,000	25.7	\$514,000	14.9	20.9	\$3,448,000	\$3,448,000	\$3,448,000
Bid and Award	\$88,000	\$0	0.0	\$0	0.0	0.0	\$50,000	\$50,000	\$50,000
Construction Management	\$1,707,000	\$396,000	8.4	\$396,000	8.4	8.4	\$4,725,000	\$4,725,000	\$4,725,000
Construction	\$18,760,000	\$2,735,000	11.7	\$2,399,000	9.5	11.7	\$25,366,000	\$30,082,000	\$30,082,000
Close-Out	\$42,000	\$0	0.0	\$0	0.0	0.0	\$115,000	\$115,000	\$115,000
Total:	\$24,513,000	\$6,614,000	18.1	\$5,355,000	13.8	16.4	\$38,700,000	\$43,417,000	\$43,417,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

As of July 1, 2009

Title: CUW30201 - San Francisco Westside Recycled Water

PM: Barbara Palacios CM: Ben Leung Phone: 415-554-0718 EPM: Scott MacPherson AB1823: No PCE: JP Torres

PROJECT STATUS:

Project Description:

This project consists of a new recycled water treatment facility at the western end of Golden Gate Park (the site of the former Richmond-Sunset Water Pollution Control Plant), along with the associated distribution system components to produce and deliver an annual average of approximately 2 mgd of recycled water to Golden Gate Park, Lincoln Park, and the SF Zoo. The proposed treatment scheme includes membrane filtration, reverse osmosis, and ultraviolet light disinfection. A 1.6 MG recycled water storage reservoir will be located underneath the treatment facility. Distribution pumping facilities will be located at the new facility, and will pump recycled water to the customers through approximately 5 to 6 miles of new pipelines. The project also includes the retrofitting of the existing irrigation systems to bring them in compliance with Title 22 regulations. The treatment facility includes additional capacity to serve potential future customers such as the Presidio Golf Course, although distribution system components to serve the Presidio are not part of the project scope.

Planning Status:

* SFPUC met with the Recreation & Park Department (RPD) in April 2009 to respond to their comments on the draft Project Scope Description. The Final Preliminary Project Scope Description was completed in June 2009.

Environmental Status:

- * The San Francisco Planning Department determined that this project requires an Environmental Impact Report (EIR). Right-of-Way Status:
- * This project requires no land entitlement actions and no encroachment removal actions.

Design Status:

- * Work on the 10% Design Report was initiated in May 2009.
- * Bid Advertisement Date: Current Forecast: 06/09/11 / Approved: 06/09/11

Construction Status:

- Construction NTP Date: Current Forecast: 11/21/11 / Approved: 11/21/11
- The Construction Phase has yet to be initiated.

Major Issues/Potential Obstacles and Recommended Solutions:

* In June 2009, the RPD raised concerns regarding the exact placement of the treatment facility within the Richmond-Sunset site, noting potential visual impacts from nearby recreational areas. Uncertainties in the siting of the facility could delay aspects of the 10% Design effort, if not addressed immediately. The SFPUC will work with RPD to develop a comprehensive site plan that addresses space needs for the new recycled water facility, the existing South Windmill groundwater well facility (to be converted to potable supply as part of the CUW30102 - San Francisco Groundwater Supply Project), and future recreational uses for the site.

Schedule Variances:

* None at this time.

Cost Variances:

None at this time.

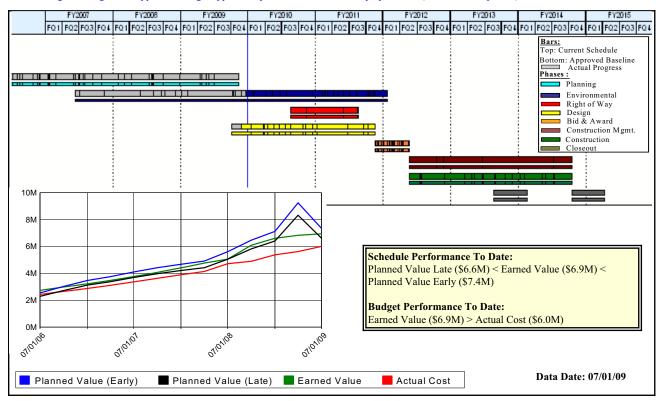
04 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 6

As of July 1, 2009

Title: CUW30201 - San Francisco Westside Recycled Water

PM: Barbara Palacios CM: Ben Leung
Phone: 415-554-0718 EPM: Scott MacPherson
AB1823: No PCE: JP Torres


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management	03/03/03	03/03/03	09/04/12	10/14/14	10/14/14	10/14/14
Planning	07/01/03	03/03/03	04/18/08	05/15/09	05/15/09	05/15/09 A
Environmental	10/14/03	12/12/06	02/27/09	07/22/11	07/22/11	07/22/11
Right-of-Way		02/18/10		02/14/11	02/14/11	02/14/11
Design	04/21/08	04/06/09	08/20/09	05/17/11	05/17/11	05/17/11
Bid and Award	08/21/09	05/18/11	02/26/10	11/18/11	11/18/11	11/18/11
Construction Management	07/14/06	11/21/11	03/01/12	04/15/14	04/15/14	04/15/14
Construction	07/14/06	11/21/11	03/01/12	04/15/14	04/15/14	04/15/14
Close-Out	03/02/12	02/21/13	09/04/12	10/14/14	10/14/14	10/14/14

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management	\$5,889,000	\$1,831,000	28.5	\$1,750,000	27.2	28.4	\$6,424,000	\$6,424,000	\$6,424,000
Planning	\$3,682,000	\$4,004,000	100.0	\$3,774,000	94.3	100.0	\$4,004,000	\$4,004,000	\$4,004,000
Environmental	\$2,813,000	\$747,000	42.4	\$405,000	21.5	24.3	\$1,880,000	\$1,880,000	\$1,880,000
Right-of-Way		\$0	0.0	\$0	0.0	0.0	\$127,000	\$127,000	\$127,000
Design	\$21,045,000	\$774,000	6.7	\$73,000	0.6	5.9	\$11,562,000	\$11,562,000	\$11,562,000
Bid and Award	\$328,000	\$0	0.0	\$0	0.0	0.0	\$150,000	\$150,000	\$150,000
Construction Management	\$16,474,000	\$0	0.0	\$0	0.0	0.0	\$10,174,000	\$10,174,000	\$10,174,000
Construction	\$150,595,000	\$0	0.0	\$0	0.0	0.0	\$91,215,000	\$91,215,000	\$91,215,000
Close-Out	\$510,000	\$0	0.0	\$0	0.0	0.0	\$386,000	\$386,000	\$386,000
Total:	\$201,334,000	\$7,356,000	6.3	\$6,002,000	4.8	5.9	\$125,923,000	\$125,923,000	\$125,923,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

AB1823: No

Quarterly Project Status Report

As of July 1, 2009

Title: CUW30202 - Recycled Water Project - Pacifica (Closed)

PM: Barbara Palacios Phone: 415-554-0718


CM: Ben Leung EPM: To Be Determined

PCE: JP Torres

PROJECT STATUS:

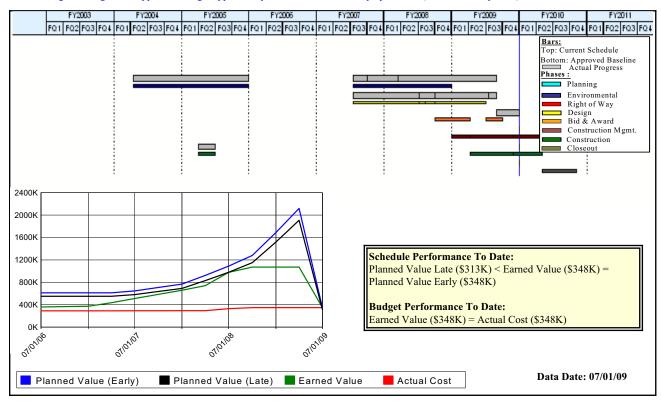
Project Description:

The SFPUC, in partnership with North Coast County Water District, is implementing the Pacifica Recycled Water Project. The primary project elements will include a pump station at the recycling plant, a 400,000 gallon above-ground storage tank, and approximately 17,000 feet of pipe up to 18 inches in diameter. The project will also include site retrofits necessary for the use of the recycled water. North Coast County Water District is responsible for the design, environmental review and construction of this project. This project was closed in October 2008. The final project expenditures have been actualized in this Quarterly Report. The project will be completed using funds from the Water Enterprise capital budget instead of the WSIP budget. (No change from the last Quarterly Report)

As of July 1, 2009

Title: CUW30202 - Recycled Water Project - Pacifica (Closed)

PM: Barbara Palacios
CM: Ben Leung
Phone: 415-554-0718
EPM: To Be Determined
AB1823: No
PCE: JP Torres


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management	07/01/03	10/13/03	02/09/06	05/07/10	01/12/11	06/30/09 A
Planning	07/01/03		10/10/03			
Environmental	10/03/03	10/13/03	01/31/05	07/01/08	02/27/09	02/27/09 A
Right-of-Way						
Design	07/01/05	01/15/07	02/09/06	12/31/08	02/27/09	02/27/09 A
Bid and Award		04/02/08		04/01/09	01/06/10	06/30/09 A
Construction Management		07/02/08		11/04/09	07/12/10	06/30/09 A
Construction	10/01/04	10/01/04	12/30/04	11/04/09	07/12/10	06/30/09 A
Close-Out		11/05/09		05/07/10	01/12/11	06/30/09 A

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management	\$25,000	\$58,000	100.0	\$58,000	100.3	100.0	\$58,000	\$58,000	\$58,000
Planning	\$0								
Environmental	\$153,000	\$153,000	100.0	\$153,000	100.0	100.0	\$153,000	\$153,000	\$153,000
Right-of-Way									
Design	\$0	\$25,000	100.0	\$25,000	100.2	100.0	\$25,000	\$25,000	\$25,000
Bid and Award		\$0	100.0	\$0	100.0	100.0	\$0	\$0	\$0
Construction Management		\$0	0.0	\$0	100.0	100.0	\$0	\$0	\$0
Construction	\$113,000	\$113,000	100.0	\$113,000	100.0	100.0	\$113,000	\$113,000	\$113,000
Close-Out		\$0	0.0	\$0	100.0	100.0	\$0	\$0	\$0
Total:	\$292,000	\$348,000	100.0	\$348,000	100.1	100.0	\$348,000	\$348,000	\$348,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

As of July 1, 2009

Title: CUW30204 - Harding Park Recycled Water

PM: Barbara Palacios CM: Ben Leung Phone: 415-554-0718 EPM: Antonia Fairbanks AB1823: No PCE: Mike Elwin

PROJECT STATUS:

Project Description:

The SFPUC, in partnership with the City of Daly City, is implementing the Harding Park Recycled Water Project. This project consists of providing the infrastructure needed to convey water supplied from the existing recycled water facility in Daly City (that is operated by the North San Mateo Sanitation District) to Harding Park. The project consists of approximately 4,700 feet of 18-inch pipe, a 700,000-gallon buried storage reservoir at the park, and two irrigation pumps. The golf course has already been retrofitted to accommodate the use of recycled water; however, some additional retrofits may be required at the park to meet regulatory requirements. The City of Daly City is the agency responsible for the design, environmental review and construction of this project.

Planning Status:

* The Planning Phase was completed on 10/07/08.

Environmental Status:

- * The City of Daly City has determined that this project requires an Environmental Impact Report (EIR).
- * The Administrative Draft EIR was issued in June 2009 for internal review.

Right-of-Way Status:

* This project requires no land entitlement actions and no encroachment removal actions.

Design Status:

- * The design team is currently working on the 95% design package, scheduled to be issued in August 2009.
- Bid Advertisement Date: Current Forecast: 11/10/09 / Approved: 11/10/09

Construction Status:

- * Construction NTP Date: Current Forecast: 04/06/09 / Approved: 04/06/09
- * The Construction Phase has yet to be initiated.

Major Issues/Potential Obstacles and Recommended Solutions:

The SFPUC has not been able to secure Phase I/Phase II design approval from the Civic Design Review Committee of the Arts Commission; this could lead to a delay in the completion of the final bid package. The SFPUC will schedule a follow-up meeting with members of the Civic Design Review Committee to better understand their concerns with the architectural design concept, and identify features/concepts that will gain Phase I/II/III design approval in July 2009.

Schedule Variances:

* None at this time.

Cost Variances:

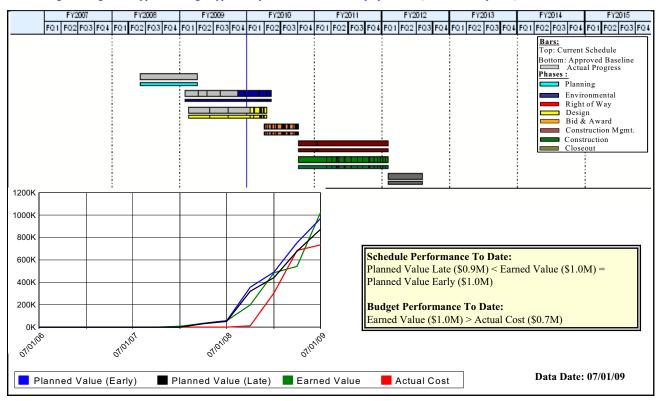
None at this time.

04 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

As of July 1, 2009

Title: CUW30204 - Harding Park Recycled Water

PM: Barbara Palacios
CM: Ben Leung
Phone: 415-554-0718
EPM: Antonia Fairbanks
AB1823: No
PCE: Mike Elwin


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management		12/03/07		02/03/12	02/03/12	02/03/12
Planning		12/03/07		10/07/08	10/07/08	10/07/08A
Environmental		08/01/08		11/10/09	11/10/09	11/10/09
Right-of-Way						
Design		08/18/08		10/16/09	10/16/09	10/16/09
Bid and Award		09/30/09		04/05/10	04/05/10	04/05/10
Construction Management		04/06/10		08/01/11	08/01/11	08/01/11
Construction		04/06/10		08/01/11	08/01/11	08/01/11
Close-Out		08/02/11		02/03/12	02/03/12	02/03/12

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management		\$132,000	35.2	\$68,000	18.3	32.7	\$374,000	\$374,000	\$374,000
Planning		\$0	100.0	\$0	100.0	100.0	\$0	\$0	\$0
Environmental		\$173,000	70.7	\$52,000	21.4	60.0	\$244,000	\$244,000	\$244,000
Right-of-Way									
Design		\$665,000	74.6	\$613,000	68.8	84.3	\$891,000	\$891,000	\$891,000
Bid and Award		\$0	0.0	\$0	0.0	0.0	\$50,000	\$50,000	\$50,000
Construction Management		\$0	0.0	\$0	0.0	0.0	\$1,634,000	\$1,634,000	\$1,634,000
Construction		\$0	0.0	\$0	0.0	0.0	\$6,398,000	\$6,398,000	\$6,398,000
Close-Out		\$0	0.0	\$0	0.0	0.0	\$19,000	\$19,000	\$19,000
Total:		\$969,000	10.7	\$734,000	7.6	11.3	\$9,612,000	\$9,612,000	\$9,612,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

As of July 1, 2009

CM: Ben Leung

Title: CUW30205 - San Francisco Eastside Recycled Water

PM: Barbara Palacios Phone: 415-554-0718 AB1823: No

EPM: To Be Determined PCE: Mike Elwin

PROJECT STATUS:

Project Description:

This project will plan and design a recycled water treatment facility (or facilities) and distribution system to produce and distribute tertiary recycled water to proposed non-potable water customers on the eastern side of the City of San Francisco. The project is in early planning stages and its scope will be further defined as planning efforts progress.

Planning Status:

* The Planning Phase has yet to be initiated.

Environmental Status:

* The Environmental Phase has yet to be initiated.

Right-of-Way Status:

* This project requires no land entitlement actions and no encroachment removal actions.

Design Status:

- * The Design Phase has yet to be initiated.
- * Bid Advertisement Date: Current Forecast: 05/03/13 / Approved: 05/03/13

Construction Status:

* The Construction Phase has yet to be initiated.

Major Issues/Potential Obstacles and Recommended Solutions:

* None at this time.

Schedule Variances:

* None at this time.

Cost Variances:

* None at this time.

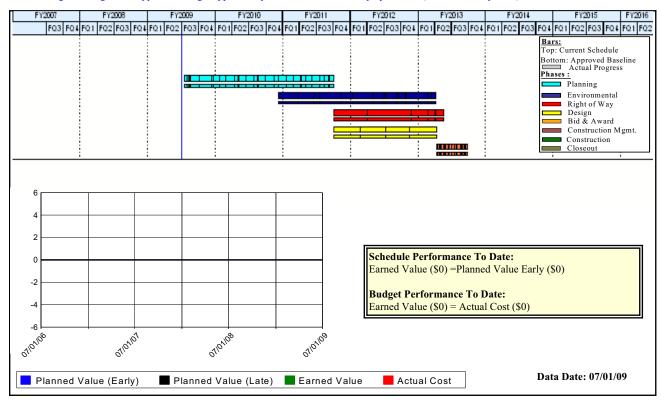
Q4 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 12

As of July 1, 2009

Title: CUW30205 - San Francisco Eastside Recycled Water

PE: To Be Determined PM: Barbara Palacios CM: Ben Leung Phone: 415-554-0718 EPM: To Be Determined AB1823: No PCE: Mike Elwin


SCHEDULE:

Project Status-Schedule:	Original Start	Approved Start	Original Finish	Approved Finish	Last Forecast	Current Forecast
Project Management		07/15/09		09/24/13		09/24/13
Planning		07/15/09		10/03/11		10/03/11
Environmental		12/08/10		04/08/13		04/08/13
Right-of-Way		10/04/11		05/20/13		05/20/13
Design		10/04/11		04/11/13		04/11/13
Bid and Award		04/12/13		09/24/13		09/24/13
Construction Management						
Construction						
Close-Out						

BUDGET:

Project Status - Budget & Expenditures:	Original Budget *	Planned Expenditure To Date	Planned % Complete	Expended to Date	Actual % Expended	Progress % Complete	Approved Budget *	Last Forecast	Current Forecast
Project Management		\$0	0.0	\$0	0.0	0.0	\$4,000,000		\$4,000,000
Planning		\$0	0.0	\$0	0.0	0.0	\$3,500,000		\$3,500,000
Environmental		\$0	0.0	\$0	0.0	0.0	\$2,500,000		\$2,500,000
Right-of-Way		\$0	0.0	\$0	0.0	0.0	\$250,000		\$250,000
Design		\$0	0.0	\$0	0.0	0.0	\$12,500,000		\$12,500,000
Bid and Award		\$0	0.0	\$0	0.0	0.0	\$150,000		\$150,000
Construction Management									
Construction									
Close-Out									
Total:		\$0	0.0	\$0	0.0	0.0	\$22,900,000		\$22,900,000

Note: * Original Budget and Approved Budget approved by the Commission at the project level (i.e. total of all phases).

As of July 1, 2009

Title: CUW39001 - SF Bay Area Desalination Plant (Closed)

PM: Manisha Kothari Phone: 415-554-3256 AB1823: No PE: To Be Determined CM: To Be Determined EPM: To Be Determined PCE: Deepa Rasalkar

PROJECT STATUS:

Project Description:

SFPUC, in partnership with EBMUD, Santa Clara Valley Water District (SCVWD), and Contra Costa Water District (CCWD), are investigating the feasibility of developing a joint desalination plant to meet some of the water needs in the agencies' service areas.

This project is currently on hold pending resolution of funding issues.

As of July 1, 2009

Title: CUW39001 - SF Bay Area Desalination Plant (Closed)

PM: Manisha Kothari Phone: 415-554-3256 AB1823: No PE: To Be Determined CM: To Be Determined EPM: To Be Determined PCE: Deepa Rasalkar

THIS PAGE IS LEFT BLANK.

Q4 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 15

Quarterly Project Status Report As of July 1, 2009

THIS PAGE IS LEFT BLANK.

Q4 - FY2008-2009 (04/05/09 - 07/01/09): Water Supply

Section 3.5 - Page 16

N.			+			00000	C C C C C C C C C C C C C C C C C C C	
Activity Name	Approved	Current	Variance	Current Late	lotal Float	FQ1 FQ2 FQ3 FQ4	4 FQ1 FQ2 FQ3 FQ4	FQ1 FQ2 FQ3 FQ4 FQ1 FC
CUW31301 Noe Valley Transmission Main, Phase 2								
Construction								
Construction Substantial Completion - Noe Valley	02-Apr-10	02-Apr-10	0	02-Apr-10	0		◆ Consti	Construction Substantial Completion - Noe Valley
Construction Final Completion - Noe Valley	07-Jun-10	07-Jun-10	0	07-Jun-10	0			Construction Final Completion - Noe Valley
CUW31501 East / West Transmission Main								
Project Milestones								
Project Completion	09-Mar-10	09-Mar-10	0	04-Dec-09	-63		◆ Project	◆ Project Completion
Construction								
Construction Substantial Completion - East / West	22-May-09	22-May-09A	0	08-Apr-09		*	· Gonstruction Substantial Completion - Hast / West	tion - East / West
Construction Final Completion - East / West	31-Jul-09	31-Jul-09	0	01-May-09	-63		◆ Construction Final Completion - East / West	tion - East / West
Miscellaneous	-		-	-				
CUW30301 Vehicle Service Facility Equipment Safety Upgrade	pgrade							
Project Milestones								
Project Completion	17-Feb-10	17-Feb-10	0	17-Feb-10	0		◆ Project Completion	ompletion
Construction								
Construction Substantial Completion - Vehicle Service Facility 21-Apr-09	y 21-Apr-09	21-Apr-09A	0	01-Jul-09		•	Construction Substantial Completion - Vehicle Service Facility	n - Vehicle Service Facility
Construction Final Completion - Vehicle Service Facility	12-Aug-09	12-Aug-09	0	12-Aug-09	0		◆ Construction Final Completion -	etion - Vehicle Service Facility
Water Supply								
CUW30101 Lake Merced Water Level Restoration								
Project Planning								
Submit Final CER - Groundwater Project A	01-Sep-09	01-Oct-09	-21	08-Oct-09	5		◆ Submit Final CER - G	Submit Final CER - Groundwater Project A
Environmental Review								
Submit Application - RWQCB 401 Certification - Groundwate 17-Sep-10	17-Sep-10	17-Sep-10	0	15-Jan-10	-170			Submit Application - RWQCB 401
Right of Way								
Identify ROW Requirements - Groundwater Project A	08-Sep-10	08-Sep-10	0	18-Feb-10	-141			◆ Identify ROW Requirements - Grou
Complete Assessment of ROW Requirements - Groundwater 1 08-Sep-10	08-Sep-10	08-Sep-10	0	18-Feb-10	-141			◆ Complete Assessment of ROW Req
Develop ROW Workaround Strategy - Groundwater Project A 08-Sep-10	08-Sep-10	08-Sep-10	0	14-Mar-11	125			◆ Develop ROW Workaround Strategy
Design								
Submit 35% Design for Review - Groundwater Project A	09-Jun-10	09-Jun-10	0	17-Jul-09	-223		•	Submit 35% Design for Review - Groundwa
Submit 65% Design for Review - Groundwater Project A	07-Sep-10	07-Sep-10	0	18-Dec-09	-180			◆ Submit 65% Design for Review - Gr
CUW30102 San Francisco Groundwater Supply								
Environmental Review								
Publish Draft EIR - Groundwater Project B	13-Jul-10	13-Jul-10	0	15-Jul-10	2			 Publish Draft EIR - Groundwater Project
Design								
Submit 35% Design for Review #1 - Lake Merced, S. Sunset,	29-Apr-09	29-Apr-09A	0	17-Jun-10		•	Submit 35% Design for Review #1	mit 35% Design for Review #1 - Lake Merced, S. Sunset, W. Sunset Well S
All Phase 1 Test Wells Complete #1 - Lake Merced, S. Sunset	31-Jul-09	31-Jul-09	0	16-Aug-10	260		◆ All Phase 1 Test Wells Complete	nplete #1 - Lake Merced, S. Sunset, W. Sun
35% Design - Arts Commission Phase 1 Review #1 - Lake Me 17-Aug-09	17-Aug-09	17-Aug-09	0	16-Aug-10	249		♦ 35% Design - Arts Comm	 ▶ 35% Design - Arts Commission Phase 1 Review #1 - Lake Merced, S
Submit 65% Design for Review #1 - Lake Merced, S. Sunset,	28-Aug-09	28-Aug-09	0	16-Aug-10	240		◆ Submit 65% Design for il	Submit 65% Design for Review #1 - Lake Merced, S. Sunset, W. Su
All Phase 2 Test Wells Complete #2 - 4th Well Stations & Pip 17-Nov-09	17-Nov-09	17-Nov-09	0	20-Nov-09	3		◆ All Phase 2 Test	◆ All Phase 2 Test Wells Complete #2 - 4th Well Stations & Pi
Submit 95% Design for Review #1 - Lake Merced, S. Sunset,	09-Feb-10	09-Feb-10	0	26-Jan-11	240		Submit 95	Submit 95% Design for Review #1 - Lake Merced, S.
			•	0				

1					40	100 E		00000	7	0,000
Activity Name		Approved	Forecast	variance	Current Late Date	lotal Float	FQ1 FQ2 FQ3 FQ4	FQ1	FQ1 FQ2 FQ3 FQ4	FQ1 FQ2
	Submit 65% Design for Review #2 - 4th & Additional Well St 19-May-10	19-May-10	19-May-10	0	29-Dec-10				4.2%	4th & A
	Submit 95% Design for Review #2 - 4th & Additional Well St 23-Jul-10	23-Jul-10	23-Jul-10	0	28-Apr-11	190			◆ Submit 95% Design for Review #2 - 4th	#2 - 4th
ō	CUW30201 San Francisco Westside Recycled Water									
	NTP - EIR Consultant	13-Apr-09	13-Apr-09A	0	12-Aug-09		\dot \text{SI}	◆ Issue NTP - EIR Consultant		
		25-Sep-09	25-Sep-09	0	03-Nov-09			◆ Submit 10% Design	 Submit 10% Design for Review - Recycled Water SF 	
		17-Feb-10	17-Feb-10	0	25-Mar-10	26		Submit	◆ Submit 35% Design for Review - Recycled Water SF	/ater SI
	Submit 65% Design for Review - Recycled Water SF	09-Jul-10	09-Jul-10	0	16-Aug-10				 Submit 65% Design for Review - Recycle 	Recyc
-FY2008	Q4-FY2008/2009 (04/05/09- 07/01/09)								Section 4 - Page 4 Publication Date: August 20, 2009	age 200
									COLD TO THE PROPERTY OF THE PARTY OF THE PAR	

APPENDIX E COST VARIANCE OF WSIP LOCAL PROJECTS

Projects	2009 Approved Budget	Current Forecast	Variance
CUW33301 - Mount Davidson Tank Seismic Upgrade	\$2,894,000	\$2,894,000	-
CUW33801 - La Grande Pump Station Upgrades	\$7,205,000	\$7,205,000	-
CUW33901 - Potrero Heights Pump Station Upgrades (Completed)	\$606,000	\$606,000	-
CUW34001 - Vista Francisco Pump Station Upgrades	\$6,951,000	\$6,951,000	-
Pipeline / Valves			
CUW30401 - North University Mound System Upgrade	\$12,850,000	\$12,850,000	-
CUW30801 - Key Motorized and Other Critical Valves (Completed)	\$10,985,000	\$10,985,000	-
CUW31101 - Sunset Circulation Improvements (Completed)	\$6,984,000	\$6,984,000	-
CUW31201 - Lincoln Way Transmission Line	\$13,950,000	\$13,950,000	-
CUW31301 - Noe Valley Transmission Main, Phase 2	\$7,382,000	\$7,382,000	-
CUW31501 - East / West Transmission Main	\$28,600,000	\$28,600,000	-
CUW31601 - Fulton @ Sixth Ave - 30" Main Replacement (Completed)	\$4,708,000	\$4,708,000	-
Miscellaneous			
CUW30301 - Vehicle Service Facility Equipment Safety Upgrade	\$4,461,000	\$4,461,000	-
CUW30501 - Fire Protection @ CDD (Completed)	\$1,675,000	\$1,675,000	-
Water Supply			
CUW30101 - Lake Merced Water Level Restoration	\$32,668,000	\$32,668,000	-
CUW30102 - San Francisco Groundwater Supply	\$38,700,000	\$43,417,000	\$4,717,000
CUW30201 - San Francisco Westside Recycled Water	\$125,923,000	\$125,923,000	-
CUW30202 - Recycled Water Project - Pacifica (Closed)	\$348,000	\$348,000	-
CUW30204 - Harding Park Recycled Water	\$9,612,000	\$9,612,000	-
CUW30205 - San Francisco Eastside Recycled Water	\$22,900,000	\$22,900,000	-
CUW39001 - SF Bay Area Desalination Plant (Closed)	\$938,000	\$938,000	-

Appendix E, Page 2 Publication Date: August 20, 2009

APPENDIX D SFPUC WATER SUPPLY AVAILABILITY STUDY (OCTOBER 2009)

FINAL Water Supply Availability Study for City and County of San Francisco

Prepared for:

San Francisco Public Utilities Commission Water Enterprise

October 2009

Prepared by:

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	Previous SFPUC Water Resource Studies	2
1.3	Study Outline	3
2.0	WATER SUPPLY	5
2.1	Water Rights	6
2.2	Current Water Supply Sources	7
2.3	Water System Improvements and New Supply Reliability	8
3.0	POTENTIAL IMPACT OF CLIMATE CHANGE ON SFPUC SUPPLY AVAILABILITY	15
4.0	DROUGHT PLANNING AND WATER SUPPLY RELIABILITY	17
4.1	Water Shortage Allocation Plan (WSAP)	18
4.2	Retail Water Shortage Allocation Plan	18
5.0	SAN FRANCISCO GROWTH PROJECTIONS AND WATER DEMAND ANALYSIS	21
5.1	Revised City of San Francisco Growth Projections	21
5.1.1	2009 Residential Projections	2
5.1.2	2009 Employment Projections	22
5.2	City of San Francisco Retail Water Demand Analysis	23
5.2.1	Water Demand of Projects and Incremental Growth	23
5.2.2	Water Demand of Non-Residential Employment Projections	25
5.2.3	SFPUC Total Retail System Demand	25
5.2.4	Potential Recycle Water Demand of the Projects	27
6.0	SUPPLY AND DEMAND COMPARISON	29
6.1	Supply and Demand Comparison	29
6.2	Conclusion and Findings	31
7.0	REFERENCES	33

APPENDICES

- A Growth Projections Letter from San Francisco Planning Department
- B Major Projects Water Demand Estimates from Project Sponsors

LIST OF TABLES

Table 2-1:	WSIP Water Supply Sources (mgd)	12
Table 2-2:	SFPUC Water Supplies 2010 - 2030	12
Table 4-1:	WSAP Allocation	18
Table 4-2:	2005 – 2030 SFPUC Retail Allocations in Normal, Dry and Multiple Dry Years	19
Table 5-1:	2030 SF Planning Projections for Households and Employment	21
Table 5-2:	Projects and Incremental Growth within San Francisco	22
Table 5-3:	Non-Residential Employment Projections	23
Table 5-4:	2030 Water Demand of the Projects and Incremental Growth within SF City and County (mgd)	24
Table 5-5:	Water Demand for Non-Residential Employment Projections	25
Table 5-6:	SFPUC Retail Demand (mgd)	26
Table 5-7:	Potential Recycled Water Demand of the Projects (mgd)	27
Table 6-1:	Projected Supply and Demand Comparison - Normal, Dry, and Multiple Dry Years (mgd)	30
LIST OF	FIGURES	
Figure 2-1:	Regional Water Supply System	5
Figure 2-2:	SFPUC Water Supplies	13

SUMMARY AND FINDINGS

Summary

In an effort to streamline the water supply planning process within the City and County of San Francisco (San Francisco or City), the San Francisco Public Utilities Commission (SFPUC) adopted a resolution in 2002 and 2006 to allow for all development projects requiring a Water Supply Assessment (WSA) under Water Code Section 10910 et seq. to rely solely on the adopted Urban Water Management Plan (UWMP) without having to go through the process of preparing individual WSAs. SB 610 provides a nexus between the regional land use planning process and the environmental review process. The core of this law is an assessment of whether available water supplies are sufficient to serve the demand generated by a project, as well as the reasonably foreseeable cumulative demand in the region over the next 20 years under a range of hydrologic conditions.

The San Francisco Planning Department (SF Planning) and the San Francisco Redevelopment Agency are currently engaged in planning for various proposed land development projects throughout San Francisco that go beyond those future developments considered in the 2005 UWMP update. As a result of these new developments, the SFPUC concluded that its 2005 UWMP no longer accounted for every project requiring a WSA (qualifying project) within San Francisco. Therefore, during this interim period until the 2010 UWMP is prepared, any qualifying projects not accounted in the 2005 UWMP will require preparation of a WSA per Water Code Sections 10910 – 10915 that considers the SFPUC's current and projected supplies when compared to projected demands associated with new growth not covered in the 2005 UWMP.

This Water Supply Availability Study (Study) was developed as an interim period study and follows the format of a WSA. The Study captures the most current water supply planning and demand information, analyzes the various projected change in water demands associated with each qualifying project within San Francisco, evaluates overall supply and demand, assesses the sufficiency of supply, and prepares a conclusion based on the analysis. Upon completion of the Study, a WSA for each qualifying project can rely on the information and conclusions of this Study.

Findings

The 2009 SF Planning projections result in a Retail demand in 2030 of 93.42 mgd (Section 5.0), which is only slightly greater than the 2030 demand estimates projected in the 2005 UWMP. This increase, however, does not change the results of the 2005 UWMP. The SFPUC can still meet the current and future demand of its Retail customers in years of average or above-average precipitation. During a multiple dry year event; however, it is possible that the SPFUC will not be able to meet 100 percent of the Retail demand in 2030. This Study shows the results of implementation of SFPUC's local supply reliability improvements under all hydrologic

¹ Multiple dry-year event is defined as a three-year hydrologic condition of below-normal rainfall per the Urban Water Management Planning Act.

conditions beginning in 2010 and extending to 2030. The ability to meet the demand of the Retail customers is in large part due to the development of 10 mgd of local supplies in the City through implementation of the Water Supply Improvement Program (WSIP). These addition sources of groundwater, recycled water, and conservation supplies are essential to provide the City with adequate supply in dry year periods, as well as improving supply reliability during years with normal precipitation.

In years with normal or above-normal precipitation, the City has sufficient supplies to serve its Retail customers. As shown in Table 6-1 (Section 6.0), the supply shortfall shown in 2010 is the result of reducing the Regional Water System (RWS) supply to 81 mgd per the condition of the Phased WSIP Variant, without full development of the additional 10 mgd of additional local supplies available in 2015. However, Retail demand is currently lower than projected 2010 demand of 91.81 mgd – demand in Fiscal Year 2007-2008 was 83.9 mgd.

During a multiple dry-year event as shown in Table 6-1, it is possible that the SFPUC will not be able to meet the full demands of its Retail customers in 2030, and will therefore have to impose reductions on its Retail supply. Under the Water Supply Allocation Plan (WSAP), Retail customers would experience no reduction in RWS deliveries within a 10 percent RWS shortage. However, during a 20 percent system-wide shortage, the Retail customers would experience a 1.9 percent reduction in Retail deliveries. This difference is due to the development of the additional 10 mgd of local supplies in the Retail service area. These additional local supplies are not subject to a reduction under the WSAP, as the WSAP only allocates water from the RWS.

The qualifying projects (Candlestick Point-Hunters Point Shipyard Phase II (CP-HPS II). Treasure Island-Yerba Buena Island (TI-YBI), and Parkmerced) anticipate developing new recycled water projects to help offset potable demand. These new projects could produce up to 1.5 mgd of recycled water. By reducing potable water demand through the use of recycled water, these projects have the ability to eliminate the City's overall water shortage during multiple dry year periods.

Regarding the availability of water supplies to serve the City, beginning in 2015 the SFPUC finds as follows:

- In years of average and above-average precipitation and including development of SFPUC's local WSIP water supply sources the SFPUC has adequate supplies to serve 100 percent of normal, single dry and multiple dry year demand up to 2030.²
- In multiple-dry-year events after 2030, when the SFPUC imposes reductions in its supply, the SFPUC has in place the WSAP and RWSAP to balance supply and demand.

The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).

- If recycled water is implemented as proposed at each of the major development project sites, then it is assumed that potable water demands for the City can decrease by up to 1.5 mgd; thereby, eliminating potential multiple dry-year deficit after 2030.
- With the WSAP and Retail Water Supply Allocation Plan (Section 4)in place, and the
 addition of local WSIP supplies, the SFPUC finds it has sufficient water available to
 serve the Retail customers including the demand of its Retail existing customers and
 planned future uses.

This page intentionally left blank.

1.0 INTRODUCTION

1.1 Purpose

In an effort to streamline the water supply planning process within the City and County of San Francisco (San Francisco or City), the San Francisco Public Utilities Commission (SFPUC) adopted a resolution in 2002 and 2006 to allow for all development projects requiring a Water Supply Assessment (WSA) under SB 610 to rely solely on the adopted Urban Water Management Plan (UWMP)³ without having to go through the process of preparing individual WSAs. SB 610 Water Code Section 10910 et seq. provides a nexus between the regional land use planning process and the environmental review process. The law also reflects the growing awareness of the need to incorporate water supply and demand analysis at the earliest possible stage in the land use planning process. The core of this law is an assessment of whether available water supplies are sufficient to serve the demand generated by a project, as well as the reasonably foreseeable cumulative demand in the region over the next 20 years under a range of hydrologic conditions.

The City of San Francisco Planning Department (SF Planning) and the San Francisco Redevelopment Agency are currently engaged in planning for various proposed land development projects that go beyond those future developments considered in the 2005 UWMP update. These developments, which include the Candlestick Point-Hunters Point Shipyard Phase II project (CP-HPS II), the Treasure Island-Yerba Island project (TI-TBI) and the Parkmerced project, hereinafter referred to as Projects, along with additional development throughout San Francisco account for 29,787 new dwelling units in 2030. As proposed, the Projects would contribute 27,400 new dwelling units to San Francisco's housing inventory. Additional development throughout the City accounts for the remaining 2,387 new dwelling units hereinafter referred to as Incremental Growth.

As a result of these new developments, the SFPUC concluded that its 2005 UWMP no longer accounted for every project requiring a WSA (qualifying project) within San Francisco. The SFPUC will not be preparing an updated UWMP until 2010. Therefore, during this interim period, any qualifying projects not accounted in the 2005 UWMP will require preparation of a WSA per Water Code Sections 10910 – 10915 that documents the SFPUC's current and projected supplies when compared to projected demands associated with new growth not covered in the 2005 UWMP.

The SFPUC determined that a WSA for the entire City and County service area, prepared pursuant to Water Code Sections 10910-10915, is the preferred method to evaluate supply and demands over a 20-year planning horizon. However, the Water Code Sections pertain to WSAs for qualifying projects, whereas the SFPUC needs a report to document its current and

³ California law requires that UWMPs be prepared and submitted in years ending with fives (5) and zeros (0). Pursuant to Water Code Section 10644(a), the SFPUC prepared and adopted its UWMP in 2005. The next UWMP is due prior to December 31, 2010.

projected supplies when compared to projected demands associated with new growth not covered in the 2005 UWMP. Therefore, this Water Supply Availability Study (Study) was developed and modeled on the format of a WSA. The Study captures the most current water supply planning and demand information, analyzes the various projected change in water demands associated with each qualifying project within San Francisco, evaluates overall supply and demand, assesses the sufficiency of supply, and prepares a conclusion based on the analysis. Upon completion of the Study, a WSA for each qualifying project can rely on the information and conclusions of this Study.

1.2 Previous SFPUC Water Resource Studies

In recent years, the SFPUC has been engaged in numerous water resource planning efforts focused on regional and local supplies options and demand management measures, which could potentially reduce the amount of water the SFPUC imports through the Regional Water System (RWS) to meet its Retail water demands. The current status of major local water supply planning efforts is summarized below:

- San Francisco Retail Water Demands and Conservation Potential: In November 2004, the SFPUC prepared the "City and County of San Francisco Retail Water Demands and Conservation Potential" study (Demand Report) to project SFPUC future Retail water demands through the year 2030. The study employed a disaggregated water use forecasting procedure, drawing from actual water use data, and reflects current and projected demographics and employment data, changes in use due to existing plumbing codes, and water use trends. The study also identified water savings and implementation costs associated with a number of water conservation measures. Much of the methodologies in the Demand Report became the backbone of the demand analysis used in the SFPUC's 2005 UWMP.
- **Groundwater Planning**: In April 2005, the SFPUC completed the Final Draft North Westside Basin Groundwater Management Plan (GWMP), which identified opportunities for increasing groundwater production in San Francisco.
- Recycled Water Master Plan Update: The SFPUC prepared the 2006 Recycled Water
 Master Plan for the City and County of San Francisco (RWMP). The plan provided
 guidance for San Francisco in the development of recycled water projects within the City
 and County. The 2006 RWMP included an assessment of potential recycled water users
 City-wide and focused on identifying future recycled water projects in the City.
- Urban Water Management Plan: The 2005 UWMP addressed SFPUC's Retail water needs and evaluated sources of water supply, described efficient uses of water, demand management measures, and implementation strategies. The projections in the UWMP employed the demand and conservation estimates contained in the Demand Report, and the potential for groundwater and recycled water developed in the aforementioned studies to help in meeting projected demands. For consistency with the UWMP demand

analysis, this Study used some of the same demand methodologies as presented in Section 5.2 of this Study.

- Sewer Master Plan: The SFPUC is preparing a Sewer System Master Plan (SSMP). The SSMP will present a long-term strategy for the management of the City's wastewater and storm water and identify capital improvements to be implemented over the next 25 to 30 years. The development of the SSMP will also incorporate proposed recycled water projects in the area. The identification and evaluation of potential wastewater management alternatives include an assessment of opportunities to implement recycled water projects to supply potential recycled water users identified in the 2006 RWMP. Environmental review of the Draft SSMP is anticipated to be complete in 2011.
- Diversifying Retail Water Supply Portfolios: In May 2006, the SFPUC prepared the "Diversifying San Francisco's Retail Water Supply Portfolio: Technical Memorandum". The study brought together planning data from existing planning projects, such as the North Westside Basin Groundwater Management Plan and the Recycled Water Master Plan, and summarized the potential local water supply options for San Francisco (including recycled water, groundwater, conservation and desalination projects). The memo also presented the implications of implementing different combinations of these local supply options, in terms of costs, ratepayer impacts and drought impact.
- Water System Improvement Program (WSIP): On October 30, 2008, SFPUC certified the
 Final PEIR for the WSIP, a multiple year, system-wide capital improvements program.
 Many aspects of the WSIP are rooted in the 2000 Water Supply Master Plan and various
 water system vulnerability studies. The WSIP investigated the potential options of
 developing local water resources such as water recycling, groundwater, desalination and
 improved conservation to meet SFPUC purchase requests or demands.

1.3 Study Outline

This Study is an assessment of whether available water supplies are sufficient to serve the SFPUC's existing and planned Retail water system future uses within San Francisco, including agricultural and manufacturing uses, over the next 20 years under a range of hydrologic conditions. This Study employs the same disaggregated water use forecasting procedures as the Demand Report but incorporates an update of the end-use numbers presented in the Demand Report based on updated housing and employment projections.

This document is divided into six sections as follows:

- 1. Introduction
- 2. Water Supply
- 3. Potential Impact of Climate Change on SFPUC Supply
- 4. Drought Planning and Water Supply Reliability

- 5. San Francisco Growth Projections and Water Demand Analysis
- 6. Supply and Demand Comparison and Conclusion

2.0 WATER SUPPLY

This section reviews San Francisco's existing and projected water supplies. The Regional Water System (RWS) is owned and operated by the City and County of San Francisco, under direction of the SFPUC. Historically, approximately 96 percent of the SFPUC's Retail water demands have been met through deliveries from the RWS. A small portion of San Francisco's water supply portfolio is produced through local groundwater and secondary treated recycled water. The groundwater is used primarily for irrigation at local parks and on highway medians. The recycled water is used mostly at municipal facilities for wastewater treatment process water, sewer box flushing and similar wash down operations.

In 1934, San Francisco combined the Hetch Hetchy system and Spring Valley system to create the SFPUC RWS. The rights to local diversions were originally held by the Spring Valley Water Company, which was formed in 1862.

The RWS currently delivers an annual average of approximately 265 mgd to 2.5 million users in Tuolumne, Alameda, Santa Clara, San Mateo, and San Francisco counties. The RWS is a complex system, shown in Figure 2-1, and supplies water from two primary sources:

- Tuolumne River through the Hetch Hetchy Reservoir, and
- Local runoff into reservoirs in Bay Area reservoirs in the Alameda and Peninsula watersheds.

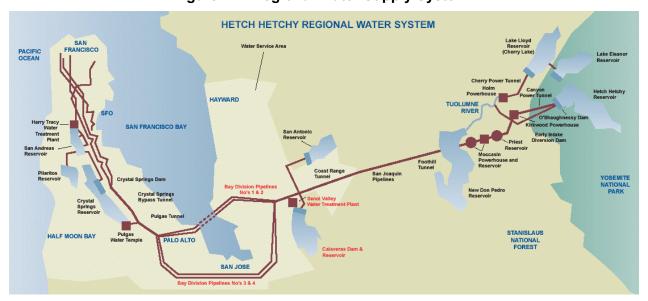


Figure 2-1: Regional Water Supply System

Water from Hetch Hetchy Reservoir, through the Hetch Hetchy facilities represents the majority of the water supply available to the SFPUC. On average, the Hetch Hetchy Project provides over 85 percent of the water delivered to the Bay Area. During droughts the water received from the Hetch Hetchy system can amount to over 93 percent of the total water delivered.

Bay Area reservoirs provide on average approximately 15 percent of the water delivered by the SFPUC RWS. The local watershed facilities are operated to conserve local runoff for delivery. On the San Francisco Peninsula, the SFPUC utilizes Crystal Springs Reservoir, San Andreas Reservoir, and Pilarcitos Reservoir to capture local watershed runoff. In the Alameda Creek watershed, the SFPUC constructed the Calaveras Reservoir and San Antonio Reservoir. In addition to capturing runoff, San Antonio, Crystal Springs, and San Andreas reservoirs also provide storage for Hetch Hetchy diversions. The local watershed facilities also serve as an emergency water supply in the event of an interruption to Hetch Hetchy diversions.

2.1 Water Rights

The City and County hold pre-1914 appropriative water rights to store and deliver water from the Tuolumne River in the Sierra Nevada and locally from the Alameda and Peninsula watersheds. The City and County also divert and store water in the San Antonio Reservoir under an appropriative water right license granted by the State Water Resources Control Board (SWRCB) in 1959.

Appropriative water rights allow the holder to divert water from a source to a place of use not connected to the water source. These rights are based on seniority and use of water must be reasonable, beneficial, and not wasteful. In 1914, California established a formal water rights permit system, which is administered by the SWRCB. The SWRCB has sole authority to issue new appropriative water rights but cannot define property rights created under a pre-1914 appropriative water right.

The 1912 Freeman Report identified the ultimate diversion rate from the Tuolumne River to the Bay Area as 400 mgd and the City used this as the basis for designing the export capacity of the Hetch Hetchy project. The City has sufficient water rights for current diversions and the ultimate planned diversion rate of the Hetch Hetchy Project.

The federal Raker Act, enacted on December 19, 1913, grants to the City certain rights-of-way and public land use on federal property in the Sierra Nevada Mountains to construct, operate and maintain reservoirs, dams, conduits and other structures necessary or incidental to developing and using water and power. It also imposes restrictions on the City's use of the Hetch Hetchy Reservoir, including (among others) the requirement that the City recognize the senior water rights of the Turlock and Modesto Irrigation Districts (TID and MID) to divert water from the Tuolumne River. Specifically, the Raker Act requires the City to bypass certain flows through its Tuolumne River reservoirs to TID and MID for beneficial use. By agreement, the City, TID and MID have supplemented these Raker Act obligations to increase the TID and MID entitlements to account for other senior Tuolumne River water rights and allow the City to "pre-pay" TID and MID their entitlement by storing water in the Don Pedro water bank. The

City is required to bypass inflow to TID and MID sufficient to allow them to divert 2,416 cfs or natural daily flow, whichever is less, at all times (as measured at La Grange), except for April 15 to June 13, when the requirement is 4,066 cfs or natural daily flow as measured at La Grange, whichever is less.

2.2 Current Water Supply Sources

2.2.1 The Regional Water System

The RWS, as described above, provides nearly 96% of San Francisco's Retail water supplies from the Hetch Hetchy Reservoir and local Bay Area reservoirs in the Alameda and Peninsula watersheds. On average, the Hetch Hetchy Reservoir provides over 85 percent of the water delivered and Bay Area reservoirs provide approximately 15 percent of the water delivered. The RWS delivers an annual average of 265 mgd – 81 mgd serves the Retail customers within the City and County of San Francisco and the other 184 mgd is delivered to the Wholesale suburban customers on the San Francisco Bay Peninsula.

2.2.2 Local Groundwater

San Francisco overlies all or part of seven groundwater basins. These groundwater basins include the Westside, Lobos, Marina, Downtown, Islais Valley, South and Visitation Valley basins. The Lobos, Marina, Downtown and South basins are located wholly within the City limits, while the remaining three extend south into San Mateo County. The portion of the Westside Basin aquifer located within San Francisco is commonly referred to as the North Westside Basin. With the exception of the Westside and Lobos basins, all of the basins are generally inadequate to supply a significant amount of groundwater for municipal supply due to low yield.

Early in its history, San Francisco made significant use of local groundwater, springs, and spring-fed surface water. However, after the development of surface water supplies in the Peninsula and Alameda watersheds by Spring Valley Water Company and the subsequent completion of the Hetch Hetchy Reservoir and aqueduct in the 1930's, the municipal water supply system has relied almost exclusively on surface water from local runoff, the Alameda and Peninsula watersheds, and the Tuolumne River watershed. Local groundwater use, however, has continued in the City primarily for irrigation purposes. The San Francisco Zoo and Golden Gate Park use groundwater for non-potable purposes.

About one mgd of groundwater is delivered to Castlewood Country Club from well fields operated by the SFPUC in Pleasanton and drawn from the Central Groundwater Sub Basin in the Livermore/Amador Valley. These wells are metered and have been in operation for several decades. For purposes of water accounting and billing, these deliveries to Castlewood are accounted for as part of San Francisco's Retail Customer base.

2.2.3 Local Recycled Water

From 1932 to 1981, San Francisco's McQueen Treatment Plant provided recycled water to Golden Gate Park for irrigation purposes. Due to changes in regulations the City closed the

McQueen plant and discontinued use of recycled water in Golden Gate Park. Currently in San Francisco, disinfected secondary-treated recycled water from the SFPUC's Southeast Water Pollution Control Plant is used on a limited basis for wash-down operations and is provided to construction contractors for dust control and other nonessential construction purposes. Current use of recycled water for these purposes in San Francisco is less than one mgd.

2.2.4 Local Water Conservation

The SFPUC is committed to demand-side management programs and San Francisco's per capita water use has dropped by about one-third since 1977 in part due to these programs. The first substantial decrease came following the 1976-77 drought in which gross per capita water use dropped from 160 to 130 gpcd. Despite continuous growth in San Francisco since then, water demands have remained lower than pre-drought levels.

A second substantial decrease in water use within San Francisco occurred as a result of the 1987-1992 drought when a new level of conservation activities resulted in further water use savings. It is anticipated that through the continuation and expansion of these programs, per capita water use will continue to decrease into the future. Current gross per capita water use within San Francisco is 91.5 gallons per capita per day (gpcd) with residential water use calculated to be approximately 57 gpcd, the lowest use of any major urban area in California.

The SFPUC's demand management programs range from financial incentives for plumbing devices to improvements in the distribution efficiency of the system. The conservation programs implemented by the SFPUC are based on the California Urban Water Conservation Council's list of fourteen Best Management Practices identified by signatories of the Memorandum of Understanding Regarding Urban Water Conservation in California, executed in 1991.

2.3 Water System Improvements and New Supply Reliability

To ensure that the future water needs of its Retail and wholesale customers will be met in a more reliable and sustainable manner, the SFPUC has undertaken water supply projects in the Water System Improvement Program (WSIP) to improve dry-year supplies, and is diversifying San Francisco's water supply portfolio through the development of local water supplies such as increasing recycled water and groundwater production, and bolstering water conservation. Many of the water supply and reliability projects evaluated in the WSIP were originally put forth in SFPUC's Water Master Plan (2000), then summarized in the 2005 UWMP and then investigated further in a Technical Memorandum Diversifying San Francisco's Retail Water Supply Portfolio (May 2006). In addition, specific water resource reports were prepared and released as well. Specifically, in 2005, SFPUC prepared a Recycled Water Master Plan, which updated the 1996 Recycled Water Master Plan and also prepared the North Westside Basin Groundwater Management Plan. Water supply elements of the WSIP are summarized below. The WSIP and its Program Environmental Impact Report are available for review at www.sfgov.org. Sections of the WSIP Phased Variant to support the summaries in this Study are appended hereto.

2.3.1 Water System Improvement Program and the Phased WSIP Variant

The WSIP is a multi-billion dollar, multi-year, capital program to upgrade the RWS. The program will deliver improvements that enhance the SFPUC's ability to provide reliable, affordable, high quality drinking water to its 27 wholesale customers and regional Retail customers in Alameda, Santa Clara, and San Mateo counties, and to 800,000 Retail customers in San Francisco, in an environmentally sustainable manner.

As required under CEQA, SF Planning prepared a Program Environmental Impact Report (PEIR) for the WSIP. The PEIR evaluated the potential environmental impacts of the proposed WSIP and identified potential mitigations to those impacts. The PEIR also evaluated several alternatives to meet the SFPUC service area's projected increase in water demand between now and 2030. The water supply improvement options investigated included 10 alternatives using various water supply combinations from the local watersheds; the Tuolumne and Lower Tuolumne; ocean desalination; and additional recycled water, groundwater, and conservation.

The PEIR was certified by the SF Planning Commission on October 30, 2008. On the same day the SFPUC adopted the Phased WSIP Variant option.

2.3.1.1. Phased WSIP Variant

At the request of the SFPUC, SF Planning studied the Phased WSIP Variant as part of the environmental analysis. The SFPUC identified this variant in order to consider a program scenario that involved full implementation of all proposed WSIP facility improvement projects to insure that the public health, seismic safety, and delivery reliability goals were achieved as soon possible, but phased implementation of a water supply program to meet projected water purchases through 2030. Deferring the 2030 water supply element of the WSIP until 2018 would allow the SFPUC and its wholesale customers to focus first on implementing additional local recycled water, groundwater, and demand management actions while minimizing additional diversions from the Tuolumne River.

The Phased WSIP Variant establishes a mid-term planning milestone in 2018 when the SFPUC would reevaluate water demands through 2030 in the context of then-current information, analysis and available water resources. The SFPUC currently delivers on an annual average approximately 265 million gallons of water per day from local watersheds (Peninsula and Alameda Creek) and the Tuolumne River Watershed. By 2030, demand on the SFPUC system is expected to increase to an annual average of 300 million gallons of water per day. The Phased WSIP Variant would meet the projected 2018 purchase requests of 285 mgd from the RWS by capping purchases from the watersheds at 265 mgd; the remaining 20 mgd would be met through water efficiencies and conservation, water recycling and local groundwater use—10 mgd by Wholesale Customers and 10 mgd in the City and County. Before 2018, the SFPUC and the Wholesale Customers will engage in a new planning process to reevaluate water system demands and supply options, including conducting additional studies and environmental reviews necessary to address water supply needs after 2018.

The Phased WSIP Variant includes the following key program elements:

- Full implementation of all WSIP facility improvement projects.
- Water supply delivery to RWS customers through 2018 only of 265 mgd average annual target delivery originating from the watersheds. This includes 184 mgd for the Wholesale Customers and 81 mgd for the Retail Customers.
- Water supply sources include: 265 mgd average annual from the Tuolumne River and local watersheds and 20 mgd of water conservation, recycled water and local groundwater developed within SFPUC's service area (10 mgd Retail; 10 mgd wholesale).
- Dry-year water transfers of 2 mgd coupled with the Westside Groundwater Basin Conjunctive Use Project.
- Re-evaluation of 2030 demand projections, potential RWS purchase requests and water supply options by December 31, 2018 and a separate SFPUC decision in 2018 regarding RWS water deliveries after 2018.
- The ability to impose financial penalties is included in the new Water Supply Agreement to limit water sales to an average annual of 265 mgd from the watersheds.

The additional 10 mgd of supplies produced in San Francisco by implementation of the WSIP are considered secure and have been included in this Study. This Study assumes the WSIP local supplies will be in place in the timeframes stated in the SFPUC WSIP, with this assumption total Retail supplies increase to 94.50 mgd in 2015 and remain constant over the 20-year planning horizon. Projects related to these efforts are detailed below.

2.3.2 Local Groundwater Projects

2.3.2.1. San Francisco Groundwater Supply Project

The San Francisco Groundwater Supply Project would provide up to 4 mgd of local groundwater water to improve reliability during drought or maintenance conditions, as well as ensure that a reliable, high-quality source of water is available in the case of an earthquake or other emergency. The project proposes the construction of up to six wells and associated facilities in the western part of San Francisco to extract up to 4 mgd of groundwater water from the Westside Groundwater Basin for distribution in the City. The extracted groundwater, which would be used both for regular and emergency water supply purposes, would be disinfected and blended in small quantities with imported surface water before entering the municipal drinking water system. The environmental review for this project will begin in November 2009.

2.3.2.2. Lake Merced Water Level Restoration Project

The goal of the Lake Merced Water Level Restoration Project is to protect and balance the beneficial uses of Lake Merced by providing a more stable water level regime using groundwater and stormwater, rather than supplies provided through the RWS.

2.3.3 Local Recycled Water Projects

The proposed Westside, Harding Park and Eastside Recycled Water Projects would provide up to 4 mgd of recycled water to a variety of users in San Francisco. Recycled water will primarily be used for landscape irrigation, toilet flushing and industrial purposes. The Harding Park Project has completed environmental review, and the Westside Project will begin environmental review in late 2009 or early 2010.

The proposed Westside Project would bring recycled water from the proposed recycled water treatment facility in Golden Gate Park to the San Francisco Zoo, Golden Gate Park, and Lincoln Park Golf Course. Recycled water would be used for irrigation at all three sites; additionally, it would be used for non-potable uses in Golden Gate Park at the California Academy of Sciences. The proposed Harding Park Recycled Water Project would use available recycled water from the North San Mateo County Sanitation District (NSMCSD) located in Daly City, to irrigate Harding Park and Fleming Park golf courses in San Francisco. The SFPUC has partnered with the NSMCSD for this proposed project.

Currently, the SFPUC is conducting a recycled water demand assessment on the Eastside of San Francisco. The assessment examines the potential uses of recycled water for irrigation, toilet flushing, and commercial applications. The WSIP contains funding for planning, design, and environmental review for the San Francisco Eastside Recycled Water Project.

2.3.4 Local Water Conservation

The SFPUC has also increased its water conservation programs in an effort to achieve new water savings by 2018. The SFPUC's conservation program is based on the Demand Study (Section 1.2) that identified water savings and implementation costs associated with a number of water conservation and efficiency measures. The Demand Study evaluated the costs and benefits of implementing 48 different conservation measures using an end-use model. The results indicated that local conservation programs implemented through 2030 could cumulatively reduce Retail purchases from the SFPUC RWS by 4.5 mgd in year 2030. These new conservation programs include high-efficiency toilet replacement in low-income communities, plumbing retrofits in compliance with the 1992 California plumbing code and water efficient irrigation systems in municipal parks. Through its conservation program, the SFPUC anticipates reducing gross per capita consumption from 91.5 gpcd to 87.4 gpcd by 2018 for an average daily savings of nearly 4.0 mgd.

2.3.5 Summary of Local WSIP Water Supply Programs

As previously discussed, SFPUC anticipates that the expanded groundwater and recycled water production, and increased conservation programs will provide the City with an additional 10 mgd of local water supplies. As quantified in Table 2-1 with implementation of the WSIP, SFPUC expects to have in these local supplies in place by 2015. These programs and projects are reliable in all hydrologic conditions and are not subject to RWSAP reductions or curtailments.

Table 2-1: WSIP Water Supply Sources (mgd)

WSIP Water Supplies	2010	2015	2020	2025	2030
Groundwater	0.0	2.0	2.0	2.0	2.0
Recycled Water	0.0	4.0	4.0	4.0	4.0
Conservation	0.0	4.0	4.0	4.0	4.0
Total WSIP Local Supplies	0.0	10.0	10.0	10.0	10.0

2.3.6 Total SFPUC Retail Water Supplies

Table 2-2 summarizes SFPUC's total water supplies now and over the 20-year planning period. In 2010, prior to the development of the 10 mgd of local supplies, SFPUC can access an annual average 84.50 mgd from all sources discussed above. Beginning in 2015, when the WSIP water supply sources are readily available, the SFPUC's Retail water supplies increase to 94.5 mgd. These supplies are assumed to be available in the quantities listed in Table 2-2. SFPUC intends to use these supplies to meet its Retail customer demands.

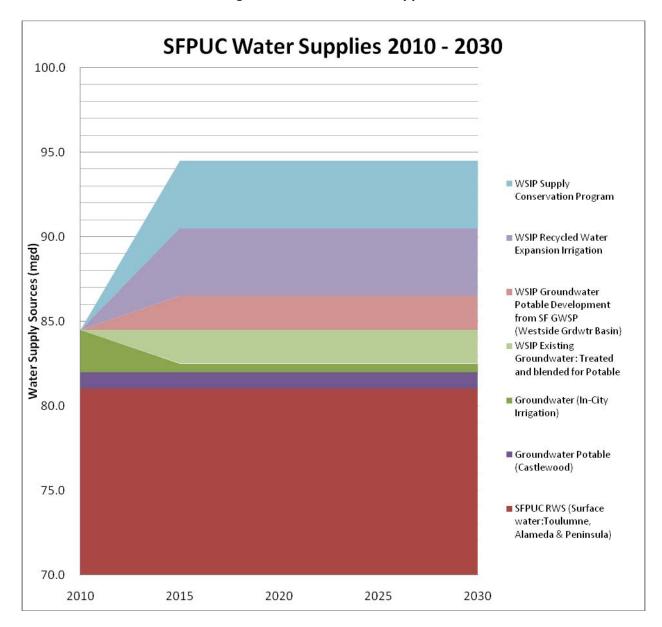
Table 2-2: SFPUC Water Supplies 2010 - 2030

Current Water Supply Sources	2010	2015	2020	2025	2030
SFPUC RWS (Surface water: Tuolumne River, Alameda & Peninsula) (1)	81.0	81.0	81.0	81.0	81.0
Groundwater Sources					
Groundwater (In-City Irrigation Purposes)	2.5 ⁽²⁾	0.5 ⁽³⁾	0.5 ⁽³⁾	0.5 ⁽³⁾	0.5 ⁽³⁾
Groundwater at Castlewood ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾	1.0 ⁽⁴⁾
Groundwater: Treated for Potable – Previously used for In-City					
Irrigation purposes ⁽⁵⁾	0.0	2.0	2.0	2.0	2.0
Groundwater Subtotal	3.5	3.5	3.5	3.5	3.5
Current Water Supply Subtotal	84.5	84.5	84.5	84.5	84.5
WSIP Water Supply Sources					
Groundwater Development: Potable from SF GWSP (Westside					
Groundwater Basin) ⁽⁶⁾	0.0	2.0	2.0	2.0	2.0
Recycled Water Expansion Irrigation ⁽⁷⁾	0.0	4.0	4.0	4.0	4.0
Supply Conservation Program	0.0	4.0	4.0	4.0	4.0
WSIP Supply Subtotal	0.0	10.0	10.0	10.0	10.0
Total Retail Supply (Current and WSIP Supplies)	84.5	94.5	94.5	94.5	94.5

⁽¹⁾ RWS surface water supplies are subject to reductions due to below-normal precipitation. This may affect dry year supplies - model shows supply reduction occurs in year 2 of multiple dry year event. (Source: SFPUC 2008 WSIP Phase Variant Supply limitation)

⁽²⁾ Groundwater serves irrigation to Golden Gate Park, SF Zoo, and Great Highway Median. (Source: 2005 SFPUC UWMP Table 8B page 43)

⁽³⁾ A Groundwater reserve of 0.5 mgd for irrigation purposes will remain as part of SFPUC's non-potable groundwater supply. (Source: SFPUC 2008 WSIP Phase Variant)


⁽⁴⁾ Castlewood current and projected use remains unchanged over 20 year planning horizon. (Source: 2005 SFPUC UWMP Table 8B page 43)

^{(5) 2.0} mgd of groundwater treated and blended for Potable water supply purposes. (Source: 2005 SFPUC UWMP Table 8B page 43)

^{(6) 2.0} mgd of new groundwater developed as part of the new local supply target. (Source: SFPUC 2008 WSIP Phase Variant Supply Target)

⁽⁷⁾ 2.0 mgd of Recycled used for irrigation at Golden Gate Park, SF Zoo, Great Highway Median, and 2.0 mgd for other non-potable purposes. (Source: SFPUC 2008 WSIP Phase Variant Supply Target)

Figure 2-1 is a graphical representation of the SFPUC's current supply sources and the WSIP local supply sources. As shown in Figure 2-2, the supplies grow from 84.5 mgd in 2010 to 94.5 mgd as the WSIP local supplies are brought into the SFPUC Retail supply system. The figure shows the total supplies increasing in 2015 and holding constant over the 20-year planning horizon.

Figure 2-2: SFPUC Water Supplies

2.3.7 Dry Year Water Supply Projects

The WSIP water supply program includes development of dry-year supplies for the RWS. The PEIR included an analysis of dry-year water supply transfers from the senior water rights holders on the Tuolumne River (MID and TID); a groundwater conjunctive use project; and a

regional desalination project. The latter two projects are described below. The SFPUC is investigating the possibility of a dry-year water transfer with MID and TID for 2 mgd in 2018. The WSIP provides funding for the Groundwater Storage and Recovery Project.

2.3.7.1. Groundwater Storage and Recovery Project

The proposed Regional Groundwater Storage and Recovery Project would balance the use of both groundwater and surface water to increase water supply reliability during dry years or in emergencies. The proposed project is located in San Mateo County and is sponsored by the SFPUC in coordination with its partner agencies, the California Water Service Company, City of Daly City and City of San Bruno. The partner agencies currently purchase wholesale surface water from the SFPUC and also independently operate groundwater production wells for drinking water and irrigation.

The proposed Regional Groundwater Storage and Recovery Project would extract groundwater from the South Westside Basin groundwater aquifer in San Mateo County. The project would consist of installing up to sixteen new recovery well facilities in northern San Mateo County to pump stored groundwater during a drought. During years of normal or heavy precipitation, the proposed project would provide surface water to the partner agencies in order to reduce the amount of groundwater pumped. Over time, the reduced pumping would result in the storage of approximately 61,000 acre-feet of water (more than the supply contained in the Crystal Springs Reservoir on the SFPUC Peninsula Watershed.) This would allow recovery of this stored water at a rate of up to 7.2 million gallons per day for a 7.5-year dry period. The water would be in compliance with the California Department of Public Health requirements for drinking water supplies. The proposed project would include construction of well pump stations, disinfection units, and piping. The proposed project is currently undergoing environmental review.

2.3.7.2. Desalination

The SFPUC's investigations of desalination as a water supply source have focused primarily on the potential for regional facilities. The proposed Bay Area Regional Desalination Project is a joint venture between the SFPUC, Contra Costa Water District, East Bay Municipal Utility District, and the Santa Clara Valley Water District.

The regional desalination project would provide an additional source of water during emergencies, provide a supplemental water supply source during extended droughts, allow other major water facilities to be taken out of service for maintenance or repairs, and increase supply reliability by providing water supply from a regional facility. The Bay Area Regional Desalination Project would have an ultimate total capacity of up to 65 mgd.⁴

⁴ EBMUD, "Desalination Project", http://www.ebmud.com/water_&_environment/water_supply/current_projects/desalination project/default.htm, accessed July 30, 2009.

3.0 POTENTIAL IMPACT OF CLIMATE CHANGE ON SFPUC SUPPLY AVAILABILITY

The issue of climate change has become an important factor in water resources planning in the State, and it is being considered during planning for the RWS. There is evidence that increasing concentrations of greenhouse gases have caused and will continue to cause a rise in temperatures around the world, which will result in a wide range of changes in climate patterns. Moreover, there is evidence that a warming trend occurred during the latter part of the 20th century and will likely continue through the 21st century. These changes will have a direct effect on water resources in California, and numerous studies on climate change have been conducted to determine the potential impacts water resources. Based on these studies, climate change could result in the following types of water resource impacts, including impacts on the RWS and associated watersheds:

- Reductions in the average annual snowpack due to a rise in the snowline and a shallower snowpack in the low- and medium-elevation zones, such as in the Tuolumne River basin, and a shift in snowmelt runoff to earlier in the year,
- Changes in the timing, intensity, and variability of precipitation, and an increased amount of precipitation falling as rain instead of as snow,
- Long-term changes in watershed vegetation and increased incidence of wildfires that could affect water quality,
- Sea level rise and an increase in saltwater intrusion,
- Increased water temperatures with accompanying adverse effects on some fisheries,
- Increases in evaporation and concomitant increased irrigation need, and
- Changes in urban and agricultural water demand.

However, other than the general trends listed above, there is no clear scientific consensus on exactly how global warming will quantitatively affect State water supplies, and current models of State water systems generally do not reflect the potential effects of global warming.

The SFPUC staff performed an initial evaluation of the effect on the Regional Water System of a 1.5-degree Celsius (°C) temperature rise between 2000 and 2025. The temperature rise of 1.5°C is based on a consensus among many climatologists that current global climate modeling suggests a 3°C rise will occur between 2000 and 2050 and a rise of 6°C will occur by 2100. The evaluation predicts that an increase in temperature of 1.5°C will raise the snowline approximately 500 feet every twenty-five years. The elevation of the watershed draining into Hetch Hetchy Reservoir ranges from 3,800 to 12,000 feet above mean sea level, with about 87 percent of the watershed area above 6,000 feet. In 2000 (a normal hydrologic year in the 82-year period of historical record), the average snowline in this watershed was approximately 6,000 feet during the winter months. Therefore, the SFPUC evaluation indicates that a rise in

temperature of 1.5°C between 2000 and 2025 will result in less or no snowpack between 6,000 and 6,500 feet and faster melting of the snowpack above 6,500 feet. Similarly, a temperature rise of 1.5°C between 2025 and 2050 will result in less or no snowpack between 6,500 and 7,000 feet and faster melting of the snowpack above 7,000 feet.

The SFPUC climate change modeling indicates that about 7 percent of the runoff currently draining into Hetch Hetchy Reservoir will shift from the spring and summer seasons to the fall and winter seasons in the Hetch Hetchy basin by 2025. This percentage is within the current interannual variation in runoff and is within the range accounted for during normal runoff forecasting and existing reservoir management practices. The additional change between 2025 and 2030 is not expected to be detectible. The predicted shift in runoff timing is similar to the results found by other researchers modeling water resource impacts in the Sierra Nevada due to warming trends associated with climate change.

Based on these preliminary studies and the results of literature reviews, the potential impacts of global warming on the RWS are not expected to affect the water system operations through 2030. SFPUC hydrologists are involved in ongoing monitoring and research regarding climate change trends and will continue to monitor the changes and predictions, particularly as these changes relate to water system operations and management of the RWS. The SFPUC has developed a workplan to further advance its research on the effects of climate change on the RWS.

4.0 DROUGHT PLANNING AND WATER SUPPLY RELIABILITY

The SFPUC water supply system reliability is expressed in terms of its ability to deliver water during droughts. Reliability is defined by the amount and frequency of water delivery reductions required to balance customer demands with available supplies in droughts. The SFPUC has a reliability goal of meeting dry-year delivery needs while limiting rationing to a maximum 20 percent system-wide reduction in water service during extended droughts.

The total amount of water the SFPUC has available to deliver to its Retail and wholesale customers during a defined period of time is dependent on several factors. These include the amount of water that is available to the SFPUC from natural runoff, the amount of water in reservoir storage, and the amount of water that must be released from the SFPUC's system for commitments to purposes other than customer deliveries, such as releases below Hetch Hetchy reservoir to meet the Raker Act and fishery purposes.

The SFPUC operates its system to optimize the reliability and quality of its water deliveries. Hetch Hetchy Reservoir operations are guided by two principal objectives: collection of Tuolumne River water runoff for diversion to the Bay Area; and fulfillment of the SFPUC's downstream release obligations. To conserve runoff, Hetch Hetchy Project reservoirs are drawn down beginning in early winter, relying on the recurrence and forecast of snow melt to guide drawdown releases. Similarly, the Regional Water System Bay Area reservoirs are operated to conserve watershed runoff. As such, reservoirs are drawn down during the winter period to capture storms and reduce the potential for spilling water out of the reservoirs. In the spring, excess Hetch Hetchy water supply (snowmelt) is transferred to three of the Bay Area reservoirs, capable of receiving the water, to fill any unused reservoir storage.

Prior to the late 1970's, droughts did not seriously affect the ability of the SFPUC to sustain full deliveries to its customers. However, as the 1987-1992 droughts progressed and reservoir storage continued to decline, it became apparent that continued full deliveries could not be sustained without the risk of running out of water before the drought ended.

To provide some level of assurance that water could be delivered continuously throughout a drought (although at reduced levels), the SFPUC adopted a drought planning sequence and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in SFPUC reservoirs. Each year, during the snowmelt period, the SFPUC evaluates the amount of total water storage expected to occur throughout the RWS. If this evaluation finds the projected total water storage to be less than an identified level sufficient to provide sustained deliveries during drought, the SFPUC may impose delivery reductions or rationing.

4.1 Water Shortage Allocation Plan (WSAP)

During a drought, it is expected that the Retail and wholesale customers would experience a reduction in the amount of water received from the RWS. The amount of this reduction has been dictated by existing contractual agreements between the SFPUC and the Wholesale Customers, as detailed in the existing WSAP. The WSAP provides specific allocations of available water between the Retail and wholesale customers collectively associated with different levels of system-wide shortages, as shown in Table 4-1.

Share of Available Water Level of System-Wide Reduction Wholesale Customers Share in Water Use Required **SFPUC Share** (collectively) 5% or less 64.5% 35.5% 6% through 10% 36.0% 64.0% 11% through 15% 37.0% 63.0% 16% through 20% 37.5% 62.5%

Table 4-1: WSAP Allocation

In addition to providing an allocation method, the plan also includes provisions for transfers, banking and excess use charges.

Under the WSAP, SFPUC Retail customers would experience no reduction in deliveries at a 10 percent shortage. However, during a 20 percent system-wide shortage, the Retail customers would experience a 1.9 percent reduction in Retail deliveries. This assumes the full development of the additional 10 mgd of local WSIP supplies in the Retail service area. These 10 mgd of local supplies are not subject to reduction under the WSAP as the WSAP only allocates water supplies from the RWS. Table 4-2 shows SFPUC RWS Retail supply schedule during normal, single dry year, and multiple dry year periods.

The WSAP has been carried forward in the new Water Supply Agreement for system-wide shortages of up to 20 percent. For shortages in excess of this amount, the Water Supply Agreement provides that the SFPUC may allocate water in its discretion.

4.2 Retail Water Shortage Allocation Plan

San Francisco's Retail Water Shortage Allocation Plan (RWSAP) was adopted to formalize a three-stage program of action to be taken in San Francisco to reduce water use during a drought. In accordance with the RWSAP, prior to the initiation of any water delivery reductions in San Francisco, whether it be initial implementation of reduction delivery or increasing the severity of water shortage, the SFPUC would outline a drought response plan that would address the following: the water supply situation; proposed water use reduction objectives; alternatives to water use reductions; methods to calculate water use allocations and adjustments; compliance methodology and enforcement measures; and budget considerations.

Table 4-2: 2005 – 2030 SFPUC Retail Allocations in Normal, Dry and Multiple Dry Years

	Single				Aultiple D	ry Year Eve	ent ⁽²⁾			
	Norma	al Year	Dry	Year	Ye	ar 1	Ye	ar 2	Υe	ear 3
	mgd	%	mgd	%	mgd	%	mgd	%	mgd	%
2010 ⁽¹⁾	81.0	100	81.0	100.0	81.0	100.0	79.5	98.1	79.5	98.1
2015	81.0	100	81.0	100.0	81.0	100.0	79.5	98.1	79.5	98.1
2020	81.0	100	81.0	100.0	81.0	100.0	79.5	98.1	79.5	98.1
2025	81.0	100	81.0	100.0	81.0	100.0	79.5	98.1	79.5	98.1
2030	81.0	100	81.0	100.0	81.0	100.0	79.5	98.1	79.5	98.1

⁽¹⁾ In 2010 the Retail allocation of RWS supply is reduced to 81 mgd to reflect the Retail allocation under the 2018 Phased WSIP Variant. 10 mgd of recycled water, groundwater, and conservation will be implemented by 2015 to make up for the loss in RWS supply. The 10 mgd of local supply is not subject to reduction under the WSAP.

Source: San Francisco Public Utilities Commission. 2005. Urban Water Management Plan for the City and County of San Francisco. p. 54-57 and discussions with SFPUC staff.

This drought response will be presented at a regularly scheduled SFPUC Commission meeting for public input. The meeting will be advertised in accordance with the requirements of California Water Code Section 6066 of the Government Code, and the public will be invited to comment on the SFPUC's intent to reduce deliveries.

Depending on the level of water demand and the desired objective for water use reduction, one, two or all three stages of the RWSAP may be required.

Stage 1 (Voluntary)

- System-wide demand reductions of 5-10 percent experienced
- Voluntary rationing request of customers
- Customers are alerted to water supply conditions
- Remind customers of existing water use prohibitions
- Education on, and possible acceleration of, incentive programs

Stage 2 (Mandatory)

- System-wide demand reductions of 11-20 percent experienced
- All Stage 1 actions implemented
- All customers receive an "allotment" of water based on the Inside/Outside allocation method (based on base year water usages for each account)
- Water use above the "allocation" level will be subject to excess use of flow restrictor devices and shut-off of water

Under the WSAP, the SFUPC Retail allocations at a 10 percent shortage are 85.86 mgd. However, due to the Phased WSIP Variant, only 81 mgd of RWS supply is shown. The remaining supply can be transferred from or to the Wholesale Customers under the terms of the Water Supply Agreement.

Stage 3 (Mandatory)

- System-wide demand reductions of 20 percent or greater experienced
- Same actions as in Stage 2 with further reduced allocations

5.0 SAN FRANCISCO GROWTH PROJECTIONS AND WATER DEMAND ANALYSIS

This section shows the calculated water demand projections for San Francisco based on recent housing and employment forecasts.

5.1 Revised City of San Francisco Growth Projections

The SFPUC has recently evaluated projected demands and incorporated the updated San Francisco Planning projections for residential and non-residential growth contained in a memorandum from SF Planning to SFPUC dated July 9, 2009 (Appendix A). This analysis results in a 2030 growth projection that differs from the 2005 UWMP. Table 5-1 compares 2030 growth projections between the 2005 UWMP and the 2009 growth projections developed by the SF Planning department. As shown in Table 5-1 new residential growth is expected to increase by 29,787 units. The 27,400 new residential units proposed in three Projects account for the majority of new residential growth in 2030. In contrast, the 2009 employment projections result in net loss of 47,300 new employment opportunities in 2030.

Table 5-1: 2030 SF Planning Projections for Households and Employment

Residential Units		2030 Projection
2005 UWMP ⁽¹⁾		373,513
2009 SF Planning Projections ⁽²⁾		403,300
	Net Change	29,787 ⁽³⁾
Non-Residential Population		2030 Projection
2005 UWMP ⁽⁴⁾		795,400
2009 SF Planning Projections ⁽⁵⁾		748,100

²⁰⁰⁵ Urban Water Management Plan residential projections were based on ABAG Projections 2002 and Citywide Policy Analysis and Planning, San Francisco Planning Department, Land Use Allocations 2002.

5.1.1 2009 Residential Projections

As stated previously, the SF Planning and the San Francisco Redevelopment Agency are currently engaged in planning for various proposed land development projects. These Projects,

^{(2) 2009} Residential Projections were developed by the San Francisco Planning Department and designed to closely match the recently adopted ABAG Projections 2009 target, but taking into account local knowledge of projects currently in various stages of the entitlement process, commonly referred to as the Development Pipeline. (Appendix A)

Of the new residential units the Projects account for 27,700 units and new incremental growth accounts for 2,387 units.

^{(4) 2005} Urban Water Management Plan non-residential projections were based on ABAG 2030 employment projections and linearly extrapolated for 2020 and 2030.

⁽⁵⁾ Revised 2009 Non-Residential Projections were developed by the San Francisco Planning Department and based on ABAG 2009 Employment projections for 2030. (Appendix A)

as well as Incremental Growth throughout San Francisco, account for 29,787 new dwelling units in 2030. As proposed, the Projects would contribute 27,400 new dwelling units to San Francisco's housing inventory. The Incremental Growth throughout the City accounts for the remaining 2,387 new dwelling units (Appendix B).

The updated 2030 City growth projection shown in Table 5-1 reflects an increase in residential households from the 2005 UWMP forecast but an overall decrease in non-residential (employment) population. As shown in Table 5-2, the residential growth at the Projects commences in 2015 with 6,850 new dwelling units and continues to grow to 27,400 in 2030, essentially growing by 6,850 over each five-year period. In addition, this Study also assumes that the incremental growth throughout San Francisco would occur in the same manner. As shown in Table 5-2, the incremental growth commences in 2015 with 597 new dwelling units and continues to grow to 2,387 in 2030, essentially growing by 597 over each five-year period.

Table 5-2: Projects and Incremental Growth within San Francisco

Residential Units	2010	2015	2020	2025	2030
Residential Units (1)	344,306	351,608	358,910	366,211	373,513
Residential Units for Projects ⁽²⁾	0	6,850	13,700	20,550	27,400
Residential Units for Incremental Growth ⁽³⁾	0	597	1,194	1,790	2,387
Subtotal (Projects and Incremental Growth)		7,447	14,894	22,340	29,787
Total New Residential Units	344,306	359,055	373,803	388,552	403,300

^{(1) 2005} UWMP residential unit projections shown in Table 5-1. Source: 2005 SFPUC UWMP Table 2, page 7

5.1.2 2009 Employment Projections

The updated 2030 City growth projection shown in Table 5-1 reflects an increase in residential households from the 2005 UWMP forecast but an overall decrease in non-residential (employment) population. These changes mirror the changes in the Association of Bay Area Governments (ABAG) projections. ABAG projections are used for various planning purposes by many of the cities in the nine-county area covered by ABAG. ABAG publishes regional projections and employment and growth every two years. Projections developed after 2002 incorporate a fundamental shift in ABAG's projection methodology. Rather than taking existing local land use policy as a given (as had previously been the case), in the projections following the 2002 projections, ABAG assumes that local policy will be amended in the future to adopt "smart growth" principles. Specifically, the projections assume that higher density growth will be focused in urban core areas, and that more housing will be produced in those areas, compared to that previously assumed. The result of these assumptions is to increase the expected population in already developed areas. Another difference reflected in the later projections is a more current and accurate reflection of the internet industry (dot com era), as well as the effect of the current recession on employment projections.

⁽CP-HPS II 10,500 units); (TI-YBI 8,000 units); (Parkmerced 8,900 total units)

⁽³⁾ Incremental Growth accounts for 2,387 new units.

Table 5-3 shows the progression of growth in employment opportunities forecasted in San Francisco based on SF Planning's 2009 Employment Projections (Appendix B). Beginning in 2015 employment is projected to increase to 719,145 jobs, and then by 2025 employment is expected to grow to 734,050 jobs. As projected, and shown in Table 5-3 employment in San Francisco is expected to reach 748,100 jobs.

Table 5-3: Non-Residential Employment Projections

Non-Residential Employment Projections	2010	2015	2020	2025	2030
SF Planning Employment Total ⁽¹⁾ (jobs)	712,145	719,447	726,749	734,050	748,100

⁽¹⁾ Table 5-1 2009 SF Planning Projections based on ABAG 2030 Employment projections

5.2 City of San Francisco Retail Water Demand Analysis

Retail water demands in the 2005 UWMP were based on the findings of the Demand Report. The Demand Report analyzed water demand associated with each Retail customer sector and then forecasted demand over a 25-year planning horizon using data provided by the City, and the SFPUC. The demand projections were developed using a water use model, which initially established a base-year water demand at the end-use level (such as toilets, showerheads, other lavatory hardware and household fixtures), calibrated the model to initial conditions, and forecasted future water demand based on projected demand of existing water service accounts and future population growth.

This Study updates the 2005 UWMP water demand forecasts in 2010 through 2030 to reflect San Francisco's three major development Projects (CP-HPS II, TI-YBI, and Parkmerced) and incremental growth projected to occur throughout the City, and the 2009 San Francisco non-residential planning projections (based on ABAG 2009 Employment Projections) for 2030. Tables 5-4 and 5-5 show the results of the demand forecasts at the Project sites; anticipated incremental growth expected to occur throughout the City and growth in demand generated through employment opportunities (jobs).

5.2.1 Water Demand of Projects and Incremental Growth

The Projects are proposed as mixed-use residential redevelopment projects within San Francisco. Each project sponsor provided land use plans or reports to the City that include residential unit counts, commercial spaces, and public facilities. These same plans and reports estimated potable water demand along with other land use information. Residential water demands for the Projects were provided to the City by the Project developers, and were developed using an end use model on a per-unit or per-employee basis. The Project demands were independently reviewed by PBS&J and the SFPUC as part of this Study, and appear consistent with the SFPUC demand estimates. See Appendix B for the methodology used in the Project demand estimates.

Upon buildout in 2030, these Projects represent the majority of new growth in San Francisco above the 2030 growth projected in the 2005 UWMP. As shown in Table 5-4, overall water demand at each of the Project sites is estimated at 1.99 mgd (CP-HPS II); 1.70 mgd (TI-YBI) and 0.98 mgd at Parkmerced. The CP-HPS II includes a number of different development scenarios, the estimated water demands of the three main CP-HPS II development scenarios are also shown in Table 5-2.

The Demand Report (see Section 1.2) analyzed water demands associated with each Retail customer sector and established per unit-use rates. As such, between 2010 and 2030, SFPUC used a per-unit use rate average of 98.7 gpd per household for multi-family residential demands. As shown in Table 5-4, the 98.7 gpd per household rate was applied to the incremental growth of 2,387 new dwelling units throughout the City resulting in a demand of 0.24 mgd in 2030.

Table 5-4: 2030 Water Demand of the Projects and Incremental Growth within SF City and County (mgd)

Projects and Incremental Growth ⁽¹⁾	Water Demand (mgd)					
	Stadium		R&D Variant		Housing Variant	
	Project Water Demand	Non- Residential Adjustment (1.18) ⁽⁷⁾	Project Water Demand	Non- Residential Adjustment (1.40) ⁽⁷⁾	Project Water Demand	Non- Residential Adjustment (1.15) ⁽⁷⁾
CP-HPS II ⁽²⁾	1.67	1.04	1.99	1.05	1.66	1.04
TI – YBI ⁽³⁾	1.70	1.17	1.70	1.17	1.70	1.17
Parkmerced ⁽⁴⁾	0.98	0.94	0.98	0.94	0.98	0.94
Projects Subtotal	4.38	3.16	4.67	3.16	4.34	3.16
Existing Demand at Project Sites ⁽⁵⁾	-1.51	-1.51	-1.51	-1.51	-1.51	-1.51
Net Development Subtotal	2.87	1.64	3.16	1.65	2.83	1.64
Other Growth in SF (City and County) ⁽⁶⁾	0.24	0.24	0.24	0.24	0.24	0.24
Net Change in Water Demand with Non- Residential Adjustment ⁽⁷⁾		1.88 ⁽⁷⁾		1.89 ⁽⁷⁾		1.88 ⁽⁷⁾

⁽¹⁾ Average annual demands. Residential water demands for the proposed projects were provided to the City by project developer. They were also developed using an end use model on a per unit or per employee basis. The developer demands were independently reviewed by PBS&J and the SFPUC as part of this Study, and appear consistent with the SFPUC demand estimates. (Appendix B)

⁽²⁾ CP-HPS Phase II Arup – Winzler & Kelly Water Demand Memo September 25, 2009 Appendix B

⁽³⁾ Treasure Island Technical Memo Section 7 August 2009. Appendix B

⁽⁴⁾ Parkmerced Water Demand Spreadsheet from August 2009 Appendix B

⁽⁵⁾ Existing demand provided by SFPUC from current billing records

⁶⁾ Derived by SFPUC staff based on approximately 2,387 dwelling units at 98.7 gpd. August 2009 Appendix X

⁽⁷⁾ To avoid double-counting the water demand associated with the 2009 SF Planning Non-Residential Employment Projections and the non-residential demand calculated in the developer estimates at each of the Project sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This study assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections.

For conservative water supply planning purposes, this Study uses the highest total water demand adjusted for non-residential uses⁵ of 1.89 mgd associated with the R&D Variant at CP-HPS II. The net change in demand accounts for existing uses at the project site and a non-residential demand adjustment.

5.2.2 Water Demand of Non-Residential Employment Projections

As shown above in Table 5-1, the SF Planning and ABAG projected new job growth in the San Francisco based on the employment changes in the San Francisco Bay Area as described in Section 5.1.1 above.

Demand projections for overall City growth were based on 2010-2030 average per-unit use factors of the Demand Report. The Demand Report analyzed water demands associated with each Retail customer sector and established per unit-use rates. As such, between 2010 and 2030, SFPUC used an average of 42.42 gallons per day (gpd) per employee for non-residential water demands. In an effort to represent the employment opportunities over the 20-year planning horizon this Study assumes that the non-residential employment sector would grow at a linear rate over the same planning period without accounting for market force influences and changes in local economics. As shown in Table 5-5, the 42.42 gpd per employee water demand rate was applied to the growth in jobs over the 20-year planning horizon. In 2015, demand is expected to be 30.52 mgd and by 2030, water demand generated through employment is expected to reach 31.73 mgd.

Table 5-5: Water Demand for Non-Residential Employment Projections

Employment Projections and Non-Residential Demand	2010	2015	2020	2025	2030
SF Planning Employment Total ⁽¹⁾ (jobs)	712,145	719,447	726,749	734,050	748,100
Non-Residential - Business/Industrial Demand ⁽²⁾ (mgd)	30.21	30.52	30.83	31.14	31.73

⁽¹⁾ Table 5-1 2009 SF Planning Projections

5.2.3 SFPUC Total Retail System Demand

The SFPUC incorporated the 2009 SF Planning projections for residential and non-residential growth in San Francisco into this Study to assess the results of the SF Planning projections and its effects on the City's water demand. The previous tables (5-3 and 5-4) along with demand data from the 2005 UWMP is incorporated in the City's total Retail demand. The results of these 2009 demand forecasts are shown in Table 5-6. The table represents the anticipated growth in demand commencing in 2010 and extending over the 20-year planning horizon to 2030.

⁽²⁾ Average of 42.42 gallons per day (gpd) per employee for non-residential water demands.

To avoid double-counting the water demand associated with the 2009 Non-Residential Planning Projections and the non-residential demand calculated in the developer estimates at each of the Project sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This study assumes all non-residential demand is accounted for in the 2009 Non-Residential SF Planning Projections. Table 5-2 shows the net change in water demand at the Project sites and the adjusted change in water demand without non-residential demand.

As shown in Table 5-6, incremental residential growth demand and demand at the Project sites commences in 2015 at 0.47 mgd and progresses to 1.89 mgd in 2030. In 2015, demand drops slightly due to a reduction in total residential demand. The non-residential demand commences in 2010 at 30.21 mgd, increases to 30.83 mgd and culminates at 31.73 in 2030.

Table 5-6 shows total Retail demands for SFPUC beginning in 2010 at 91.81, and then drops slightly in 2015 because of a drop in residential demand and then increases to 91.87 mgd in 2020. By 2030, Retail demand will be approximately 93.42 mgd.

Table 5-6: SFPUC Retail Demand (mgd)

Users, Facilities and Entities	Projected Water Demand (mgd)				
	2010	2015	2020	2025	2030
Residential Demand (Single & Multiple Family) ⁽¹⁾	44.70	43.80	43.20	42.90	42.90
New Residential Demand generated by Projects and Incremental Growth ⁽²⁾⁽⁴⁾	-	0.47	0.95	1.42	1.89
Subtotal	44.70	44.27	44.15	44.32	44.79
Non-Residential - Business/Industrial Demands (3,4)	30.21	30.52	30.83	31.14	31.73
Subtotal	74.91	74.79	74.97	75.46	76.52
Unaccounted-for System Losses	7.30	7.30	7.30	7.30	7.30
Subtotal	82.21	82.09	82.27	82.76	83.82
Other Retail Demands ⁽⁵⁾	4.90	4.90	4.90	4.90	4.90
Lawrence Livermore Laboratory; Groveland CSD ⁽⁶⁾	1.20	1.20	1.20	1.20	1.20
City Irrigation Demand ⁽⁷⁾	2.5	2.5	2.5	2.5	2.5
Castlewood Community Demand ⁽⁸⁾	1.0	1.0	1.0	1.0	1.0
Total Retail Demand	91.81	91.69	91.87	92.36	93.42

⁽¹⁾ Residential Demands (Source: 2005 SFPUC UWMP Table 8B, page 43)

⁽²⁾ See Table 5-4. Multiple Family – [In 2030 Incremental Growth of 0.24 mgd + (CP-HPS II 10,500 DU) 1.04 mgd + (TI-YBI 8,000 DU) 1.17 mgd + (Parkmerced 8,900 total DU) 0.94 mgd = 3.40 mgd] Existing Demand is 1.51 mgd at all sites. [3.40 mgd – 1.51 = 1.89 mgd] as shown in Table 4-2 (Sources: ARUP Water Demand Memo for CP-HPS Phase II September 25, 2009; Parkmerced Water Demand Spreadsheet June 30, 2009; Treasure Island Water Technical Report December 2008 Updated August 2009)

⁽³⁾ See Table 5-5. Agriculture, Mining, Construction, Manufacturing, Transportation, Wholesale & Retail Trade, F.I.R.E., Services, Gov't including Builders – Contractors and Docks – Shipping. (Source: Adapted from 2009 ABAG Employment Projections in conjunction with SF Planning, July 2009) As developed in the Demand Study, SFPUC derived the employment water demands by taking the ABAG employment projections and multiplying by 42.42 gallons per employee per day and is consistent with SFPUC's demand projection methodology.

See Table 5-5. Non-residential (jobs/employment) demands at major project sites were assumed to be contained in the 2009 ABAG Employment projections. Growth in demand is incrementally increased to reflect the growth in jobs over the 20-year planning horizon. To avoid double-counting the water demand associated with the 2009 SF Planning Non-Residential Employment Projections and the non-residential demand calculated in the developer estimates at each of the Project sites, the total water demand at each of the developments was adjusted to remove the non-residential demands. This study assumes all non-residential demand is accounted for in the 2009 SF Planning Non-Residential Employment Projections. Table 5-4 shows the net change in water demand at the Project sites and the adjusted change in water demand without non-residential demand. Adapted by PBS&J and SFPUC September 2009 from ARUP Water Demand Memo for CP-HPS Phase II September 25, 2009; Parkmerced Water Demand Spreadsheet June 30, 2009; Treasure Island Water Technical Report December 2008 Updated August 2009

⁽⁵⁾ US Navy, SF International Airport, and other suburban/municipal accounts. (Source: 2005 SFPUC UWMP Table 8B, page 43)

Lawrence Livermore Laboratories (0.8 mgd); Groveland CSD (0.4 mgd) (Source: 2005 SFPUC UWMP Table 8B, page 43)

⁽⁷⁾ City Irrigation at Golden Gate Park, Great Highway Median and SF Zoo. (Source: 2005 SFPUC UWMP Table 8B, page 43)

⁽⁸⁾ Castlewood Community demand served by wells in the Pleasanton well field. (Source: 2005 SFPUC UWMP Table 8B, page 43)

5.2.4 Potential Recycle Water Demand of the Projects

In addition to providing estimated potable water demands, each of the Projects also provided the City with estimated recycled water demands. Each of the Projects anticipates developing new recycled water projects to help offset potable demand. As shown in Table 5-7, the Projects may produce up to 1.49 or 1.5 mgd of recycled water.

Table 5-7: Potential Recycled Water Demand of the Projects (mgd)

Developmo	Development Recycled Water Demand ⁽¹⁾ (mgd)		
CP-HPS II		0.89	
TI-YBI		0.38	
Parkmerced		0.22	
	Total	1.49	

Notes: Average annual recycled water demand.

The recycled water potential shown in Table 5-7 is considered additional recycled water sources and have not been included as part of SFPUC's local WSIP supplies. In the event that recycled water is produced at the Project sites, recycled water could offset as much as 1.5 mgd in total City potable demand. This Study provides a conservative analysis of SFPUC's Retail supplies and demands and, as such, evaluates the City's demands to include the proposed projects without recycled water.

Sources: ARUP Water Demand Memo for CP-HPS Phase II September 25, 2009; Parkmerced Water Demand Spreadsheet June 30, 2009; Treasure Island Water Technical Report December 2008 Updated August 2009. Appendix B

Water Supply Availability Study

This page intentionally left blank.

6.0 SUPPLY AND DEMAND COMPARISON

This section compares the SFPUC's Retail water supplies and demands through year 2030.

6.1 Supply and Demand Comparison

Table 6-1 compares SFPUC Retail supplies and demand during normal, single dry year, and multiple dry year periods. Section 2.3.6 discusses SFPUC's total water supplies now and over the 20-year planning period. In 2010, prior to the development of the 10 mgd of local supplies, SFPUC can access an annual average 84.50 mgd from all water supply sources. Beginning in 2015, when the WSIP water supply sources are readily available, the SFPUC's Retail water supplies increase to 94.5 mgd. These supplies are assumed to be available in the quantities listed in Table 6-1. SFPUC intends to use these supplies to meet its Retail customer demands.

The demand estimates in this Study show that the 2009 SF Planning projections result in an increase in City Retail demand. As stated previously, by 2030 Retail demand is estimated at 93.42 mgd. This increase, however, does not change the findings in the 2005 UWMP, which estimated demand at 93.4 mgd in 2030.⁶ As shown in Table 6-1, the SFPUC can meet the current and future demands of its Retail customers in normal years, single dry-years and nearly all multiple dry-year events with the exception of years 2 and 3 in 2030.

As modeled in Table 6-1, the deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd as per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. It is expected that 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (Fiscal Year 2007-2008 use was 83.9 mgd). If Retail demand exceeds the available RWS supply of 81.0 mgd between 2010 and 2015, and total RWS deliveries exceed 265 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water with the payment of an Environmental Surcharge. Notably, total RWS deliveries in Fiscal Year 2007-2008 were 256.7 mgd, which is 8.3 mgd below the 265 mgd watershed delivery goal.

As shown in Table 6-1, during a multiple dry-year event⁷ commencing in 2030, it is possible that the SFPUC will not be able to meet 100 percent of Retail demand in 2030. As modeled, a supply shortfall of 0.42 mgd is anticipated to occur in the second and third year of a multiple dry-year event. To overcome the potential 0.42 mgd supply deficit during multiple dry-years in 2030, the SFPUC will implement their adopted drought planning sequence and associated operating procedures that trigger different levels of water delivery reduction rationing relative to the volume of water actually stored in SFPUC reservoirs. If the SFPUC determines the projected total water storage to be less than an identified level sufficient to provide sustained deliveries during drought, the SFPUC may impose delivery reductions or rationing. The WSAP and RWSAP allow the SFPUC to reduce water deliveries to customers during periods of water shortage to

⁶ SFPUC 2005 Urban Water Management Plan Table 8B, page 43.

Multiple dry-year events are defined as a three-year event per UWMP requirements. SFPUC determined that a multiple dry-year event is years 2-4 of SFPUC's 8.5 year design drought. SFPUC can meet 100 percent of deliveries in the first year of such an event.

achieve a positive balance of supplies and demands. Under WSAP, the RWS supply curtailment in multiple dry years of 1.5 mgd to 79.5 mgd, results in a 1.9 percent reduction as shown in Table 4-2. The SFPUC, as part of the WSIP, adopted a water reliability objective of no greater than 20 percent rationing in any one year of a drought.

Table 6-1: Projected Supply and Demand Comparison - Normal, Dry, and Multiple Dry Years (mgd)

				Multipl	e Dry Year Eve	nt
	Retail Supply and Demand	Normal Year	Single Dry Year	Year 1	Year 2	Year 3
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
0	Groundwater Supply ⁽²⁾	3.50	3.50	3.50	3.50	3.50
2010	Total Retail Supply ⁽³⁾	84.50	84.50	84.50	83.00	83.00
7	Total Retail Demand ⁽⁴⁾	91.81	91.81	91.81	91.81	91.81
	Surplus/(Deficit) ⁽⁵⁾	-7.31	-7.31	-7.31	-8.81	-8.81
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2015	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
70	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	91.69	91.69	91.69	91.69	91.69
	Surplus/(Deficit)	2.81	2.81	2.81	1.31	1.31
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2020	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	91.87	91.87	91.87	91.87	91.87
	Surplus/(Deficit)	2.63	2.63	2.63	1.13	1.13
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2025	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
70	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	92.36	92.36	92.36	92.36	92.36
	Surplus/(Deficit)	2.14	2.14	2.14	0.64	0.64
	RWS Supply ⁽¹⁾	81.00	81.00	81.00	79.50	79.50
	Groundwater ⁽⁶⁾	3.50	3.50	3.50	3.50	3.50
2030	WSIP Supply Sources ⁽⁷⁾	10.00	10.00	10.00	10.00	10.00
20	Total City Supply ⁽³⁾	94.50	94.50	94.50	93.00	93.00
	Total Retail Demand ⁽⁴⁾	93.42	93.42	93.42	93.42	93.42
(1)	Surplus/(Deficit)	1.08	1.08	1.08	-0.42 ⁽⁸⁾	-0.42 ⁽⁸⁾

⁽¹⁾ RWS Supply (SFPUC Water Supplies Table 2-2)

⁽²⁾ Groundwater Uses for In-City Irrigation and Castlewood (SFPUC Water Supplies - Table 2-2)

⁽³⁾ Total Retail Supply (SFPUC Water Supplies Table 2-2)

⁽⁴⁾ SFPUC Retail Demand (SFPUC Retail Demand Table 5-6)

⁽⁵⁾ The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).

⁽⁶⁾ Groundwater Supplies at Castlewood and In-City Irrigation (SFPUC Water Supplies Table 2-2)

WSIP Supply Sources (Recycled Water (4.0 mgd; Groundwater (2.0 mgd Existing and 2.0 from NWGWP, and WSIP Water Efficiency and Conservation (4.0 mgd) (see SFPUC Water Supplies Table 2-2)

⁽⁸⁾ Deficit occurs in year 2 and 3 of multiple dry year event, SFPUC implements its Drought Year Water Shortage Contingency Plans - RWSAP and WSAP to balance supply and demand under this projected shortfall as described in Section 4.0

6.2 Conclusion and Findings

The updated 2009 SF Planning projections results in a Retail demand in 2030 of 93.42 mgd, which is only slightly greater than the 2030 demand projections estimated in the 2005 UWMP. This increase, however, does not change the results of the 2005 UWMP. In years with normal or above-normal precipitation, the City has sufficient supplies to serve their Retail customers.⁸ The ability to meet the demands of the Retail customers is in large part due to the development of 10 mgd of local WSIP supplies in the Retail service area. These new sources of groundwater, recycled water, and water conservation are essential to provide the City with adequate supply in dry year periods, as well as improving supply reliability during years with normal precipitation. Although the 2005 UWMP considered the 10 mgd of new WSIP sources in terms of system-wide drought-planning, the WSIP supplies were not assigned to either the Retail or Wholesale Customers directly as it was not known how the resources would be used. As presented in this Study, with the adoption of the Phased WSIP Variant, the WSIP supplies can now be applied to meet Retail demands. In addition, due to the nature and development of the local supplies, these WSIP supply sources are not subject to reduction under the WSAP.

During a multiple dry-year event, however, it is possible that the SFPUC will not be able to meet 100 percent of demand from its Retail customers in 2030, and will therefore have to impose reductions on its Retail supplies. Under the WSAP, SFPUC Retail customers would experience no reduction in deliveries at a 10 percent RWS shortage. However, during a 20 percent systemwide shortage, the Retail customers would experience a 1.9 percent reduction in Retail deliveries. Table 6-1 compared SFPUC Retail supplies during normal, single dry year, and multiple dry year periods. The main difference between 2010 and subsequent planning years (2015–2030) is due to the development of the additional 10 mgd of local WSIP supplies in the Retail service area. These WSIP local supplies are not subject to a reduction under the WSAP, as the WSAP only allocates water from the RWS, which is subject to reductions.

The Projects anticipate developing new recycled water projects to help offset potable demand. These new projects may produce up to 1.5 mgd of recycled water. By reducing their potable water demands through the use of recycled water, these projects have the ability to eliminate the City's overall water shortage during multiple dry year periods.

31

The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).

Regarding the availability of water supplies to serve the City, beginning in 2015 the SFPUC finds as follows:

- In years of average and above-average precipitation and including development of SFPUC's local WSIP water supply sources the SFPUC has adequate supplies to serve 100 percent of normal, single dry and multiple dry year demand up to 2030.⁹
- In multiple-dry-year events after 2030, when the SFPUC imposes reductions in its supply, the SFPUC has in place the WSAP and RWSAP to balance supply and demand.
- If recycled water is implemented as proposed at each of the major development project sites, then it is assumed that potable water demands for the City can decrease by up to 1.5 mgd; thereby, eliminating potential multiple dry-year deficit after 2030.
- With the WSAP and RWSAP in place, and the addition of local WSIP supplies, the SFPUC finds it has sufficient water supplies available to serve its existing Retail customers and planned future uses.

32

The deficit shown in 2010 is the result of reducing the RWS supply to 81 mgd per the Phased WSIP Variant, without full development of the additional 10 mgd of new WSIP supplies. 10 mgd of new sources will be developed and available for use in San Francisco by 2015. However, Retail demand is currently lower than the 2010 projected demand (FY 07/08 use was 83.9 mgd). If Retail demand exceeds the available supply of 84.5 mgd between 2010 and 2015, the Water Supply Agreement allows the SFPUC to purchase additional water from the RWS. If combined Retail and Wholesale RWS deliveries exceed 265 mgd, the SFPUC Retail customers would be required to pay an Environmental Surcharge for RWS deliveries over 81 mgd (Total RWS deliveries in FY07/08 were 256.7 mgd).

7.0 REFERENCES

Department of Water Resources. *Groundwater Management – Court Adjudications.* http://www.water.ca.gov/groundwater/gwmanagement/court_adjudications.cfm

ESA and Orion. October 2008. Final Program Environmental Impact Report for the San Francisco Public Utilities Commission Water System Improvement Program. Prepared for the City and County of San Francisco Planning Department.

San Francisco Public Utilities Commission. 2008. Water System Improvement Program.

San Francisco Public Utilities Commission. April 2000. Water Supply Master Plan.

San Francisco Public Utilities Commission. 2005. *Urban Water Management Plan for the City and County of San Francisco*.

San Francisco Public Utilities Commission. 2004. *City and County of San Francisco Retail Water Demands and Conservation Potential*.

Water Supply Availability Study

This page intentionally left blank.

APPENDICES

- **Growth Projections Letter from San Francisco Planning Department Major Projects Water Demand Estimates from Project Sponsors** Α
- В

July 9, 2009

Michael P. Carlin Deputy General Manager, SFPUC 1155 Market St, 11th Floor San Francisco, CA 94103

Subject: Projections of growth by 2030

Dear Michael:

Thank you for your letter dated March 11, 2009 requesting the Planning Department's projections of growth by 2030 in order to satisfy your mandates in connection with assessing water supply and demand in the years to come, and more specifically for preparing water supply assessments for individual projects moving forward.

The Planning Department routinely prepares projections for the purposes of analyzing impacts of plans and projects undergoing the environmental review process. While the assumptions of these sets may vary depending on the circumstances surrounding a specific project, the Department recently completed a citywide projection capturing citywide growth expectations by 2030 designed to closely match the recently adopted ABAG Projections 2009 target, but taking into account local knowledge of projects currently in various stages of the entitlement process, commonly referred to as the development pipeline. Table 1 shows the projections for 2030.

Table 1 Development Projections

	2000	2005	2030	Growth 2000-2030	Growth 2005-2030
Households	329,700	341,478	403,292	73,592	61,814
HH Population	756,976	783,441	916,800	159,824	133,359
Jobs	642,500	553,090	748,100	105,600	195,010

Source: ABAG, San Francisco Planning Department

As the question may arise whether particular projects were included, the Planning Department for the purposes of these numbers assumed full buildout over the course of the forecast period of three large development programs currently undergoing environmental review, namely Treasure Island, Bayview Waterfront, and Park Merced projects.

More generally, we included entitled pipeline projects, and projects larger than 500 units, or large commercial projects per criteria set forth in California Water Code §10912(a) as these are the projects for which individual water supply assessments would otherwise need to be made in the near future.

1650 Mission St. Suite 400 San Francisco, CA 94103-2479

Reception: 415.558.6378

Fax: **415.558.6409**

Planning Information: 415.558.6377 We are looking forward to continuing the larger regional growth dialogue with PUC and other regional stakeholders.

Singerely,

Director of Planning

CC: Aksel Olsen

Teresa Ojeda

File

APPENDIX B

Major Projects Water Demand Estimates from Project Sponsors

[Candlestick Point/Hunter's Point Shipyard; Parkmerced; Treasure
Island-Yerba Buena Island]

То	Lennar -	Reference number
		131878/RRJ
сс		File reference
From	Rowan Roderick-Jones/Manish Dalia x 27222 (San	Date
	Francisco)	October 15, 2009
Subject	Candlestick Point / Hunters Point Shipyard Phase II	
	Water Demand Memorandum Revision # 16	

1 Purpose

This Water Demand Memorandum (Memo) presents a summary approach, references, assumptions, and results of calculations undertaken by Arup to estimate a range of potential water demands and sanitary sewer flows for the Candlestick Point/Hunters Point Shipyard (CP/HPS) Development including the Proposed Project as well as the R&D and Housing Variants.

The Memo establishes a historical baseline condition and makes adjustments to account for current California building code requirements as well as the San Francisco Green Building Ordinance. The basis for these analyses and the results are presented herein.

Arup worked in conjunction with Winzler & Kelly to develop water demand and sanitary sewer flow values appropriate for use in engineering design.

2 Approach

To develop reasonable water demand estimates for the CP/HPS development the following steps were taken.

- 1) The Proposed Project was divided into land uses as identified in Table 1. Two project variants exclude the stadium. The R&D Variant also includes an additional 2,500,000 square feet of research and development space, as shown in Table 2. The Housing Variant does not include any additional program but shifts 1,350 housing units from Candlestick Point to Hunters Point, as shown in Table 4. The methodology for developing water demands was the same for the Proposed Project and Project Variants.
- 2) A **Historical Benchmark** demand was estimated for each land use based on a series of assumptions and references. Key references used were:
 - a. The Urban Water Management Plan for the City of San Francisco
 - b. The SFPUC Wholesale Customer Demand Projections Technical Report (URS, 2004)
 - c. The City of Los Angeles CEQA Threshold Guide, 2006
 - d. The EPA, Onsite Wastewater Treatment Systems Manual, 2002

A number of other references were also used and these are provided at the end of this memorandum. Arup collected information from a number of sources and selected a method of estimating demands that we believed to be appropriate and reasonable for the area. Assumptions and references are provided in Section 4.

- 3) The demands were then distributed between indoor and outdoor end uses which were estimated based on published data in the SFPUC Wholesale Customer Demand Projections Report (URS 2004). End use distributions for the stadium and performance venues were assumed rather than taken directly from the SFPUC's projections. The distribution ratios are provided in Table 23 and Table 25.
- 4) Next, the Historical Benchmark was adjusted to an Adjusted to California Codes scenario using new fixture flow rates from California and Federal Buildings standards as well as the International Plumbing Code.
- 5) The Adjusted to California Codes demand estimate does not include the requirements of the San Francisco Green Building Ordinance (SFGBO). The SFGBO is based on LEED for New Construction (LEED NC) and requires a 50% reduction in landscape irrigation demands. The SFGBO does not specify what code is to be used as the baseline for irrigation demands. Therefore the current code was assumed to be equivalent to the irrigation amount allowed under the California Water Efficient Landscape Ordinance. This rule was assumed to be applicable to both private and public landscape irrigation. In addition, the SFGBO requires a 30% reduction in potable water demand. The SFGBO does not provide specific language as to which portions of demand are to be included in the 30% reduction. However, the intention of the similar LEED NC credit (Water Efficiency Credit 3) is to reduce building water demand by 30%. The total 30% reduction in building water efficiency may be achieved by any number of means including improved fixture efficiency, mechanical building efficiency, or by providing an alternative water supply. The demand estimates, when adjusted for the SFGBO represent the final demands for the Proposed Project and Project Variants.

The SFGBO demand was developed by using the California code as a baseline and using a trajectory or possible means of water saving strategies and/or alternative water supplies to achieve the SFGBO. The assumptions and references used to make these adjustments are provided in Table 27.

 Potential reclaimed water demands as well as sewage generation were determined based on end use distributions.

The results of the study are presented at the beginning of this report. References and Assumptions used for making the demand estimations are provided after the results in Section 3.

Table 1: CP/HPS Land Use Program (Proposed Project)

Table 1: CP/HPS Land Use Program (Prop	Hunters	Ī	
	Point	Candlestick	Project
	Shipyard	Point	Total
Land Use	отп ру шти		
Residential			
Density, 15-75 units per acre			
(units)	680	750	1,430
Density, 50-125 units per acre			
(units)	1,415	3,215	4,630
Density, 100-175 units per acre			
(units)	265	2,445	2,710
Density, 175-285 units per acre	000	4.440	4 700
(units)	290	1,440	1,730
Total Project (units)	2,650	7,850	10,500
Retail			
Regional Retail (sqft))	0	635,000	635,000
Neighborhood Retail (sqft)	125,000	125,000	250,000
Total (sqft)	125,000	760,000	885,000
10ta (341)	120,000	700,000	000,000
Office (sqft)	0	150,000	150,000
Community Uses (sqft)	50,000	50,000	100,000
	0.500.000		0.500.000
Research & Development (sqft)	2,500,000	0	2,500,000
Hotel (sqft)	0	150,000	150,000
Tiotol (oqit)		100,000	100,000
Artist's Studios			
1:1 Studio Renovation &			
Replacement (sqft)	225,000	0	225,000
New Artist Center (sqft)	30,000	0	30,000
Total (sqft)	255,000	0	255,000
Parks & Open Space			
Parks & Open Space			
New City Parks (acres)	140	8.1	148.1
New Sports Fields & Active			
New Sports Fields & Active Recreation (acres)	91.6	0	91.6
Recreation (acres)	91.6	0	91.6
Recreation (acres) New Open Space and Restored			
Recreation (acres) New Open Space and Restored State Parkland (acres)	0	96.7	96.7
Recreation (acres) New Open Space and Restored			
Recreation (acres) New Open Space and Restored State Parkland (acres) Total (acres)	0 231.6	96.7 104.8	96.7 336.4
Recreation (acres) New Open Space and Restored State Parkland (acres)	0	96.7	96.7
Recreation (acres) New Open Space and Restored State Parkland (acres) Total (acres)	0 231.6	96.7 104.8	96.7 336.4

Table 2: CP/HPS Land Use Program (R&D Variant)

Table 2: CP/HPS Land Use Program (R&I		ī	
	Hunters Point	Candlestick	Project
	Shipyard	Point	Total
Land Use	- Cilipyuru	1 0	Total
Residential			
Density, 15-75 units per acre			
(units)	680	750	1,430
Density, 50-125 units per acre	333	7.00	1,100
(units)	1,415	3,215	4,630
Density, 100-175 units per acre	,	,	,
(units)	265	2,445	2,710
Density, 175-285 units per acre			
(units)	290	1,440	1,730
Total Project (units)	2,650	7,850	10,500
	-	-	
Retail			
Regional Retail (sqft))	0	635,000	635,000
Neighborhood Retail (sqft)	125,000	125,000	250,000
Total (sqft)	125,000	760,000	885,000
Office (sqft)	0	150,000	150,000
Community Uses (sqft)	50,000	50,000	100,000
		•	
Research & Development (sqft)	5,000,000	0	5,000,000
11. (.1 (((((((1 0	450,000	450.000
Hotel (sqft)	0	150,000	150,000
Artist's Studios			
1:1 Studio Renovation &			
Replacement (sqft)	225,000	0	225,000
New Artist Center (sqft)	30,000	0	30,000
Total (sqft)	255,000	0	255,000
(54.7)	, , , , , ,		, , , , , ,
Parks & Open Space			
New City Parks (acres)	152.4	8.1	160.5
New Sports Fields & Active			
Recreation (acres)	69.8	0	69.8
· · · · ·			
New Open Space and Restored			
State Parkland (acres)	0	96.7	96.7
Total (acres)	222.2	104.8	327
, ,			
Football Stadium (seats)	0	0	0
Performance Venue (seats)	0	10,000	10,000
Source: Lennar, 2009			

Table 4: CP/HPS Land Use Program (Hou		1	
	Hunters Point Shipyard	Candlestick Point	Project Total
Land Use			
Residential			
Density, 15-75 units per acre (units)	1,540	970	2,510
Density, 50-125 units per acre (units)	1,905	3,670	5,575
Density, 100-175 units per acre (units)	265	1,220	1,485
Density, 175-285 units per acre (units)	290	640	930
Total Project (units)	4,000	6,500	10,500
Retail		005.000	005.000
Regional Retail (sqft))	0	635,000	635,000
Neighborhood Retail (sqft)	125,000	125,000	250,000
Total (sqft)	125,000	760,000	885,000
Office (sqft)	0	150,000	150,000
(- · ·)		,	,
Community Uses (sqft)	50,000	50,000	100,000
Research & Development (sqft)	2,500,000	0	2,500,000
Hotel (sqft)	0	150,000	150,000
Artist's Studios			
1:1 Studio Renovation & Replacement (sqft)	225,000	0	225,000
New Artist Center (sqft)	30,000	0	30,000
Total (sqft)	255,000	0	255,000
Parks & Open Space			
New City Parks (acres)	149.9	8.1	158
New Sports Fields & Active Recreation (acres)	94.7	0	94.7
New Open Space and Restored State Parkland (acres)	0 244.6	96.7	96.7
Total (acres)	∠44.0	104.8	349.4
Football Stadium (seats)	69,000	0	69,000
Performance Venue (seats)	0	10,000	10,000
Source: Lennar, 2009			

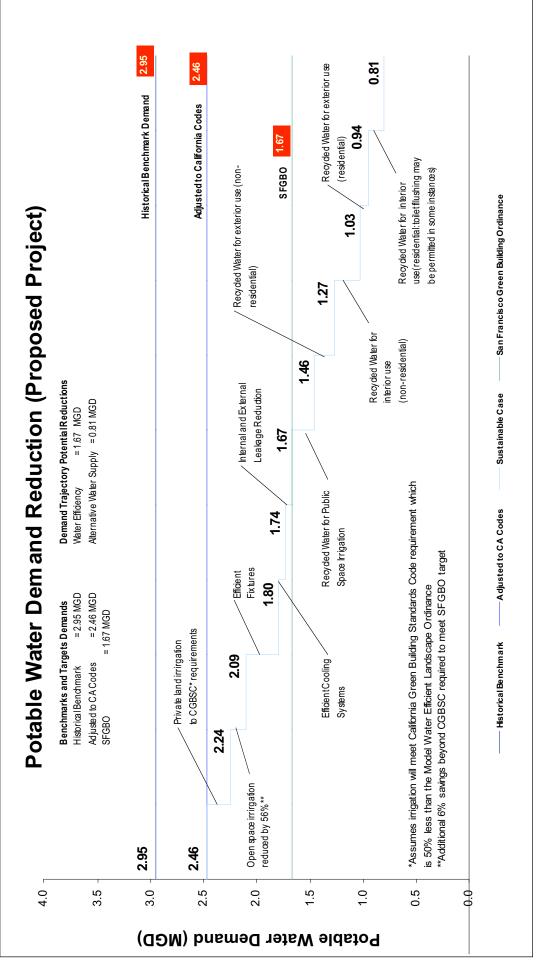
3 Results

This section provides the results of the water demand assessment. The results are provided by land use as well as by end use (fixture type). The overall results for the proposed project are summarized by Figure 1. Similar summaries for the two project variants are provided in Figure 3 and Figure 5.

Table 4: Potable water demands for Proposed Project and Project Variants.

	Proposed		
	Project Demand	R&D Variant	Housing Variant
	(MGD)	Demand (MGD)	Demand (MGD)
Historical Baseline	2.95	3.47	2.92
Adjusted to California Codes	2.46	2.92	2.44
Adjusted to San Francisco			
Green Building Ordinance	1.67	1.99	1.66

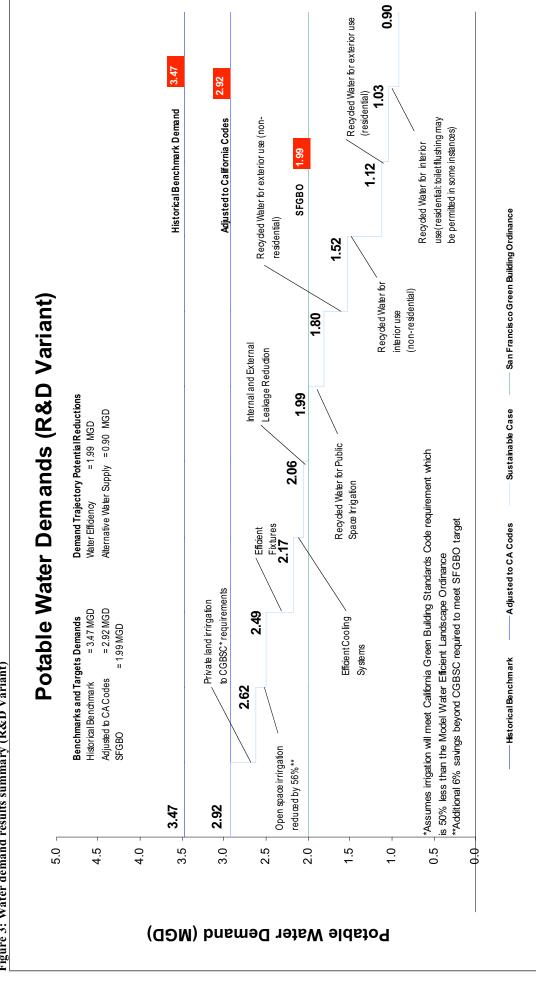
The above table indicates that the R&D Variant will have the highest potable water demands under the requirements of the SFGBO of 1.99 MGD.


Figures 1 through 3 provide the Proposed Project and Project Variant demands for the Historical Benchmark, the Adjusted to California Codes and the San Francisco Green Building Ordinance cases. They also illustrate the Sustainable Case trajectory defined by the step down line. The first five steps in the "sustainable Case" step-down graph are demand reduction strategies while the later five steps are achieved by utilizing alternative water supplies. Additional demand breakdowns by land use and end use are provided in Table 5 through Table 14 for the Proposed Project and Project Variants. Reclaimed water demands and sanitary flows by end use for the Proposed Project are provided in Table 16 through Table 22.

Please note that in all reported annual water demand and sanitary flow data in Table 5 through Table 22 are in million gallons per day (MGD) and are rounded to the nearest 0.01 millionth gallon. When reporting the calculations within the tables slight rounding errors on the order of 0.01 MGD may occur.

Memorandum

Page 7 of 31


Figure 1: Water demand results summary step down graph- Proposed Project

Memorandum

Page 8 of 31

Figure 3: Water demand results summary (R&D Variant)

Memorandum

Page 9 of 31

Figure 5: Water demand results summary (Housing Variant)

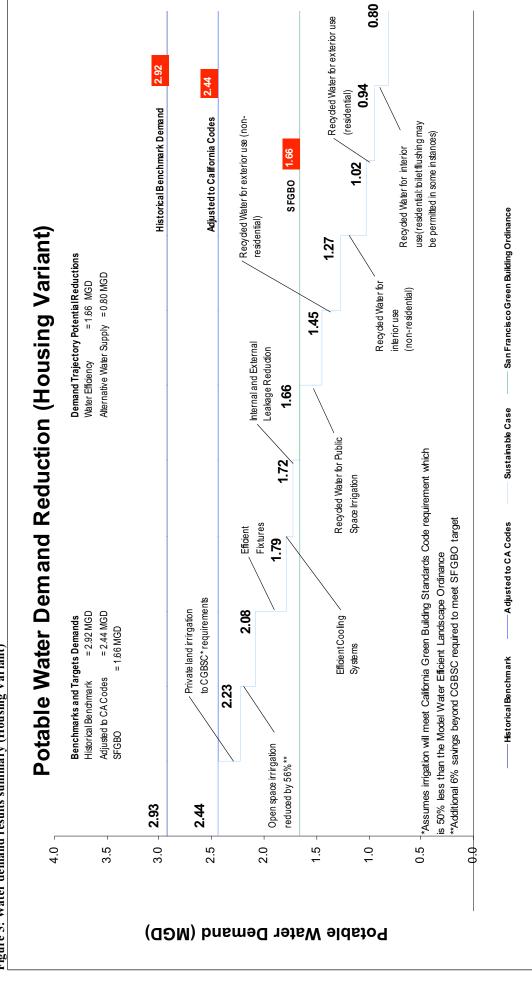


Table 5: Historical Benchmark demand by land use and end use - Proposed Project

Table 5: Historical Benchmark demand by l	Historical Benchmark Demand (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	1.13	0.38	1.52	
Hotel	0.08	0.00	0.08	
Office	0.07	0.01	0.08	
Artist Studios	0.00	0.03	0.03	
Research and Development	0.00	0.61	0.61	
Neighborhood Retail	0.03	0.03	0.06	
Regional Retail	0.13		0.13	
Community Uses	0.02	0.02	0.03	
Football Stadium	0.00	0.05	0.05	
Performance Venue	0.03	0.00	0.03	
Total demand excluding Parks and Open		0.00	0.00	
Space	1.49	1.11	2.60	
Parks and Open Space	0.10	0.25	0.35	
Total Demand	1.59	1.36	2.95	
Total Demand	1.09	1.30	2.50	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
Liid Ose		Hunters Fount	Development	
Tailata (law danaity rasidantial)	Indoor Uses	0.04	0.04	
Toilets (low density residential)	0.03	0.01	0.04	
Tailate (mad high density Desidential)	0.25	0.00	0.22	
Toilets (med-high density Residential) Toilets (all other uses)	0.25	0.08	0.32	
1	0.05		0.15	
Urinals	0.01	0.02	0.02	
Laundry (low density residential)	0.02	0.01	0.03	
Laundry (medium and high density	0.00	0.00	0.00	
residential)	0.20	0.06	0.26	
Laundry (all other uses)	0.02	0.03	0.04	
Shower	0.19	0.08	0.27	
Bath	0.02	0.01	0.02	
Faucets	0.19	0.10	0.29	
Process Water	0.05	0.13	0.18	
Dishwashers	0.03	0.03	0.06	
Internal Leakage Other domestic	0.16	0.09	0.25	
	0.03		0.04	
Subtotal	1.24	0.76	2.00	
	Outdoor Uses	0.07	0.15	
Irrigation and landscaping	0.18	0.27	0.45	
Pools and Fountains	0.01	0.01	0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01	0.00	0.01	
Cooling	0.02	0.05	0.07	
External Leakage	0.01	0.02	0.03	
Subtotal	0.24	0.36	0.60	
Total excluding Parks and Open Space	1.49	1.11	2.60	
Parks and Open Space	0.10	0.25	0.35	
Total Demand	1.59	1.36	2.95	

^{*}Note: Rounding errors may occur.

Table 6: Adjusted to CA Codes demand by land use and end use- Proposed Project

•	by land use and end use- Proposed Project Adjusted to CA Codes Demand (MGD)			
	Candlestick	Total		
Land Use	Point	Hunters Point	Development	
Residential	0.87	0.29	1.16	
Hotel	0.07	0.00	0.07	
Office	0.06	0.01	0.07	
Artist Studios	0.00	0.02	0.02	
Research and Development	0.00	0.54	0.54	
Neighborhood Retail	0.02	0.02	0.05	
Regional Retail	0.12	0.00	0.12	
Community Uses	0.01	0.01	0.03	
Football Stadium	0.00	0.04	0.04	
Performance Venue	0.02	0.00	0.02	
Total demand excluding Parks and				
Open Space	1.18	0.94	2.11	
Parks and Open Space	0.10	0.25	0.35	
Total Demand	1.28	1.19	2.46	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
2.1.4 000	Indoor Uses	Transcrott out	Dorotopinone	
Toilets (low density residential)	0.01	0.01	0.02	
Tollets (low defisity residential)	0.01	0.01	0.02	
Toilets (med-high density Residential)	0.11	0.04	0.15	
Toilets (illed-night density Residential)	0.11	0.04	0.13	
Urinals	0.02	0.03	0.07	
Laundry (low density residential) Laundry (medium and high density	0.02	0.01	0.02	
residential)	0.14	0.05	0.10	
Laundry (all other uses)	0.14	0.05 0.02	0.19 0.03	
Shower	0.01	0.02	0.03	
Bath	0.13	0.00	0.02	
Faucets	0.02	0.01	0.02	
Process Water	0.10	0.09	0.23	
Dishwashers	0.03	0.13	0.06	
Internal Leakage	0.03	0.03	0.06	
Other domestic	0.10	0.09	0.23	
Subtotal			1.51	
Subtotal	0.93	0.58	1.51	
Industrial Industrial	Outdoor Uses	0.07	0.45	
Irrigation and landscaping	0.18	0.27	0.45	
Pools and Fountains	0.01		0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01		0.01	
Cooling External Leakage	0.02	0.05	0.07	
	0.01	0.02	0.03	
Subtotal	0.24	0.36	0.60	
Total excluding Parks and Open		·		
Space	1.18	0.94	2.11	
Dayles and Onen Chase	0.10	0.05	2.25	
Parks and Open Space	0.10	0.25	0.35	
Total Demand	1.28	1.19	2.46	

^{*}Note: Rounding errors may occur.

Table 7: SFGBO demands by land use and end use – Proposed Project

wate , v at about demands by the deep a	e and end use – Proposed Project SFGBO Demand (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	0.61	0.22	0.83	
Hotel	0.05	0.00	0.05	
Office	0.04	0.00	0.04	
Artist Studios	0.00	0.01	0.01	
Research and Development	0.00	0.36	0.36	
Neighborhood Retail	0.02	0.02	0.03	
Regional Retail	0.08	0.00	0.08	
Community Uses	0.01	0.01	0.02	
Football Stadium	0.00	0.02	0.02	
Performance Venue	0.01	0.00	0.01	
Total demand excluding Parks and	7.7.	2177		
Open Space	0.82	0.64	1.47	
Parks and Open Space	0.06	0.15	0.21	
Total Demand	0.88	0.79	1.67	
Total Demand	0.00	0.79	1.07	
	Candlastiak		Total	
End Use	Candlestick Point	Hunters Point		
End Use		nunters Point	Development	
-	Indoor Uses	0.04		
Toilets (low density residential)	0.01	0.01	0.02	
Toilets (med-high density				
Residential)	0.09	0.03	0.12	
Toilets (all other uses)	0.02	0.04	0.06	
Urinals	0.00	0.00	0.00	
Laundry (low density residential)	0.01	0.01	0.02	
Laundry (medium and high density				
residential)	0.10	0.03	0.13	
Laundry (all other uses)	0.01	0.01	0.02	
Shower	0.10	0.04	0.15	
Bath	0.02	0.01	0.02	
Faucets	0.11	0.06	0.18	
Process Water	0.04	0.10	0.14	
Dishwashers	0.02	0.02	0.04	
Internal Leakage	0.12	0.07	0.19	
Other domestic	0.02	0.01	0.03	
Subtotal	0.68	0.42	1.11	
	Outdoor Uses			
Irrigation and landscaping	0.09	0.14	0.24	
Pools and Fountains	0.01		0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01	0.00	0.01	
Cooling	0.01	0.04	0.05	
External Leakage	0.01	0.01	0.02	
Subtotal	0.14	0.22	0.36	
Total excluding Parks and Open	0.14	0.22	0.30	
=	0.00	0.64	4 47	
Space	0.82	0.64	1.47	
Darks and Onen Chass	0.00	0.45	0.04	
Parks and Open Space	0.06	0.15	0.21	
Total Demand	0.88	0.79	1.6	

^{*}Note: Rounding errors may occur.

Table 8: Historical Benchmark demand by land use and end use – R&D Variant

Those of Historical Benchmark demand by h	nd by land use and end use – R&D Variant Historical Benchmark Demand (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	1.13	0.38	1.52	
Hotel	0.08	0.00	0.08	
Office	0.07	0.01	0.08	
Artist Studios	0.00	0.03	0.03	
Research and Development	0.00	1.21	1.2	
Neighborhood Retail	0.03	0.03	0.06	
Regional Retail	0.13	0.00	0.13	
Community Uses	0.02	0.02	0.03	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.04	0.00	0.04	
Total demand excluding Parks and Open		0.00	0.0	
Space	1.49	1.67	3.10	
Parks and Open Space	0.09	0.22	0.3	
Total Demand	1.58	1.89	3.47	
Total Demand	1.50	1.03	3.41	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
Liid Ose		Trumers Form	Development	
Tailata (law danaity regidential)	Indoor Uses	0.01	0.04	
Toilets (low density residential)	0.03	0.01	0.04	
Tailete (mand bink demaits Desidential)	0.05	0.00	0.00	
Toilets (med-high density Residential)	0.25	0.08	0.32	
Toilets (all other uses)	0.05	0.18	0.23	
Urinals	0.01	0.02	0.03	
Laundry (low density residential)	0.02	0.01	0.03	
Laundry (medium and high density	0.00	0.00	0.00	
residential)	0.20	0.06	0.26	
Laundry (all other uses)	0.02	0.05	0.07	
Shower	0.19	0.09	0.28	
Bath	0.02	0.01	0.02	
Faucets Process Water	0.19 0.05	0.14 0.24	0.33 0.29	
Dishwashers Internal Leakage	0.03 0.16	0.06	0.09	
Other domestic	0.16	0.12 0.01	0.28 0.04	
Subtotal	1.25			
		1.08	2.33	
	Outdoor Uses	0.40	0.04	
Irrigation and landscaping	0.18	0.43	0.6	
Pools and Fountains	0.01			
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01	0.00	0.01	
Cooling External Lookage	0.02	0.10	0.12	
External Leakage	0.01	0.03	0.04	
Subtotal	0.24	0.59	0.83	
		•		
Total excluding Parks and Open Space	1.49	1.67	3.10	
Parks and Open Space	0.09	0.22	0.3	
Total Demand	1.58	1.89	3.47	

^{*}Note: Rounding errors may occur.

Table 9: Adjusted to CA Codes demand	Adjusted to Codes BAU Demand (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	0.87	0.29	1.16	
Hotel	0.07	0.00	0.07	
Office	0.06	0.01	0.07	
Artist Studios	0.00	0.02	0.02	
Research and Development	0.00	1.08	1.08	
Neighborhood Retail	0.02	0.02	0.05	
Regional Retail	0.12	0.00	0.12	
Community Uses	0.01	0.01	0.03	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.02	0.00	0.02	
Total demand excluding Parks and				
Open Space	1.18	1.43	2.61	
Parks and Open Space	0.09	0.22	0.31	
Total Demand	1.27	1.66	2.92	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
	Indoor Uses		-	
Toilets (low density residential)	0.01	0.01	0.02	
renete (lett derietly recidentially	3.0.	0.0.	0.02	
Toilets (med-high density Residential)	0.11	0.04	0.15	
Toilets (all other uses)	0.02	0.08	0.11	
Urinals	0.01	0.01	0.01	
Laundry (low density residential)	0.02	0.01	0.02	
Laundry (medium and high density				
residential)	0.14	0.05	0.19	
Laundry (all other uses)	0.01	0.04	0.05	
Shower	0.15	0.08	0.23	
Bath	0.02	0.01	0.02	
Faucets	0.17	0.12	0.29	
Process Water	0.05	0.24	0.29	
Dishwashers	0.03	0.05	0.08	
Internal Leakage	0.16	0.12	0.28	
Other domestic	0.03	0.01	0.04	
Subtotal	0.93	0.84	1.78	
	Outdoor Uses	0.0.1		
Irrigation and landscaping	0.18	0.43	0.61	
Pools and Fountains	0.01		0.03	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01	0.00	0.01	
Cooling	0.02	0.10	0.12	
External Leakage	0.01	0.03	0.04	
Subtotal	0.24	0.59	0.83	
Total excluding Parks and Open	0.24	·	0.03	
	1 12	1 /3	2.61	
	1.10	1.43	2.01	
Parks and Open Space	0.00	0.22	0.31	
	•		2.92	
Space Parks and Open Space Total Demand	0.09 1.27	0.22 1.66		

^{*}Note: Rounding errors may occur.

	use and end use – R&D Variant SFGBO (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	0.62	0.21	0.83	
Hotel	0.05	0.00	0.05	
Office	0.04	0.00	0.04	
Artist Studios	0.00	0.01	0.01	
Research and Development	0.00	0.71	0.71	
Neighborhood Retail	0.02	0.02	0.03	
Regional Retail	0.08	0.00	0.08	
Community Uses	0.01	0.01	0.02	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.00	0.00	0.00	
Total demand excluding Parks and	0.01	0.00	0.01	
Open Space	0.83	0.96	1.80	
Parks and Open Space	0.05	0.14	0.19	
Total Demand	0.89	1.11	1.99	
	3100			
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
	Indoor Uses			
Toilets (low density residential)	0.01	0.01	0.02	
Toilets (med-high density				
Residential)	0.09	0.03	0.12	
Toilets (all other uses)	0.02	0.07	0.09	
Urinals	0.00	0.00	0.00	
Laundry (low density residential)	0.01	0.01	0.02	
Laundry (medium and high density				
residential)	0.10	0.03	0.13	
Laundry (all other uses)	0.01	0.03	0.03	
Shower	0.10	0.05	0.16	
Bath	0.02	0.01	0.02	
Faucets	0.11	0.08	0.20	
Process Water	0.04	0.18	0.22	
Dishwashers	0.02	0.03	0.05	
Internal Leakage	0.12	0.09	0.21	
Other domestic	0.02	0.01	0.03	
Subtotal	0.68	0.62	1.31	
- Cubician	Outdoor Uses	0.02	1.01	
Irrigation and landscaping	0.09	0.22	0.32	
Pools and Fountains	0.01		0.03	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.01	0.00	0.01	
Cooling	0.01	0.08	0.09	
External Leakage	0.01	0.02	0.03	
Subtotal	0.14	0.36	0.50	
Total excluding Parks and Open	0.14	0.30	0.50	
Space	0.83	0.96	1.80	
	3.00	3.00		
Parks and Open Space	0.05	0.14	0.19	
Total Demand	0.89	1.11	1.99	

^{*}Note: Rounding errors may occur.

Table 11: Historical Benchmark demand by	Historical Benchmark Demand (MGD)			
	Candlestick	Deficilitate Defina	Total	
Land Use	Point	Hunters Point	Development	
Residential	0.94	0.58	1.52	
Hotel	0.08	0.00	30.0	
Office	0.07	0.01	0.08	
Artist Studios	0.00	0.03	0.03	
Research and Development	0.00	0.61	0.61	
Neighborhood Retail	0.03	0.03	0.00	
Regional Retail	0.13	0.00	0.13	
Community Uses	0.02	0.02	0.03	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.04	0.00	0.04	
Total demand excluding Parks and Open				
Space	1.29	1.26	2.50	
Parks and Open Space	0.11	0.25	0.36	
Total Demand	1.40	1.51	2.92	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
	Indoor Uses		201010	
Toilets (low density residential)	0.05	0.05	0.10	
Tollets (low density residential)	0.03	0.03	0.10	
Toilets (med-high density Residential)	0.18	0.09	0.26	
Toilets (all other uses)	0.10	0.09		
1			0.15	
Urinals	0.01	0.01	0.02	
Laundry (low density residential)	0.04	0.04	0.08	
Laundry (medium and high density	0.44	0.07	0.0	
residential)	0.14	0.07	0.2	
Laundry (all other uses)	0.02	0.03	0.04	
Shower	0.16	0.11	0.26	
Bath	0.01	0.01	0.02	
Faucets	0.16	0.13	0.29	
Process Water	0.05	0.13	0.18	
Dishwashers	0.03	0.03	0.06	
Internal Leakage	0.14	0.11	0.25	
Other domestic	0.03	0.01	0.04	
Subtotal	1.07	0.91	1.98	
	Outdoor Uses			
Irrigation and landscaping	0.17	0.26	0.43	
Pools and Fountains	0.01	0.01	0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.00	0.00	0.0	
Cooling	0.02	0.05	0.07	
External Leakage	0.01	0.02	0.03	
Subtotal	0.22	0.35	0.57	
Total excluding Parks and Open Space	1.29	1.26	2.56	
Parks and Open Space	0.11	0.25	0.36	
Total Demand	1.40	1.51	2.92	

^{*}Note: Rounding errors may occur.

Table 12: Adjusted to CA Codes demand by land use and end use- Housing Variant

	d by land use and end use- Housing Variant Adjusted to Codes BAU Demand (MGD)			
	Candlestick Total			
Land Use	Point	Hunters Point	Development	
Residential	0.72	0.44	1.16	
Hotel	0.07	0.00	0.07	
Office	0.06	0.01	0.07	
Artist Studios	0.00	0.02	0.02	
Research and Development	0.00	0.54	0.54	
Neighborhood Retail	0.02	0.02	0.05	
Regional Retail	0.12	0.00	0.12	
Community Uses	0.01	0.01	0.03	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.02	0.00	0.02	
Total demand excluding Parks and				
Open Space	1.03	1.05	2.08	
Parks and Open Space	0.11	0.25	0.36	
Total Demand	1.14	1.30	2.44	
Total Belliana	1.14	1.50	2.44	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
Ella Ose		nunters Foliat	Development	
T " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "	Indoor Uses	2.22		
Toilets (low density residential)	0.02	0.02	0.05	
			2.42	
Toilets (med-high density Residential)	0.08	0.04	0.12	
Toilets (all other uses)	0.02	0.04	0.07	
Urinals	0.01	0.00	0.01	
Laundry (low density residential)	0.03	0.03	0.06	
Laundry (medium and high density				
residential)	0.10	0.05	0.15	
Laundry (all other uses)	0.01	0.02	0.03	
Shower	0.13	0.09	0.21	
Bath	0.01	0.01	0.02	
Faucets	0.14	0.11	0.25	
Process Water	0.05	0.13	0.18	
Dishwashers	0.03	0.03	0.06	
Internal Leakage	0.14	0.11	0.25	
Other domestic	0.03	0.01	0.04	
Subtotal	0.80	0.70	1.50	
	Outdoor Uses			
Irrigation and landscaping	0.17	0.26	0.43	
Pools and Fountains	0.01	0.01	0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.00	0.00	0.01	
Cooling	0.02	0.05	0.07	
External Leakage	0.01	0.02	0.03	
Subtotal	0.22	0.35	0.57	
Total excluding Parks and Open				
Space	1.03	1.05	2.08	
•				
Parks and Open Space	0.11	0.25	0.36	
Total Demand	1.14	1.31	2.44	

^{*}Note: Rounding errors may occur.

Table 14: SFGBO demands by land use	14: SFGBO demands by land use and end use – Housing Variant			
	SFGBO (MGD)			
	Candlestick	Hamtana Balas	Total	
Land Use	Point	Hunters Point	Development	
Residential	0.51	0.33	0.83	
Hotel	0.05	0.00	0.05	
Office	0.04	0.00	0.04	
Artist Studios	0.00	0.01	0.01	
Research and Development	0.00	0.36	0.36	
Neighborhood Retail	0.02	0.02	0.03	
Regional Retail	0.08	0.00	0.08	
Community Uses	0.01	0.01	0.02	
Football Stadium	0.00	0.00	0.00	
Performance Venue	0.01	0.00	0.01	
Total demand excluding Parks and				
Open Space	0.72	0.73	1.45	
Parks and Open Space	0.06	0.15	0.22	
Total Demand	0.78	0.88	1.66	
	Candlestick		Total	
End Use	Point	Hunters Point	Development	
	Indoor Uses			
Toilets (low density residential)	0.02	0.02	0.04	
Toilets (med-high density	0.02	0.02	0.01	
Residential)	0.06	0.03	0.10	
Toilets (all other uses)	0.00	0.03	0.05	
Urinals	0.00	0.00	0.00	
Laundry (low density residential)	0.00	0.00	0.04	
Laundry (medium and high density	0.02	0.02	0.04	
residential)	0.07	0.03	0.11	
Laundry (all other uses)	0.07	0.03	0.11 0.02	
Shower	0.01	0.01	0.02	
Bath Faucets	0.01 0.10	0.01 0.08	0.02 0.18	
	0.10	0.08	0.16	
Process Water		0.10		
Dishwashers	0.02		0.04	
Internal Leakage Other domestic	0.10 0.02	0.08	0.19	
		0.01	0.03	
Subtotal	0.58	0.51	1.10	
Indication and I and a subsequent	Outdoor Uses	0.44	0.00	
Irrigation and landscaping	0.08	0.14	0.22	
Pools and Fountains	0.01	0.01	0.02	
Wash down of houses and facilities	0.01	0.01	0.02	
Car Washing	0.00	0.00	0.01	
Cooling	0.01	0.04	0.05	
External Leakage	0.01	0.01	0.02	
Subtotal	0.13	0.22	0.34	
Total excluding Parks and Open			=	
Space	0.72	0.73	1.45	
Davida and Ones Corre	0.00	0.45	0.00	
Parks and Open Space	0.06	0.15	0.22	
Total Demand	0.78	0.88	1.66	

*Note: Rounding errors may occur.

Potential reclaimed water demands and sanitary flows by end use were estimated for the Proposed Project and Project Variants. These are provided below in Table 16 through Table 22.

Table 16: Reclaimed water demands by end use - Proposed Project

	Reclaimed Water	er Demands by E	nd Use (MGD)
	Historical	Adjusted to CA	
End Use	Benchmark	Codes	SFGBO
Toilets (residential)	0.36	0.17	0.14
Toilets (non-residential))	0.15	0.07	0.06
Urinals	0.02	0.01	0.00
Process Water (non-residential)	0.18	0.18	0.14
Irrigation and landscaping (residential)	0.12	0.12	0.06
Irrigation and Landscaping (non-			
residential)	0.33	0.33	0.16
Pools and Fountains (residential)	0.01	0.01	0.01
Pools and Fountains (non-residential)	0.01	0.01	0.01
Wash down (residential)	0.01	0.01	0.01
Wash down (non-residential)	0.01	0.01	0.01
Car Washing (residential)	0.01	0.01	0.01
Car Washing (non-residential)	0.00	0.00	0.00
Cooling (non-residential)	0.07	0.07	0.05
Total flow excluding Parks and			
Open Space	1.30	1.00	0.66
Parks and Open Space	0.35	0.35	0.21
Total Demand	1.65	1.35	0.87

^{*}Note: Rounding errors may occur.

Table 15: Sanitary flows by end use - Proposed Project

	Sanitary	y Flows by End Us	e (MGD)
	Historical	Adjusted to CA	
End Use	Benchmark	Codes	SFGBO
Toilets	0.52	0.24	0.19
Urinals	0.02	0.01	0.00
Laundry	0.34	0.24	0.17
Shower	0.27	0.21	0.15
Bath	0.02	0.02	0.02
Faucets	0.29	0.25	0.18
Process Water	0.18	0.18	0.14
Dishwashers	0.06	0.06	0.04
Other domestic	0.04	0.04	0.03
Cooling	0.07	0.07	0.05
Total	1.82	1.33	0.98

^{*}Note: Rounding errors may occur.

Table 16: Reclaimed water demands by end use - R&D Variant

	Reclaimed Water	r Demands by E	nd Use (MGD)
End Use	Historical Benchmark	Adjusted to Codes BAU	SFGBO
Toilets (residential)	0.36	0.17	0.14
Toilets (non-residential))	0.23	0.11	0.09
Urinals	0.03	0.01	0.00
Process Water (non-residential)	0.29	0.29	0.22
Irrigation and landscaping (residential)	0.12	0.12	0.06
Irrigation and Landscaping (non-			
residential)	0.49	0.49	0.25
Pools and Fountains (residential)	0.01	0.01	0.01
Pools and Fountains (non-residential)	0.02	0.02	0.02
Wash down (residential)	0.01	0.01	0.01
Wash down (non-residential)	0.02	0.02	0.02
Car Washing (residential)	0.01	0.01	0.01
Car Washing (non-residential)	0.00	0.00	0.00
Cooling (non-residential)	0.12	0.12	0.09
Total flow excluding Parks and			
Open Space	1.71	1.37	0.90
Parks and Open Space	0.31	0.31	0.19
Total Demand	2.02	1.69	1.09

^{*}Note: Rounding errors may occur.

Table 17: Sanitary flows by end use - R&D Variant

	Sanitary	Flows by End Us	e (MGD)
	Historical	Adjusted to CA	
End Use	Benchmark	Codes	SFGBO
Toilets	0.60	0.27	0.22
Urinals	0.03	0.01	0.00
Laundry	0.36	0.26	0.18
Shower	0.28	0.23	0.16
Bath	0.02	0.02	0.02
Faucets	0.33	0.29	0.20
Process Water	0.29	0.29	0.22
Dishwashers	0.09	0.08	0.05
Other domestic	0.04	0.04	0.03
Cooling	0.12	0.12	0.09
Total	2.16	1.61	1.18

^{*}Note: Rounding errors may occur.

Table 18: Reclaimed water demands by end use - Housing Variant

Table 16: Reclaimed water demands by e	Reclaimed Water		nd Use (MGD)
End Use	Historical Benchmark	Adjusted to Codes BAU	SFGBO
Toilets (residential)	0.36	0.17	0.14
Toilets (non-residential))	0.15	0.07	0.05
Urinals	0.02	0.01	0.00
Process Water (non-residential)	0.18	0.18	0.14
Irrigation and landscaping (residential)	0.12	0.12	0.06
Irrigation and Landscaping (non-			
residential)	0.30	0.30	0.15
Pools and Fountains (residential)	0.01	0.01	0.01
Pools and Fountains (non-residential)	0.01	0.01	0.01
Wash down (residential)	0.01	0.01	0.01
Wash down (non-residential)	0.01	0.01	0.01
Car Washing (residential)	0.01	0.01	0.01
Car Washing (non-residential)	0.00	0.00	0.00
Cooling (non-residential)	0.07	0.07	0.05
Total flow excluding Parks and			
Open Space	1.26	0.97	0.64
Parks and Open Space	0.37	0.37	0.22
Total Demand	1.63	1.34	0.86

^{*}Note: Rounding errors may occur.

Table 22: Sanitary flows by end use - Housing Variant

Two 22 carried in the state of the discount of the state	Sanitary	Flows by End Us	e (MGD)
	Historical	Adjusted to CA	
End Use	Benchmark	Codes	SFGBO
Toilets	0.51	0.23	0.19
Urinals	0.02	0.01	0.00
Laundry	0.34	0.24	0.17
Shower	0.26	0.21	0.15
Bath	0.02	0.02	0.02
Faucets	0.29	0.25	0.18
Process Water	0.18	0.18	0.14
Dishwashers	0.06	0.06	0.04
Other domestic	0.04	0.04	0.03
Cooling (50% flow to sewer)	0.07	0.07	0.05
Total	1.80	1.32	0.97

^{*}Note: Rounding errors may occur.

4 Assumptions and References

This section describes assumptions used to:

- 1) Estimate historical baseline demands;
- 2) Distribute the historical baseline demands to specific end uses such as toilets, showers, irrigation etc...;
- 3) Adjust the historical baseline demands to current California code; and
- 4) Adjust the to-code demands to a sustainable case wherein efficiency measures such as efficient fixtures are applied. The efficiency measures applied in the Sustainable Case have been tailored to meet the demand reduction requirements of the SFGBO.

Page 23 of 31

Table 20: Assumptions for estimating water demands by land use for the Historical Benchmark case.

		As	Assumption	s Summary for	ions Summary for Historical Benchmark Demand Estimation	u
Land	#0	Description	Value	Unit	Reference or Assumption	Notes
Residential	tial					
	_	No. of residents per unit - low density	2.33	residents	Mundie & Associates, 2009	
	2	No. of residents per unit - medium density	2.33	residents	Mundie & Associates, 2009	
	3	No. of residents per unit - high density	2.33	residents	Mundie & Associates, 2009	
	4	Average consumption per capita	62	gallons per day (gp)	SFPUC, 2005	
	5	Average outdoor water use for single family residences	10	%	SFPUC, 2005	Note reference states that average demand is less than 10%
Regional Retail	l Reta	ıl				
	1	Regional Retail jobs creation	350	Square feet (sqft)/job	Economic and Planning Systems, 2009.	
	2	Area of retail space per customer	22	sqft/customer	British Standards Institution. 2006	
	3	Sewage generation per employee	10	pdb	EPA, 2002	Sewage generation is only a fraction of overall consumption
	4	Sewage generation per visitor	2	pd6	EPA, 2002	EPA sites 2 gpd / parking spot. Sewage generation is only a fraction of overall consumption
	5	Average outdoor water use for non-residential customers	43	percent	URS, 2004.	
	9	Ratio of sewage generation to total water consumed on site	57	percent	Assumed based on URS 2004.	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer

Page 24 of 31

Neighborhood Retail	rhooc	d Retail				
	1	Neighborhood retail jobs creation	270	sqft/job	Economic and Planning Systems, 2009.	
	2	Area of retail space per customer	22	sqft/customer	British Standards Institution. 2006	
	3	Sewage generation per employee	10	gpd	EPA, 2002	Sewage generation is only a fraction of overall consumption
	4	Water generation per visitor	7	pdß	EPA, 2002	EPA sites 2 gpd / parking spot. Sewage generation is only a fraction of overall consumption
	5	Average outdoor water use for non-residential customers	43	percent	URS, 2004.	Sewage generation is only a fraction of overall consumption
	9	Ratio of sewage generation to total water consumed on site	57	percent	Assumed based on URS 2004.	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer
Office						
	_	Office job creation	276	sqft/job	Economic and Planning Systems, 2009.	
	2	Residential jobs creation	25	Units/job	Economic and Planning Systems, 2009.	
	3	Water consumption per employee	85	pdb	URS, 2004.	
	4	Average outdoor water use for non-residential customers	43	percent	URS, 2004.	
	2	Ratio of sewage generation to total water consumed on site	57	percent	Assumed based on URS 2004.	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer
Community Uses	nity U	ses				

Page 25 of 31

	~	Community use job creation	276	sqft/job	Assumed similar to office	Actual Community uses are not finalized therefore community use water demands have been estimated in a similar manner as office land use.
	2	Water consumption per employee	85	pdb	Assumed similar to office	
	က	Average outdoor water use for non-residential customers	43	percent	Assumed similar to office	
	4	Ratio of sewage generation to total water consumed on site	57	percent	Assumed similar to office	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer
Research	hand	Research and Development				
	_	R&D jobs creation (office)	267	qo[/ɪJbs	Economic and Planning Systems, 2009.	
	2	Sewage generation per employee for office R&D space	85	pd6	URS, 2004.	Sewage generation is only a fraction of overall consumption
	3	Average outdoor water use for non-residential customers for all R&D	43	percent	URS, 2004.	Sewage generation is only a fraction of overall consumption
	4	Ratio of sewage generation to total water consumed on site	57	percent	Assumed based on URS 2004.	Assumption is conservative in that some water consumed indoors would not go to sanitary sewer
	5	Type of R&D Spaces	1/3,1/3, and 1/3	Fraction	Email from Lennar	From email correspondence with Lennar it has been assumed that 1/3 of the R&D space will be office, 1/3 will be wet laboratory, and the remaining 1/3 will be light production which is similar to industrial.
	9	Water Usage for Wet Laboratory R&D Space	0.547	dpsfd	2020 UC Berkeley LRDP Draft EIR (http://www.cp.berkeley.edu/LRDP_2020 draft.htm) - Table 4.13-1	Source provided by Winzler & Kelly. The report states that 0.32 is for sustainable lab case with efficient fixtures built in, and calculations were worked backwards to calculate the BAU.
	7	Water usage profile for	Varies	%	URS, 2004	The water usage profile for wet lab

Page 26 of 31

		Wet Lab Space				space has been assumed to be the average of the commercial and industrial usage profile.
	8	Water Usage for Light Projection R&D Space	0.1	gpsfd	City of Los Angeles, L.A. CEQA Threshold Guide, 2006, Exhibit M.2 12 Sewage Generation Factors	
Hotel						
	7	Hotel job creation	700	sqft/job	Economic and Planning Systems, 2009	
	2	Average guest room size	009	sqft	Assumed	This includes the space for reception, kitchens and conference facilities
	8	Average guests / room	1.9	guests	Assumed	
	4	Sewage generation per guest	20	pdß	EPA, 2002	Sewage generation is only a fraction of overall consumption
	2	Sewage generation per employee	10	pdb	EPA, 2002	Sewage generation is only a fraction of overall consumption
	9	Average outdoor water use for non-residential customers	43	percent	URS, 2004.	Sewage generation is only a fraction of overall consumption
	7	Ratio of sewage generation to total water consumed on site	24	percent	Assumed based on URS 2004.	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer
Artist Studios	udios					
	1	# of artists	252	eldoed	Lennar, 2009	
	2	Consumption per artist	85	gpd	URS, 2004.	
Parks ar	dO pu	Parks and Open Space				
	1	Total irrigation demand from landscape architect	350,180	pdb	Per landscape irrigation prepared by RHAA 7/31/08	
Football Stadium	Stadi	mn				
	_	Football games / year	10	Home games	Economic and Planning Systems, 2009.	
	2	Attendance at football games	00069	people	Economic and Planning Systems, 2009.	

Page 27 of 31

	က	Other venues per year	20	Other venues	Economic and Planning Systems, 2009.	
	4	Attendance at other venues	37500	eldoed	Lennar, 2009	
	5	Employees (football day)	3625	people	Stadium Staffing Numbers from SF 49ers, (Lennar, 2009)	Includes 2900 employees and 725 media personnel
	9	Employees (event day)	1,922	people	Pro-rated using football day attendance and employees on football days	
	7	Employee (nonevent days)	48	people	Stadium Staffing Numbers from SF 49ers, (Lennar, 2009)	
	8	No. of players/performers (event day)	200	people	Assumed	100 people per team for players and staff. Assumed same number for other event days
	6	Stadium average daily irrigation	23979	gpd	Marty Laporte, 2009	
	10	Sewage generation per seat and employee on game days	4	pd6	EPA, 2002.	EPA value is for "auditorium" Sewage generation is only a fraction of overall consumption
	11	Ratio of sewage generation to indoor water consumption	95	percent	Assumed based on URS 2004.	Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed indoors would not go to sanitary sewer
	12	Water consumption per permanent employee per day	85	pdb	URS, 2004.	
rmar	ıce ∖	Performance Venue				
	_	Performance venue job creation	40	seats/job	Economic and Planning Systems, 2009.	
	2	Performance events per year	250	events	Economic and Planning Systems, 2009.	
	3	Employees - typical day	7	people	Assumed	Prorated to be similar to stadium
	4	Visitors per performance	10,000	people	Per CP/HPS development program, 2009	

Page 28 of 31

	9	Water consumption per permanent employee per day	85	pdb	URS, 2004.	
	7	Sewage generation per seat and employee on event days	4	bdg	EPA, 2002.	EPA value is for "auditorium". Sewage generation is only a fraction of overall consumption
		Ratio of sewage generation to indoor				Required to convert sewage generation to total water consumption. Conservative in that a small portion of water consumed
Sanitary Sewer	12 Sewe	water consumption er	95	percent	Assumed based on URS 2004.	indoors would not go to sanitary sewer
	_	Percent of indoor consumption to sanitary sewer	100%	Percent	Assumed per URS 2004 and conversations with W&K	
						Though some losses may occur, 100% of cooling demand is assumed to go to
	2	Res)			Assumed per conversations with W&K	sanitary sewer

Table 23: End use demand distributions by land use (URS 2004)

Table 3-3 End-Use Data - Initial Percentage Assumptions

	Initi	ial Percentages by	Customer-Bill	ing Categor	у
End Use	Single-Family Residential	Multi-Family Residential	Commercial	Industrial	Institutional
	Inde	oor Usage			
Toilets (indoor)	26.7%	26.7%	25%	23%	20%
Urinals (indoor)	NA	NA	0%	7%	0%
Laundry (indoor)	21.7%	21.7%	8%	5%	10%
Showers (indoor)	16.8%	16.8%	5%	5%	16%
Bath (indoor)	1.7%	1.7%	NA	NA	NA
Faucets (indoor)	15.7%	15.7%	10%	15%	19%
Process (indoor)	NA	NA	34%	30%	5%
Dishwashers (indoor)	1.4%	1.4%	8%	5%	15%
Internal Leakage (indoor)	13.7%	13.7%	10%	10%	15%
Other Domestic (indoor)	2.2%	2.2%	NA	NA	NA
	Outd	loor Usage			
Irrigation and Landscaping (outdoor)	80%	80%	75%	65%	70%
Pools and Fountains (outdoor)	5%	5%	2%	5%	5%
Wash-down of house/facilities (outdoor)	5%	5%	3%	0%	5%
Car Washing (outdoor)	5%	5%	0%	0%	0%
Cooling (outdoor)	0%	0%	15%	25%	15%
External Leakage (outdoor)	5%	5%	5%	5%	5%

NA – Not Applicable

Sources: AWWARF, Konen (1986), Behling et al. (1992)

Table 25: Assumed end use distributions for the stadium and performance venue

Indoor Usage	%	95%
Outdoor Usage	%	5%
Indoor Uses		
Toilets	%	30%
Urinals	%	30%
Laundry	%	0%
Shower	%	5%
Bath	%	0%
Faucets	%	15%
Process Water	%	10%
Dishwashers	%	0%
Internal Leakage	%	10%
Other domestic	%	0%
Outdoor Uses		
Irrigation and landscaping	%	20%
Pools and Fountains	%	0%
Wash down of houses and		
facilities	%	20%
Car Washing	%	0%
Cooling	%	50%
External Leakage	%	10%

Page 30 of 31

Table 27: Assumptions used to adjust between water demand scenarios

		Historical Benchmark	Adjust	Adjusted to CA Code		SFGBO	
	Max Flow or Quantity	Note / Reference	Max Flow or Quantity	Note / Reference	Max Flow or Quantity	Note/Reference	Unit
Plumbing Fixture							
Lavatory faucet, private	2.5		2.2	2007 California Plumbing Code	1.5	EPA WaterSense	gpm at 60 psi
Lavatory faucet, public, (metering)	0.25		0.25	2006 International Plumbing Code	0.2	CA Green Building Standard 2008	gallon per metering cycle
(not metering)	9.0		0.5	PC	0.5	n.a.	gpm at 60 psi
Shower head	3.125	URS 2004*	2.5	2007 California Plumbing Code	1.75	EPA WaterSense	gpm at 80 psi
Sink faucet	2.5		2.2	Plumbing Code	1.5	EPA WaterSense	gpm at 60 psi
Urinal	2	URS 2004*	1	2007 California Plumbing Code	0.125	EPA Water Sense	gallon per flushing cycle
Water closet	3.5	URS 2004*	1.6	2007 California Plumbing Code	1.28	EPA Water Sense and CA Green Building Standard 2008	gallon per flushing cycle
Other Appliances							
Dishwasher (Residential)	7		9	US Department of Energy 2007	4	Energy Star	gallons/cy capacity
Dishwasher (Commercial)	1.75		1.46	Energy Star	0.92	Energy Star	gallons per rack
Laundry	36.4	URS 2004	26	(US Federal Standard by 2011)	18	n.a. (calc)	gal/load
Laundry	13.2		8.5	CA Green Building Standard 2008	9	EPA Water Sense	gal/load-cf (Water Factor)
Irrigation							
Private Lands		Based on water demand distribution		California Water Efficient Landscape Ordinance (CWELO)	%09	CA Green Building Standard 2008	Fractional reduction compared to CWELO
Public Open Space		Per Landscape Architect Estimates		Per Landscape Architect Estimates - Note that this is less than CWELO	%09	CA Green Building Standard 2008	Fractional reduction compared to CWELO

Table 24: Other assumptions used to adjust the CA code demand to the SFGBO

Improved Cooling Efficiency		
Total fraction demand reductiont due to building envelope improvement		
measures and improved cooling technologies	0.25	
Reduced Losses		
Fractional demand reduction due to new piping and metering	0.25	

5 References

British Standards Institution. 2006. Sanitary Installations - Part 1: Code of practice for the design of sanitary facilities. 6465-1:2006

California Building Standard s Commission. 2009. 2008 California Green Building Standard Code. California Code of regulations, Title 24, Part II.

California Department of Water Resources, 2008. Modified text of proposed regulation. California Water Efficient Landscape Ordinance. California Code of Regulations, Title 23, Section 490 – 495. November 2008.

City of Los Angeles, 2006. L.A. CEQA Threshold Guide, 2006 Exhibit M.2. - 12 Sewage Generation Factors.

Economic and Planning Systems, 2009. Working Draft Report, Fiscal Analysis of the Candlestick Point – Hunters Point Shipyard Redevelopment Project, updated May 13, 2009.

EPA, 2002. Onsite Wastewater Treatment Systems Manual - February 2002 EPA/625/R-00/008

Lennar, 2008. – 2009. Personal communications in emails dated January 2008 through June, 2009.

Lennar, 2009. Candlestick Point / Hunters Point Shipyard Phase II Administrative Draft EIR. October 2009.

Marty LaPorte, Water Resources and Environmental Quality, Stanford University. 2009. Email regarding irrigation at Stanford University Football Stadium. Dated 5-26 -2009. Taken from Feasibility Study for Water Recycling at Stanford.

Mundie & Associates, 2009. Preliminary Draft EIR Section, *Population, Housing and Employment*, February 10, 2009

San Francisco Public Utilities Commission, 2005. 2005 Urban Water Management Plan.

University of California at Berkeley, 2020 Long Range Development Plan Draft Environmental Impact Report, April 15th 2004. (http://www.cp.berkeley.edu/LRDP 2020draft.htm)

URS, 2004. SFPUC Wholesale Customer Demand Projections Technical Report, Prepared for the San Francisco Public Utilities Commission, 2004.

Winzler & Kelly. Personal communications in emails dated July 2009.

FUTURE DEMANDS

			Annual Demand (MG/yr)	Annual Demand (mgd)	Peak Month Demand (mgd)
Residential (Indoor) New Unit # of	persons per new unit	2.3			
	# of new units	7248			
	leaks	5%			
Tallet Florida	gal/person/day	gal/unit/day			
Toilet Flushing		14.87	39.3		0.108
Laundry Shower		14.47	38.3		0.105
Bathtub		23.29 9.20	61.6 24.3		0.169 0.067
Dishwashing		2.21	5.8		0.007
Bath Fauce		4.49	11.9		0.010
Kitchen Fauce		22.77	60.2		0.165
Leaks		4.56	12.1		0.033
Subtotal Residential New Tower	39.7	95.85	254		0.69
Residential (Indoor) Existing Tower Unit	_		201	0.00	0.00
# or pers	ons per ex tower unit	2.3			
		1638 10%			
	leaks	10%			
T 7.450.43	gal/person/day	gal/unit/day			
Toilet Flushing		18.58	11.1		0.030
Laundry Showei		13.46	8.0		0.022 0.030
Bathtub		18.39 9.20	11.0 5.5		0.030
Bath Fauce		4.49	2.7		0.013
Kitchen Fauce		25.98	15.5		0.043
Leaks		9.01	5.4		0.045
Subtotal Residential Ex. Tower		99.10	59		0.16
Non-Residential	33.2	000	00	00	00
Non-Residential	square feet	g/sf/yr			
Retai		9/5///1	3.059	0.008	0.008
Office		8	0.961		0.003
Educationa		10	0.216		0.001
Maintenance		20	0.300		0.001
Fitness Club		130	7.111		0.019
Structured Parking	2,917,400	0.1	0.292	0.001	0.001
	Subtotal	Non-Residential	11.9	0.03	0.033
Irrigation		acres			
	Public Open Space	49	22.72	0.06	0.16
	Courtyards	12.3	5.70	0.02	0.04
	Farm	3	1.71		0.011
	Playing Fields	1.8	1.13	0.003	0.008
	Pond	0.8	0.12	0.0003	0.004
	Sı	ubtotal Irrigation	31.4	0.09	0.22
		TOTAL	297	0.98	1.11

മ
ż
⇁
ĭ
ᇙ

pase case (existing code)								
	Shower	Bath Faucet	WC	Bathtub	Kitchen	Dishwasher	Laundry	Laundry Total Per Person
db/jdb/wdb	2.5	1.5	3.5	40	2.2		40.9	
uses/person/day	0.65	1.5	5.05	0.1	1.0		0.37	
minutes	8.2				7.5			
gallons/day	13.33	2.25	17.68	4.0	16.57		15.13	68.95
Efficient Fixtures								
	Shower	Bath Faucet	WC	Bathtub	Kitchen	Dishwasher	Laundry	Laundry Total Per Person
d6/jd6/wd6	1.5	1.3	1.6	40	1.5		15	
uses/person/day	0.65	1.5	5.05	0.1	1.0		0.39	
minutes	8.2				7.5			
gallons/day	8.0	2.0	8.08	4.0	11.30		5.9	39.17
Super Efficient Fixtures								
	Shower	Bath Faucet	WC	Bathtub	Kitchen	Dishwasher	Laundry	Laundry Total Per Person
lab/Jab/mab	1.5	1.0	1.1	40	1.34		15	
uses/person/day	0.65	1.5	5.05	0.1	1.0		0.39	
minutes	8.2				7.5			
gallons/day	8.00	1.50	5.56	4.00	10.09		5.9	34.99

NEW UNITS

Base Case (existing code)	•							
	Shower	Bath Faucet	WC	Bathtub	Kitchen	Kitchen Dishwasher	Laundry Tota	Laundry Total Per Person
ldb/jdb/mdb	1.9	1.5	1.6	40	2.2	12.5	56	
uses/person/day	0.65	1.5	5.05	0.1	1.0	0.10	0.37	
minutes	8.2				9.9			
gallons/day	10.13	2.25	8.08	4.00	14.52	1.25	9.62	49.85
Efficient Fixtures								
	Shower	Bath Faucet	WC	Bathtub	Kitchen	Dishwasher	Laundry Tota	Laundry Total Per Person
db/Jdb/mdb	1.9	1.3	1.28	40	1.5	9.6	17	
uses/person/day	0.65	1.5	5.05	0.1	1.0	0.10	0.37	
minutes	8.2				9.9			
gallons/day	10.1	1.95	6.46	4.0	6.6	1.0	6.29	39.69
Super Efficient Fixtures								
	Shower	Bath Faucet	MC	Bathtub	Kitchen	Dishwasher	Laundry Tota	Laundry Total Per Person
ld6/fdb/mdb	1.5	0.5	17	40	1.3	4	6.6	
uses/person/day	0.65	1.5	5.05	0.1	1.0	0.13	0.39	
minutes	8.2				9.9			
and the second second	000	1	L		0	01.0	0	00,00

model numbers for cut sheets:	: sheets:		laundry (private)	ite)		
				26 gpl	US Federal Standard (2011)	
bath faucet	2.2 gpm			17 gpl	SFPUC Conservation Model	
	1.5 gpm	EPA WaterSense		9.9 gpl	Asko	
	1.3 gpm	SFPUC Conservation Model				
	1.0 gpm	Niagara_faucet_aerator_N3210-SAW	dishwasher			
	0.5 gpm	Kohler K-15597-P-CP		12.5 gpl	SFPUC Conservation Model	
				9.6 gpl		
toilets	1.6 gpf			4 gpl		
	1.28 gpf	Green Building Standard (2008)				
	1.1 gpf	Kohler K-3519	shower	2.5 gpm	CA Plumbing Code (2007)	
				1.9 gpm	SFPUC Conservation Model	
kitchen faucet	2.2 gpm			1.75 gpm	EPA WaterSense	
	1.5 gpm	1.5 GPM Niagara Dual-Spray Kitchen Aerator	rator	1.5 gpm		
	1.3 gpm	SFPUC Conservation Model				
laundry (commercial)						
	40.9 gpl	SFPUC Conservation Model				
	ldg cr	Maytag MAHZ1PD				

Parkmerced Water Demands September 2009

TOTALS BY UNIT

Existing Units to Hemain	=			
# of units pers	persons per unit leaks			
1638	2.3	10%		
	gpcd gal/unit/day	total (mgd)	total (MG/yr)	
code	75.8	74.4	386	104.3
efficient	43.09	99.1	0.162	59.2
super efficient	38.49	88.5	45	52.5

efficient	43.09		0.162		59.2
super efficient	38.49	88.5			52.9
					Ī
New Units					
# of units	persons per unit leaks	leaks			
<u>'</u>	7248 2.3	2%			
			1		
	pod6	gpcd gal/unit/day	total (mgd)	total (MG/yr)	
code	52.3	120.4			318.5
efficient	41.68	95.9	0.695		253.6
super efficient	32.82	75.5			199.7

Weighted Average				
	gpcd gal/unit/day	total (mgd)	total (MG/yr)	
code	26.7		.945	344.8
efficient	41.9	96.5	0.699	255.2
super efficient	33.9	0.77	3.565	206.1

TOTALS BY SITE

TOTAL RESIDENTIAL	TIAL		
	MGD	MG/YR	
code		1.158	422.8
efficient	_	0.857	312.8
super efficient	_	0.692	252.7

NON-POTABLE RESIDENTIAL		toilet flush	ushing new units, plus all laundry
MGD	MG/YR		
code	0.352	128.5	
efficient	0.235	85.6	
super efficient	0.179	65.3	

POTABLE RESIDENTIAL		
MGD	MG/YR	
code	0.806	294.3
efficient	0.622	227.2
super efficient	0.513	187.3

Parkmerced Existing Demand Backup documentation – June 25, 2009 Beth Goldstein, P.E. Hydroconsult Engineers, Inc.

EXISTING:

Residential (Indoor) Non-Residential Irrigation

POTA	BLE	NON-PO	ΓABLE	ТОТ	AL
MG/yr	mgd	MG/yr	mgd	MG/yr	mgd
202	0.55	-	-	202	0.55
-	-	-	-	-	-
58	0.16	-	-	0	0.16
260	0.71	-	-	202	0.71

FULL BUILD-OUT: (previously reported)

Residential (Indoor) Non-Residential Irrigation

	POTAI	BLE	NON-PO	ΓABLE	тот	AL
	MG/yr	mgd	MG/yr	mgd	MG/yr	mgd
	272	0.74	50.1	0.14	322	0.88
	12	0.03	-	-	12	0.03
١	-	-	31	0.09	31	0.09
	284	0.78	82	0.22	365	1.00

FULL BUILD-OUT: (w/efficient fixtures)

Residential (Indoor) Non-Residential Irrigation

	POTA	BLE	NON-PO	TABLE	ТОТ	AL
	MG/yr	mgd	MG/yr	mgd	MG/yr	mgd
)	227	0.62	85.6	0.23	313	0.86
ıl	8	0.02	3.6	0.01	12	0.03
n	-	-	31	0.09	31	0.09
	236	0.65	121	0.33	356	0.98

Notes: Existing demands calculated from residential billing records 2006-7 and irrigation billing records 2005-2006.

Future non-potable demand includes toilet flushing in new units, all laundry, and all irrigation.

7. WATER SYSTEM

7.1 Existing System

7.1.1 Existing Water Supply

There are two existing sources of water supply serving Treasure Island. The primary supply is provided by the San Francisco Public Utilities Commission (SFPUC) through an existing 10-inch diameter steel pipe attached to the western span of the Bay Bridge. Water is pumped across the bridge by a pumping station located at 475 Spear Street in San Francisco. The station contains four pumps each rated at 900 gpm. The station can run a maximum of two pumps at a time for a maximum station output of 1,800 gpm.

The existing back up supply of water is provided by the East Bay Municipal Utility District (EBMUD) through a 12-inch diameter ductile iron main connected to an EBMUD water meter at Beach Street in Emeryville. From this location, water is delivered to a pump station located at Pier E23 of the existing Bay Bridge in Oakland. Water is then pumped through a 12-inch diameter steel pipe attached to the eastern span of the Bay Bridge. This water supply charges the fire hydrants on the Bridge and is connected to the existing water tanks on YBI for an emergency backup water supply. The maximum flow rate for this system is reported to be 1,500 gpm. There is currently an agreement in place between EBMUD and the Navy that limits the average annual flow 61 gallons per minute to maintain water quality in the line on the bridge. Actual average annual flows are well below that limit, at approximately 35 gpm.

7.1.2 Existing Water Storage

There are currently four existing concrete reservoirs on Yerba Buena Island that service both Yerba Buena Island and Treasure Island. Combined they have a total design capacity of approximately 6.5 million gallons to serve as both the potable and fire protection water supplies for Treasure Island and Yerba Buena Island. However, all of the tanks are in varying states of disrepair and cannot operate to their full design capacity. The actual operating storage capacity is approximately 1.9 million gallons with another 0.5 million gallons dedicated for fire protection. The design capacities, operating capacities, and operating elevations of the existing reservoirs are shown in Table 7.1.

Table 7.1	Existing Reservo	n Data		
Reservoir	Design Capacity	Current Operating	Operating	Primary Service
Number	(million gallons)	Capacity	Elevation Range	
		(million gallons)	(NAVD88)	
227	3.0	0.0	252.5 to 255.5	TI
162	2.0	1.3	322.0 to 327.0	YBI
168	0.5	0.5	356.0 to 359.0	Fire Reserve
242	1.0	0.6	247.0 to 251.0	TI/YBI

Table 7.1 – Existing Reservoir Data

The elevations of the existing reservoirs provide an operating pressure of approximately 100-115 psi on TI and 80 psi on YBI (pressures at the higher areas of YBI are achieved with booster pumps).

The existing water storage tanks range in age from 60 to 85 years, and studies indicate that they are all in poor condition and will require either major rehabilitation or replacement.

7.1.3 Existing Water Distribution System

The original piping systems for a separate potable water and fire protection system for the Islands was constructed in 1939 out of copper, galvanized steel, and asbestos cement pipe. In 1990, the two systems were combined and the pipe material replaced with PVC pipe. Many of the individual building services and irrigation services originally constructed out of galvanized steel, however, have not been replaced. The relatively new PVC pipe system will be utilized on an interim basis during the initial phases of construction, but will eventually be replaced at the full build out of the project.

7.2 Proposed Domestic Water System

7.2.1 Proposed Water Demand

The estimated water demand for the proposed Land Use Plan is presented on Table 7.2. This estimate includes demand for the new development as well as the existing demand for the Department of Labor and the Coast Guard. The demand factors for the various facilities are indicated in the notes at the bottom of the table. The project will include the use of recycled water for irrigation and appropriate plumbing in the commercial use buildings. The potable demand factors included in Table 7.2 account for the use of water conserving fixtures in all buildings, the use of recycled water for toilet flushing and other non potable water uses in commercial buildings, and the use of recycled water for irrigation uses where appropriate. Recycled water demands are shown in Table 9.1 and 9.2A of Section 9, Recycled Water System.

As shown on Table 7.2, the average daily demand is estimated to be 1.08 millions gallons per day, or 753 gallons per minute (gpm). Because of the size of the proposed development, the relatively homogeneous use, and the use of recycled water for the irrigation needs, the project will use a maximum day demand factor of 1.2 times the

average daily demand. Therefore, the maximum daily demand is 1.3 million gallons per day or 904 gpm.

The project will be designed to provide fire flow of 3,500 gallons per minute. This will be adequate to accommodate new construction. The existing Buildings 2 and 3 are designated to remain and will be retrofitted with appropriate supplemental fire protection systems when they are remodeled for commercial use. The fire protection systems designs for these structures will need to consider the building construction, use, and available fire flow.

7.2.2 Proposed Water Supply

7.2.2.1 Primary Water Supply

The existing SFPUC pump station in San Francisco and 10-inch line on the western span of the Bay Bridge is adequate to provide the required water supply to the project at full buildout and will continue to be the primary supply of water to Treasure Island. As with other water systems in the City, the SFPUC will need to monitor the condition of the pump station and supply line and perform routine maintenance and repairs to ensure reliable service to the islands.

7.2.2.2 Secondary Water Supply Source

The proposed secondary water supply to Treasure Island will continue to be from the EBMUD service in Oakland. Caltrans' construction of the new eastern span of the Bay Bridge, the Eastern Span Seismic Safety Project (ESSSP), is requiring modifications to the EBMUD service near the bridge abutment in Oakland and across the bridge. The new improvements will include:

- Relocation of the water main to the new Bay Bridge abutment.
- New pump station near the new bridge abutment in Oakland.
- New stub and shut off valve on YBI near column line XXX of the new bridge structure.

All of these items will be constructed as part of the ESSSP in cooperation with the SFPUC, and are not considered part of this project.

In addition to the secondary water source improvements associated with the new Bay Bridge project, the alignment of the secondary water source on YBI will be revised to as shown on Figure 7.1. The new alignment will follow North Gate Drive and Macalla Road to the new water tank locations.

The EBMUD back-up system will be capable of delivering approximately 1,800 gpm during emergency conditions. The system will continue to operate within the existing limit of 61 gallons per minute in average annual flow. This modest routine use is needed to maintain the water quality in the line across the Bay Bridge.

8,000 Residential Units + 100,000 Office

Table 7.2 - Treasure Island Redevelopment Project Water Demand

DESCRIPTION OF USE	OF US	E			POT	POTABLE DEMAND	MAND
				U	Average	Average	Maximum
				u ·	Daily	Daily	Daj
Notes Land Use	Units	Units Rooms	Area	ı t	Demand (gpd)	Demand (gpm)	(gpm) (Note 12)
1 Residential	8,000			ea	912,000	889	092
2 Hotel		200		ea	132,500	92	110
3 Retail/Commercial			370,000 sf	$_{ m Js}$	25,900	18	22
4 Miscellaneous Structures			75,000 sf	$_{ m s}$	7,500	9	9
5 Adaptive Reuse			$325{,}000 \mathrm{\ sf}$	$_{ m s}$	55,957	68	47
6 Police/Fire			30,000 sf	$_{ m Js}$	4,000	ε	ε
7 Treasure Island School			105,000 sf	$_{ m s}$	21,000	15	18
8 Department of Labor (DOL)	1	006			111,542	LL	86
9 Coast Guard Facility					17,000	12	14
10 Open Space			300 ac	ac	30,000	21	25
11 Urban Farm			20	20 ac	2,000	1	2
Totals					1,319,399	916	1,099

Notes:

- 50 gallons per capita per day (gpcd), based on water conserving projections for 2030, based on 6000 units at 2.28 residents per dwelling unit. Population per dwelling unit based on City average from Demands Report
- water per room per day (toilet flushing). Assumes no grounds for irrigation. Water demand based on AWWA standards. Potable use based on 265 gpd/room; this includes all uses within the hotel. Recycled use based on 7 gallons recycled
 - Potable use based on 0.07 gpd/sf of retail/commercial space
- YBI Historic: Potable use based on 1 person per 200 SF, 20 gpcd total water use, minus 5 gpcd recycled water for toilets
 - Potable use based on 50 persons per acre at 150 gpcd, recycled use based on 20 gpcd.
- Potable use based on 400 persons per day at 15 gpcd total water use, minus recycled water use (toilets) at 5 gpcd
 - 1 Student per 100 SF, 20 gpd per students
- Value based on 2007 monthly demand provided by S. Larano, SFPUC.
 - Value provided by S. Larano, SFPUC.
- 10 100 gpd/acre
 - 100 gpd/acre
- 12 Maximum daily demand 120% of average daily demand

7.2.3 Proposed Water Storage

The existing water tanks that serve YBI and TI are in poor condition and need major repair or replacement in order to serve the proposed project. To meet current SFPUC requirements, the Project will replace the existing water storage tanks in phases. The new water storage tanks will be sized to serve both the proposed new uses, as well as the existing uses that will remain.

The SFPUC water storage requirements for Treasure Island will be 2 days of maximum daily demand plus 4 hours of fire flow, or approximately 3.4 million gallons of storage.

The redundant water source from EBMUD provides an equal, compatible, and reliable back up water source to Treasure Island. If either SFPUC or EBMUD system is taken off line for maintenance, power interruptions, or damage due to earthquake, the other source will continue to supply 1,800 gpm, sufficient to meet the peak daily demands for the development. In the extremely unlikely event that both water supplies are taken down at the same time, then 2 days of maximum daily demand plus four 4 hours of fire storage should be sufficient to bridge the time for repairs or evacuation of the Island. It should also be noted that in such an event of extreme emergency, the consumption of potable water would likely be much lower than the calculated average demand shown in Table 7.2. Assuming reasonable reductions in retail, hotel, public and cultural uses that would naturally result following events of dire emergency the potable emergency demand would be significantly less than the average demand under normal conditions.

In addition to the normal operational storage requirements described above, the storage design will also need the ability to accommodate the maintenance of storage tanks. During maintenance, one tank, or portions of a tank, will need to taken out of service. During these regularly scheduled maintenance periods the SFPUC requires that the Treasure Island project maintain a minimum storage of 1 day maximum daily demand plus 4 hours of fire storage, or approximately 2.1 million gallons, at all times.

In order to meet the emergency and maintenance storage requirements, the water storage will be provided in two tanks. The existing 1.0 million gallon, circular, steel water storage tank adjacent to Macalla Road will be replaced with a new 1.0 million gallon, above grade, circular, steel water storage tank in the existing location. The remainder of the storage will be in a 2.4 million gallon water storage tank located at a higher elevation on YBI. Two locations are being considered for this tank as shown on Figure 7.2. The final location of this tank will be determined during the Master Planning phase of the project. The 2.4 million gallon tank will be divided into two 1.2 million gallon cells to accommodate maintenance and provide a minimum of 2.2 million gallons of storage at all times during maintenance. Together, the two tanks will provide 3.4 million gallons of storage. The final sizes, configuration and locations of the water storage tanks are described in more detail in the "Treasure Island and Yerba Buena Island Water Service Area Master Plan and Tank Siting Study" (Appendix E)

The upper storage tank (2.4 million gallons) will be supplied by water pumped directly from the 10-inch supply line from San Francisco, and the back up supply from EBMUD during emergencies. Supply to the lower, 1.0 million gallon tank will flow from the 2.4 million gallon tank by gravity. Because of the elevation of the 1.0 million gallon tank, it is likely that there will need to be a pressure reducing valve between the tank and the Treasure Island service area. The 2.4 million gallon tank is not high enough to provide service with adequate pressure to the upper portions of YBI. Fire flow and domestic demands to these YBI areas will be provided by an adjacent booster pump station with multiple pumps and emergency generator.

7.2.4 Proposed Domestic Water Distribution System

Through phased development of YBI and Treasure Island the existing PVC water distribution system will be replaced with a new ductile iron water system installed to SFPUC standards. Based on preliminary calculation, we anticipate that new water mains will range in size from 8 inches at minimum to a maximum size of 24 inches. A conceptual layout of the proposed domestic water distribution system is shown on Figure 7.1.

The California Code of Regulations, Title 22, requires that the water distribution system be capable of delivering the maximum daily demand coincident with the required fire flow. Based on the preliminary demand calculations described above, the proposed water system will be designed to deliver the maximum daily demand of 882 gpm along with the design fire flow of 3,500 gpm with a minimum residual pressure of 20 pounds per square inch to the fire hydrants on the Island.

7.3 Proposed Bay Water Auxiliary Water Supply System (AWSS)

Treasure Island and YBI do not currently have an AWSS system for fire protection. The project proposes to construct a new bay water AWSS system on TI as a backup fire protection system in the unlikely event of an extended total disruption of water supplies to Treasure Island. AWSS is not planned for Yerba Buena Island due to its steep topography, smaller size and development, and proximity to storage tanks and water supply lines on the Bay Bridge. The exact nature of the AWSS system is still being discussed with the San Francisco Fire Department (SFFD). It is expected that TI's AWSS may provide the following:

- A pump station with a salt-water intake pipe
- Two pipe manifolds for connection to fireboats
- Up to twenty-nine fire hydrants
- A main trunk pipe connecting the pump station, manifolds, and fire hydrants
- Three suction hydrants

The proposed bay water AWSS system discussed with TIDA, SFPUC and SFFD is shown on Figure 7.3. A brief description of the main elements of the AWSS system are as follows:

Pump Station and Intake Structure

The AWSS pump station and intake structure will be capable of continually charging the system and delivering 3,500 gpm of bay water at a maximum pressure of 125 psi. The pump station will include a diesel emergency power generator and additional pumps to provide redundancy during emergencies.

The water is drawn through a horizontal, large diameter draft tube (steel or concrete pipe) with a trash rack on the end to prevent uptake of debris. The draft tube connects to the vertical pump pit (precast concrete box or large diameter manhole), in which the pump intake pipe is located. A retractable fish screen may be included at the interface of the draft tube and the pump pit to prevent fish from entering into the pump system. Portions of the pump station will be contained in a pump house, for protection from weather and damage. See Figure 7.3.1.

Distribution Piping

A dedicated underground piping system will distribute the bay water within the developed areas of TI; dedicated bay water AWSS hydrants will be provided along the distribution route.

Fireboat Manifolds

The fireboat manifolds will be located near the ferry quay and near Pier 1. The manifolds will allow the fireboats to connect to the AWSS system and charge the lines in the unlikely event the pump station fails or additional flow/pressure is required in the system. When connected to the pipe manifold, the fireboat will draw salt water via its on-board pumps which may have a minor effect on the natural environment; this is assumed to be inherent to the operation of the fireboat and is beyond the scope of the AWSS.

Suction Hydrants

Three suction hydrants will be located around the perimeter of Treasure Island that will allow fire trucks to draft water directly from the Bay. Suction hydrants, also called Bay Suction connections, allow fire engines to draft water directly from the Bay. The hydrant is similar to typical fire hydrants, however there is no connection to a pressurized, piped water supply – the hydrant is connected to an intake pipe leading into the Bay. To prevent debris from entering the intake pipes, the end of the pipe may be fitted with a screen. See Figure 7.3.1.

Potential Bay Regulatory Issues

Construction and operation of the AWSS may potentially affect the Bay environment. Descriptions of the potential temporary and permanent effects on the environment, as well as ways in which those effects could possibly be reduced, are described below:

1. Temporary Construction Effects:
Construction of the draft tube and suction hydrant pipes will require temporary shoreline excavation in the vicinity of the intakes, construction of temporary shoring,

and backfill/replacement of existing shoreline revetment. See Figure 7.3.2 - 4 for approximate areas of potential effect. Measures to reduce the possible temporary environmental effects of this work could include:

- Limit the amount of disturbed area below the mean high water mark as much as feasible.
- Prohibit the use of materials that may reduce water quality
- Follow erosion control plans to keep sediment from entering the Bay
- Follow site maintenance plans to eliminate construction debris from entering the Bay

2. Permanent Construction Effects

The pump station draft tube and suction hydrant intake pipes will permanently extend through the shoreline revetment into the bay (below low water). This will be similar to other pipe penetrations through the shoreline for storm drain outfalls. Measures to reduce the possible permanent effects on the environmental from this work, could include:

- Limit the amount of permanent improvements below the mean high water mark as much as feasible.
- Prohibit the use of materials that may reduce water quality

3. AWSS Operational Effects

The intake structures have the potential to create a vortex at the end of intakes (pump station draft tube and suction hydrant intake pipes) which could constitute a hazard at the water surface if not addressed. To prevent this, the end of the intakes could be enlarged or otherwise designed to prevent vortex formation.

- a. There may be potential effects on fish during the regular testing of the AWSS system. The effect will depend largely on the anticipated usage of the AWSS, which will depend on the frequency and duration of scheduled tests of the system. For short-duration tests to verify the operational functionality of the system, measures such as fish screens to prevent fish uptake may not be necessary. If fish screens are required, the affect on fish in the Bay will depend on the design of the fish screen in accordance with the following parameters:
 - Size of openings (based on species and size of fish to be protected);
 - Porosity (percent open area of screen face);
 - Approach velocity (perpendicular to screen face);
 - Sweeping velocity (parallel to screen face).

In the event that the AWSS is operated to suppress actual fires, the system will be used for a longer duration than that used for periodic testing; consequently, the effect on the environment could be greater. However, it is assumed that any effects that occur as a result of an actual emergency will be acceptable as a unique, singular event, and that the emergency needs will govern.

The final designs for the AWSS intake structures will be submitted to the appropriate agencies for review and approval prior to construction. The permitting agencies will include

the Bay Conservation and Development Commission (BCDC), Army Corps of Engineers, Regional Water Quality Control Board, California Department of Fish and Game, and United States Fish and Wildlife Service.

7.4 Phases for Water System Construction

The new water infrastructure to support development of the project will be installed in phases to match development of the project. The existing land uses on Treasure Island will continue to utilize the existing water distribution system with temporary connections to the new system and temporary water infrastructure where required to maintain the existing uses until they are demolished or permanent connections can be made. Water storage will be brought on-line as required to support the water demands of the project as it develops.

7.5 Master Utility System Plans and Master Fire Protection Plan

A Water System Master Plan will be prepared in coordination with the SFPUC and the SFFD during the development of the DDA. The Water System Master Plan will include detailed calculation to size pipes, domestic water system layout, proposed water tank locations and project phasing. The Master Plan is not expected to substantially change the supply, storage and distribution of water described here.

7.6 Sustainability Goals

The construction of the secondary water source from EBMUD, combined with the reconstruction of the entire water storage and delivery system on Yerba Buena and Treasure Islands will provide a robust water supply to sustain and protect the island community. This new system combined with water conserving fixtures within the new buildings, and the maximum feasible use of recycled water for the landscape areas and commercial buildings within the core development area (see below) will meet, or exceed, the goals described in the Sustainability Plan.

9. RECYCLED WATER SYSTEM

To support the goals of the Sustainability Plan, and to meet the SFPUC requirements for use of recycled water, this Infrastructure Plan includes a program to utilize recycled water for irrigation and for building plumbing.

9.1 Existing System

Treasure Island does not currently have a recycled water system.

9.2 Proposed System

9.2.1 Recycled Water Demand

The use of recycled water is proposed for irrigation of the open space areas, the urban farm, roadside planter areas, landscape water features, and for use in appropriate plumbing fixtures within commercial buildings. Recycled water will not be used for indoor residential use or irrigation in the residential areas.

The Treasure Island open space program includes approximately 300 acres of open space, including a 20-acre urban farm. The development plan calls for 25-acres of the open space area to be planted in turf grass for recreational use. These areas will require permanent, long-term irrigation. The remainder of the open space area will be planted with native and adapted drought tolerant species that require significantly less or no irrigation after being irrigated for the first two years for plant establishment. The largest irrigation demand will take place during the dry months of April through October, with peak irrigation demands expected in July. In addition, the irrigation demands for open space also include a component of flow to maintain the storm water treatment wetlands during the dry weather months. Recycled water demand for irrigation will increase with phased construction of the open space, peaking with the completion of the large natural park area on the north end of the island in the last phase of construction. Demand will then be reduced as the natural areas are established and removed from the irrigation system. Changes to the open space program will subsequently modify the irrigation demand, therefore the recycled water plant will need to be coordinated and sized as part of the open space and landscape design process.

The recycled water demand within commercial buildings will be consistent and occur throughout the year.

Based on the requirements described above, the required recycled water demand is estimated to be as follows:

Table 9.1 -Recycled Water Demand —Plant Establishment Period (through completion of open space construction)

Description	Average	Peak
General Open Space Irrigation	0.13	0.19
Urban Farm	0.04	0.06
Recreation Fields	0.08	0.11
Stormwater Wetland	0.03	0.04
Commercial Building Plumbing	0.15	0.15
Total Recycled Water Demand	0.43 mgd	0.55 mgd

Table 9.1A -Recycled Water Demand - Long Term

Description	Average	Peak
General Open Space Irrigation	0.08	0.12
Urban Farm	0.04	0.06
Recreation Fields	0.08	0.11
Stormwater Wetland	0.03	0.04
Commercial Building Plumbing	0.15	0.15
Total Recycled Water Demand	0.38 mgd	0.48 mgd

9.2.2 Proposed Recycled Water Supply

The August 13, 2006 Brown and Caldwell (B&C) report Evaluation of Wastewater and Recycled Water Treatment Alternatives for the Proposed Treasure Island Development (Appendix F) evaluated, at a planning level, the recycled water options for Treasure Island. Although the recycled water demands described in the B&C report have been updated based on the more recent irrigation demand numbers described above, and the type of on-island treatment process has been updated (refer to Section 8-Wastewater System), the analysis in that report still holds. The report reviewed general options for on-island and off-island supply of recycled water, and recommended a new on-island Recycled Water Treatment Plant.

Recycled water supply will be provided by an on-island recycled water plant sized to provide the average long-term recycled water demand of 0.38 mgd. The recycled water treatment plant will be constructed adjacent to the WWTF and include a 0.3 million gallon storage tank in order to meet the long-term peak demands of 0.48 mgd. Details of the proposed recycled treatment plant are included in Appendix G.

The on-island recycled water treatment plant will be sized to meet the long-term demand estimates. If the recycled water demand exceeds the recycled water supply during the first phases of development and the plant establishment period, the excess irrigation demand will be met with the potable water system. The proposed potable water storage built at the beginning of the project will be sufficient to supplement the recycled water supply in the early phases of the project when the domestic demand has not reached build-out levels. During the period of development when the potable water supply is

needed to supplement the recycled water demand, the potable water system will be temporarily connected to the recycled water system. This temporary connection will include a backflow prevention device approved by the SFPUC. The connection will be removed once the recycled supply is sufficient to meet the demands.

9.2.3 Proposed Recycled Water Distribution

Distribution piping for recycled water will be provided on TI (see Figure 9.1). Recycled water will not be used on YBI due to its distance from the recycled treatment plant and the pumping that would be required to meet the elevation change. The pipe material will be selected to meet the SFPUC requirements. Alternative pipe materials such as High Density Polyethylene (HDPE) or polyvinyl chloride (PVC) will also be explored with the SFPUC and SFDPW. Distribution pressure and flow requirements will be provided by a hydro pneumatic pressure system constructed near the storage at the recycled water plant.

9.3 Phases for Recycled Water System Construction

The Recycled Water Treatment Plant will be constructed concurrent with the Wastewater Treatment Facility. The recycled water distribution piping will be constructed in phases along with the other infrastructure systems. As noted above, during the initial phases the landscaping and building plumbing systems will utilize the potable water source until the recycled water treatment plant is complete. Once the treatment facility is complete, and the irrigation demand stabilizes to meet long-term demand projections, the connections to the potable water lines will be removed.

9.4 Master Utility Plans

A detailed Master Recycled Water Plan will be prepared in coordination with the SFPUC during the development of the DDA. The plan will provide additional design details for the above-described system, including the recycled water plant design requirements, detailed layouts and hydraulic calculations for the reclaimed water system, and system phasing plans. The Master Plan is not anticipated to substantially change the approach to recycled water provision described here.

9.5 Sustainability Goals

The use of recycled water for irrigation and building plumbing is a major component of the Treasure Island Sustainability Plan. The construction of the recycled water plant will provide the necessary irrigation for the open space landscaping included in the Land Use Plan as well as the required plumbing fixtures in the proposed commercial buildings. The supply of recycled water will achieve the goal of reducing the overall consumption of potable water from the municipal supply.

APPENDIX E TABLE 7.2 TREASURE ISLAND PROJECT WATER DEMAND WITH RECYCLED WATER FOR RESIDENTIAL USES (NOVEMBER 2009)

APPENDIX E: Table 7.2 - Treasure Island Project Water Demand (8,000 Residential Units + 100,000 sf Office) with Recylced Water for Residential Toilet Flushing

DESCRIPTION OF USE	SE		POTABL	E WATE)	POTABLE WATER DEMAND	RECYCLED WATER DEMAND (with recycled water residential toilet)	D WATER ith recycled ntial toilet)	TOTAL WATER DEMAND	SEWER DEMAND	NOTES
						Average	Average			
		n	Average	Average	Maximum	Daily	Daily	Average		
	No.	u	Daily	Daily	Daily Demand	Irrigation	Building	Daily		
			Demand	Demand	(mdg)	Demand	Demand	Demand	Average Daily	
Land Use		t	(gpd)	(gpm)	(Note 11)	(gbd)	(gpd)	(gpd)	Demand (gpd)	
Residential (with toilet recycled water)	8,000	Units	812,704	564	229	30,000	119,296	962,000	891,365	1
Hotel	500	Rooms	132,500	92	110		3,500	136,000	129,375	2
Office	100,000	$_{ m s}$	7,000	5	9		3,500	10,500	10,150	3
Retail	140,000	Js	9,800	7	8		4,900	14,700	14,210	3
Adaptive Reuse, General	244,000	Js	17,080	12	14		8,540	25,620	24,766	3
Adaptive Reuse, Retail	67,000	Js	4,690	3	4		2,345	7,035	6,801	3
Open Space	300	ac	30,000	21	25	180,000	0	210,000	28,500	6
Miscellaneous Structures	75,000	$_{ m s}$	5,625	4	5		1,875	7,500	7,219	4
Marina	400	Slips	20,000	14	17		0	20,000	19,000	12
Treasure Island School	105,000	$_{ m s}$	21,000	15	18		0	21,000	19,950	9
Police/Fire	30,000	$_{ m s}$	4,000	3	3		2,000	6,000	5,800	5
Misc. Small Community Facilities	13,500	$_{ m s}$	945	1	1		473	1,418	1,370	3
Pier 1 Community Center	35,000	Js	2,450	2	2		1,225	3,675	3,553	3
TI Sailing Center	15,000	$_{ m JS}$	1,050	1	1		525	1,575	1,523	3
Museum	75,000	Js	5,250	4	4		2,625	7,875	7,613	3
Department of Labor (DOL)	006	Rooms	111,542	77	93		0	111,542	105,965	7
Coast Guard Facility			17,000	12	14		0	17,000	16,150	8
Utility Facilities	14,000	$_{ m s}$	086	1	1		490	1,470	1,421	3
Urban Farm	20	ac	2,000	1	2	60,000	0	62,000	1,900	10
Totals			1,205,616	837	1,005	270,000	151,294	1,626,910	1,296,629	
Notes:										

Notes:

- Potable water demand based on 50 gallons per capita per day (gpcd) minus 6.4 gpcd recycled water for toilets, based on water conserving projections for 2030, 8,000 homes at 2.33 residents per dwelling unit. Population per dwelling unit based on City average from Demands Report.
 - Includes 30,000 gpd irrigation (CMG 8/7/09 spreadsheet)
 - Potable use based on 265 gpd/room; this includes all uses within the hotel. Recycled use based on 7 gallons recycled

water per room per day (toilet flushing). Assumes no grounds for irrigation. Water demand based on AWWA standards.

- Potable water demand based on 0.07 gpd/sf. Recycled water demand based on 0.375 gpd/sf.
- warming hut, etc. Estimated potable use is based on 1 person per 200 SF, 20 gpcd total water use, minus 5 gpcd Allowance for misc. open space buildings not included elsewhere, including the YBI Historic Buildings, kiosks, recycled water for toilets. ω 4
 - Potable use based on 400 persons per day at 15 gped total water use, minus recycled water use (toilets) at 5 gped.
 - 1 Student per 100 SF, 20 gpd per students.
- Value based on 2007 monthly demand provided by S. Larano, SFPUC.
 - Value provided by S. Larano, SFPUC. 5 6 7 7 8 8 8 9 9 110 112
- Potable demand at 100 gpd/acre. Irrigation demand at 180,000 gpd for TI (CMG 8/7/09 spreadsheet). Potable demand at 100 gpd/acre. Irrigation demand at 60,000 gpd (CMG 8/7/09 spreadsheet).
- Maximum daily demand 120% of average daily demand.
- Based on 400 slips, day use only (no live aboard). 50 gpd per slip.