Mission Terrace Land Preservation Committee

214 Cotter Street• San Francisco, CA 94112• Phone: 408.218.2777 • E-Mail: missionterraceLPC@gnail.com Web: www.savethefarmsf.com

Date: October 26, 2016

Angela Calvillo Clerk of the Board of Supervisors 1 Dr. Carlton B. Goodlett Place City Hall, Room 244 San Francisco, CA 94102-4689

Dear Ms. Calvillo:

The Mission Terrace Land Preservation Committee (MTLPC) is hereby appealing the issuance of the Categorical Exemption for the development proposed for 203 Cotter Street, Case # 2015-003791ENV, dated September 27, 2016. The exemption should not have been issued based on Section 15300.2.(c) of the California Environmental Quality Act (CEQA) Guidelines which states that "A Categorical Exemption shall not be used for an activity where there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances." The proposed project would have significant adverse environmental impacts on the neighborhood. These impacts have not been adequately addressed and require further study and analysis in an Initial Study followed by either a Mitigated Negative Declaration or Focused Environmental Impact Report.

The MTLPC has provided letters and reports regarding potential flooding and other hazards specific to the Mission Terrace neighborhood that have not been fully addressed by the project sponsor or the City. A hydrology report from Greg Kamman, of Kamman Hydrology and Engineering (attached) states that the proposed construction will increase flood hazards to surrounding properties and increase human exposure to raw sewage during flood events.

The Planning Commission did not consider the potential hydrology impacts and determined that the standard development and building process should be sufficient to meet CEQA guidelines. This Categorical Exemption fails to address unusual circumstances within the Mission Terrace neighborhood related to stormwater and flooding. In addition, traffic and parking impacts were not adequately addressed and provide additional grounds for appeal.

Given the above circumstances, the proposed development at 203 Cotter Street has not met all the conditions that CEQA requires as the basis for exemption generally and for Class 32 exemptions (CEQA Guidelines Section 15332) Such Exemptions are appropriate for in-fill development projects meeting the following conditions:

"(a) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations.

(b) The proposed development occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses.

(c) The project site has no value as habitat for endangered, rare or threatened species.

(d) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality.

(e) The site can be adequately served by all required utilities and public services."

While the project is an in-fill development that meets conditions a, b, and c, it does not meet conditions d and e. We are concerned that the project could result in significant adverse impacts on hydrology, traffic, and parking and may not be adequately served by all required utilities and public services.

Hydrology. Mission Terrace is a neighborhood beset by major flooding on a regular basis. The neighborhood has experienced two 100-year flood events in the past ten years, and five-year rain events occur nearly every year. The plans on file by the project sponsor only address the one and two -ear rain events and this simply is not the real life situation tat the neighborhood faces. When heavy rain occurs, flooding in Mission Terrace invades many homes with raw sewage. The City of San Francisco has sued twice by the neighborhood over this issue. The project at 203 Cotter increases sewage loads to the already over-burdened system by adding sinks and toilets to accommodate 230 additional students and staff. A hydrology report from Greg Kamman, of Kamman Hydrology and Engineering (attached) states that the proposed construction will increase flood hazards to surrounding properties and increase human exposure to raw sewage during flood events. The Commission refused to take into consideration the potential hydrology impacts. We steadfastly believe that further hydrological study must be undertaken to determine whether the project would result in significant hydrology impacts. Unless it can be demonstrated that such impacts would not be significant, the project should not be allowed to proceed. Once building begins, it will be too late to mitigate the likely increased flooding on Cotter Street and associated property damage and public health hazards.

Traffic and Parking. This proposed project will create a substantial amount of traffic on Cotter Street, which is a narrow one- way street already beset with traffic congestion and lack of available parking. Cotter is 35 feet wide and only allows for one car passage at a time. Cotter Street is also a major thoroughfare for cars driving from San Jose Avenue to Alemany or Mission Streets. The traffic memo generated by the project sponsor states that that pick-up and drop-off will generate 184 additional trips, but only 54 will be via car. This seems very low compared to most school situations and quite unlikely to be the real life daily scenario.

All the traffic mitigation plans provided by the school are aspirational only, there is no method of enforcement and methods are unrealistic at best. A "walking school bus" located 0.7 miles away from Cotter is simply not sensible for parents especially in rainy or inclement weather. Another measure suggests each grade is assigned a pickup/drop-off time, which is also non-enforceable and even if so, what will parents who miss their allotted timeslot do? They will drive around the block and continue to create more traffic. The transportation memo prepared for the project sponsor also indicates that parents will be able to find parking on Cotter Street or close by, however, anyone who has been to the area knows that parking capacity is nearly always 100 percent full any time of day or night due to proximity of Glen Park BART.

Ensuing backup of even a fraction of the unlikely figure of 54 cars would likely mean that Cotter Street is fully backed up potentially close or onto San Jose Avenue, at which point the Muni J line comes out of the San Jose Avenue tunnel and could be dangerously blocked.

While the project is an in-fill development, there is a reasonable possibility that it may have significant adverse hydrologic, traffic, and parking impacts and would not meet all the conditions prescribed by Class 32. Therefore, it cannot be exempt from CEQA under Section 15332. We ask that you determine that the Class 32 Categorical Exemption was not proper for this project and require that either a Mitigated Negative Declaration or Focused EIR be prepared.

Attached, you will find the following:

- 1. A copy of the CatEx determination dated 9/27/16,
- 2. Letter from Greg Kamman, Kamman Hydrology & Engineering, September 19. 2016, and

2

3. Letter from Greg Kamman, Kamman Hydrology & Engineering, September 26. 2016.

We appreciate your assistance in this matter. If there are any questions, please do not hesitate to contact me directly.

Sincerely,

Nancy Huff, President, Mission Verrace Land Preservation Committee

SAN FRANCISCO PLANNING DEPARTMENT

Certificate of Determination **Exemption from Environmental Review**

1650 Mission St. Suite 400 San Francisco. CA 94103-2479

415.558.6378

415:558.6409

Planning

Information:

415.558.6377

Reception:

Fax:

2015-003791ENV Case No.: Project Title: 203 Cotter Street Zoning: Residential -- House, One Family (RH-1) 40-X Height and Bulk District Block/Lot: 6795A/029 Lot Size: 30,744 square feet (0.71 acres) Project Sponsor: Jessie Elliot, Golden Bridge School (415) 912-8666 Staff Contact: Lana Russell-Hurd- (415) 575-9047 lana.russell@sfgov.org

PROJECT DESCRIPTION:

The project site (Assessors Block 6795A, Lot 029) is located on a parcel bounded by Cotter Street, Cayuga Avenue, Santa Rosa Avenue, Capistrano Avenue in San Francisco's Outer Mission Neighborhood. The project site is an existing neighborhood agricultural use and contains a greenhouse and two storage sheds. The parcel size is approximately 31,000 square feet (0.71 acres). The project proposes to change the use from a neighborhood agricultural use to a school and construct a new kindergarten through 8th grade private Golden Bridges School campus. The new school would enroll up to 200 students and 30 full or part-time staff. The campus would include a two-story building, totaling approximately 15,400 square feet. The proposed site plan is shown on Figure 1.

EXEMPT STATUS:

Categorical Exemption, Class 32 (California Environmental Quality Act [CEQA] Guidelines Section 15332)

DETERMINATION:

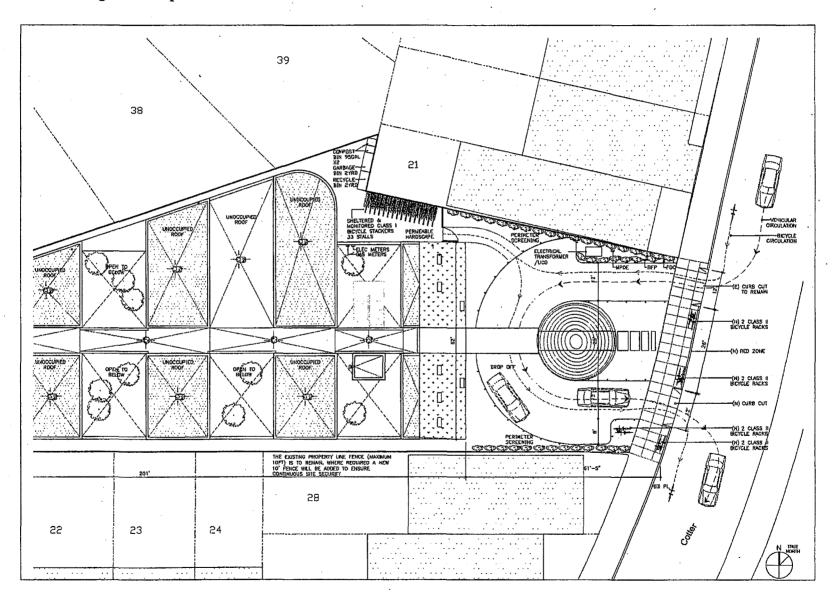
I do hereby certify that the above determination has been made pursuant to State and local requirements.

for Lisa M. Gibson

cc: Jessie Elliot, Project Sponsor

Nancy Tran, Current Planner

September 27, 2016


Acting Environmental Review Officer

Supervisor John Avalos, District 11 (via Clerk of the Board)

Outer Mission and Citywide Distribution Lists Virna Byrd, M.D.F.

Exemption from Environmental Review

Figure 1 – Proposed Site Plan

SAN FRANCISCO

2

PROJECT DESCRIPTION (continued):

The proposed building would be approximately 25 feet in height (excluding a 2 foot 4 inch elevator penthouse) and divided into two sections through a central hallway and would include six courtyard spaces and eight classrooms. The project site is surrounded by an existing 6 to 10 foot tall fence that would remain. The project would include a living roof, living wall¹, permeable pavers, and other bioretention² measures and would retain permeable open space in the rear of the property for farming and educational activities (totaling approximately 31,300 square feet of permeable space). The project may also include other stormwater retention features such as pipes, a detention vault, or a detention pond; as determined necessary during detailed design review. The project would include a total of 41 bicycle parking spaces, including 33 Class I and eight Class II bicycle parking spaces. Several physical traffic calming features are proposed as part of the project including: the installation of school zone signage and speed limit signs, speed humps along Cotter Street, and the installation of high-visibility crosswalks at the intersections of Cotter Street and San Jose Avenue and Cotter Street and Cayuga Avenue. Construction of the project would require excavation up to six feet below ground surface, resulting in approximately 910 cubic yards of soil excavation. Construction activities would occur over a 14-month period and all construction staging would occur on site. During construction, existing vegetation and one existing tree³ would be removed, one existing tree would be retained, and up to 21 trees would be planted (including up to three street trees). The proposed project would also include a backup emergency generator.

This exemption determination analyzes two proposed student pick-up/drop-off design variants.

- The first design variant, as shown in Figure 1, would remove up to three existing on-street parking spaces on Cotter Street and provide an on-site pick-up/drop-off area, which would be accessible through a circular U-shaped driveway with two 12-foot long curb cuts (one existing and one new) on Cotter Street. The proposed on-site drop-off/pick-up area would be one-way in and one-way out through the ingress/egress curb cuts and would accommodate up to five vehicles at a time.
- Under the second design variant, the project would not provide any on-site pick-up/drop-off area and instead would seek approval from San Francisco Municipal Transportation Agency (SFMTA) for the conversion of three on-street parking spaces (60 feet) on Cotter Street to a drop-off/pick-up passenger loading zone adjacent to the project site between the hours of 8:00 a.m. and 5:30 p.m. on school days. Outside these times, the on-street loading spaces would be available for public parking.

¹ Living walls are plantings on the exterior walls of buildings that can add detail to a building and streetscape and serve environmental goals as well. Plants can be independent and hang from wall elements or can grow from property line planters or contained raised planter beds integrated with a building's architecture. Guide to the San Francisco Better Streets Plan Chapter 6: Streetscape Elements, December, 2010.

² Bioretention is a soil and plant-based retention practice that captures and biologically degrades pollutants as water infiltrates through sub-surface layers containing microbes that treat pollutants. Treated runoff is then slowly infiltrated and recharges the groundwater. These biological processes operate in all infiltration-based strategies. Guide to the San Francisco Better Streets Plan Chapter 6: Streetscape Elements, December, 2010.

³ The existing tree to be removed is not a significant tree, landmark tree, or street tree as specifically designated in the Urban Forestry Ordinance.

The proposed project would operate at full capacity with up to 200 students. It is noted that half⁴ of all kindergarteners would meet at off-campus locations each day for educational activities. The school would operate between the months of September and June (10 months), with a summer program offered over a six to eight week period from mid-June through July or mid-August. The proposed school is anticipated to operate from Monday through Friday between the hours of 8:00 a.m. to 5:30 p.m. with regular classroom instruction occurring from 8:30 a.m. through 3:40 p.m. and extended care from 3:40 p.m. to 5:30 p.m. There would be no early morning child care program. The proposed summer program is anticipated to operate between the hours of 9:00 a.m. and 4:00 p.m., Monday through Friday. The school would have a designated student drop-off period between 8:00 a.m. and 8:30 a.m. for students in all grades. All students would be dropped off during the same time period in the morning, but there would be staggered pick-up times generally between the hours of 1:00 p.m. and 5:30 p.m. in the afternoon.

The proposed project would also include extracurricular events that may occur outside the normal weekday business hours of 8:00 a.m. and 5:30 p.m. The extracurricular events would be held on weeknights and weekends and would include community festivals, farm/work days, class/club performances, open houses, committee meetings, and community workshops. These events would occur on a weekly, monthly, or periodic basis throughout the school year, with attendance ranging between 10 and 250 visitors depending on the event type. It is anticipated that up to 53 extracurricular events would occur throughout the academic year as shown in Table 1.

Representative Event	Day of Week	Hours of Operation	Frequency	Estimated Attendees
Community Festival	Saturday	10:00am-3:00pm	1 per year	250
Farm/Work Day	Saturday	10:00am-3:00pm	2 per year	50
Class/Club Performance	Weeknight	5:00pm-7:00pm	7 per year	30
Open House	Saturday	10:00am-12:00pm	3 per y ear	75
Parent Meetings	Weeknight	7:00pm-9:00pm	10 per year	100
Committee Meeting	Weeknight	7:00pm-9:00pm	20 per year	10
Community Workshop	Saturday	1:00pm-3:00pm	10 per year	50

Source: Golden Bridges School, 2016.

The project project includes several measures to improve circulation, as provided in Attachment A. The project proposes the development of a Transportation Management Plan (TMP) to guide pick-up and drop-off procedures and to develop multimodal strategies for parents to encourage the use of alternatives modes of transportation to the school. The TMP proposes to establish a walking school bus⁵ from the Balboa Park playground/swimming pool to the school; improvements to the pedestrian realm, new street

⁴ Half of all kindergarteners (16 students) would meet at the Christopher Playground in San Francisco's Glen Canyon Park.

⁵ A walking school bus is a group of children walking to school with one or more adults. It can be as simple and informal as several families taking turns walking their children to school, or as structured as a route with meeting points, a timetable and regularly rotated schedule of volunteers. The walking school bus model has been established as part of the Safe Routes to School Program. More information is available online at: <u>http://sfsaferoutes.org/2011/09/walking-school-bus-resources/</u>

safety and traffic calming measures (as mentioned above); a Construction Management Plan; and an Extracurricular Event Traffic and Parking Management Plan.

Project Setting. The project site is a long and irregular (bowtie) shaped parcel that fronts Cotter Street and extends most of the block towards Santa Rosa Avenue in San Francisco's Outer Mission neighborhood. The site is roughly 85 feet by 500 feet. The site is located in a residential area and is surrounded by two- and three-story single family homes over garages. The project site is located approximately half a mile from the Glen Park BART Station and one mile from the Balboa Park BART Station. There are no known projects in the vicinity that could combine with the proposed project to result in cumulative impacts.

Project Approvals

The proposed project would require a Condition Use Authorization to establish an elementary and secondary school within a Residential District (Planning Code Sections 303 and 209.1) and permits from the Department of Building Inspection for the construction of the proposed project.

Approval Action: The Conditional Use Authorization from the Planning Commission is the Approval Action for the proposed project. The Approval Action date establishes the start of the 30-day appeal period for this CEQA exemption determination pursuant to Section 31.04(h) of the San Francisco Administrative Code.

EXEMPT STATUS (continued):

CEQA State Guidelines Section 15332, or Class 32, provides an exemption from environmental review for in-fill development projects that meet five specific conditions. As discussed below, the proposed project satisfies the terms of the Class 32 exemption.

a) The project is consistent with applicable general plan designations and policies as well as with applicable zoning designations.

The San Francisco General Plan establishes objectives and policies to guide land use decisions related to the physical development of San Francisco and is composed of ten elements, each of which addresses a particular topic that applies citywide: air quality; arts; commerce and industry; community facilities; community safety; environmental protection; housing; recreation and open spaces; transportation; and urban design. The Plan provides general policies to guide land use decisions, and contains some policies that relate to physical environmental issues. The proposed project is consistent with applicable general plan designations and policies. The site is located within the RH-1 Zoning District. The proposed project would construct a 15,400 square foot kindergarten through 8th grade private Golden Bridges School campus. Educational uses within the RH-1 District may be authorized through the provisions of a Conditional Use Authorization. The project site is located in the 40-X Height and Bulk District, where the maximum allowed height of a building is 40 feet. The proposed building would conform to this zoning, with a height of approximately 25 feet (excluding a 2 foot, 4 inch elevator penthouse). Thus, the proposed project would be consistent with applicable general plan zoning designations.

b) The development occurs within city limits on a site of less than five acres surrounded by urban uses.

The 30,744 square-foot (0.71 acres) project site is located within a developed area of San Francisco and the surrounding lots are developed with residential uses. The proposed project, therefore, would be properly characterized as a development of less than five acres, completely surrounded by urban uses.

c) The project site has no habitat for endangered, rare or threatened species.

The project site is an existing neighborhood agricultural use that includes row crops, trees, and shrubs. The project site is completely surrounded by residential uses and within a developed urban area of San Francisco with no significant riparian corridors, estuaries, marshes, wetlands, or any other potential wildlife habitat that might contain endangered, rare, or threatened species.

d) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality.

Transportation

A School Circulation Memorandum⁶ was prepared by a consultant to analyze transportation impacts associated with the proposed project. The following discussion summarizes the results from this analysis.

On March 3, 2016, in anticipation of the future certification of revised CEQA Guidelines pursuant to Senate Bill 743, the San Francisco Planning Commission adopted State Office of Planning and Research's recommendation in the *Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA*⁷ to use the Vehicle Miles Traveled (VMT) metric instead of automobile delay to evaluate the transportation impacts of projects (Resolution 19579). (Note: the VMT metric does not apply to the analysis of impacts on non-automobile modes of travel such as riding transit, walking, and bicycling.) Accordingly, this categorical exemption does not contain a separate discussion of automobile delay (i.e., traffic) impacts. Instead, a VMT and induced automobile travel impact analysis is provided within.

VMT and Induced Vehicle Travel

Many factors affect travel behavior. These factors include density, diversity of land uses, design of the transportation network, access to regional destinations, distance to high-quality transit, development scale, demographics, and transportation demand management. Typically, lowdensity development at great distance from other land uses, located in areas with poor access to non-private vehicular modes of travel, generate more automobile travel compared to development located in urban areas, where a higher density, mix of land uses, and travel options other than private vehicles are available.

⁶ CHS Consulting Group, 203 Cotter Street (Golden Bridges School) Transportation Technical Memorandum, September 21, 2016. This document (and all other documents cited in this report, unless otherwise noted), is available for review at 1650 Mission Street, Suite 400, San Francisco, CA, as part of Case No. 2015-003791ENV.

⁷ This document is available online at: <u>https://www.opr.ca.gov/s_sb743.php</u>.

Given these travel behavior factors, San Francisco has a lower VMT ratio than the nine-county San Francisco Bay Area region. In addition, some areas of the City, expressed geographically through transportation analysis zones (TAZs), have lower VMT ratios than other areas of the City. The Planning Department has prepared a Geographic Information System database (the Transportation Information map) with current and projected 2040 per capita VMT figures for all TAZs in the City, in addition to regional daily average figures.⁸

A project would have a significant effect on the environment if it would cause substantial additional VMT. The State Office of Planning and Research's (OPR) *Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA*⁹ ("proposed transportation impact guidelines") recommend screening criteria to identify types, characteristics, or locations of projects that would not result in significant impacts to VMT. If a project meets one of the three screening criteria provided (Map-Based Screening, Small Projects, or Proximity to Transit Stations), then it is presumed that VMT impacts would be less than significant for the project and a detailed VMT analysis is not required. Map-Based Screening is used to determine if a project site is located within a TAZ in the City that exhibits low levels of VMT; Small Projects are projects that would generate fewer than 100 vehicle trips per day; and the Proximity to Transit Stations criterion includes projects that are within a half mile of an existing major transit stop, have a floor area ratio (FAR) of greater than or equal to 0.75, vehicle parking that is less than or equal to that required or allowed by the Planning Code without conditional use authorization, and are consistent with the applicable Sustainable Communities Strategy.

According to the Transportation Information Map, the existing average daily VMT per capita for office (used to approximate school uses)¹⁰ is 10.9 for the transportation analysis zone the project site is located in, 910. This is 33 percent below the existing regional average daily VMT per employee of 16.2. Given the project site is located in an area where existing VMT is more than 15 percent below the existing regional average, the proposed school would not result in substantial additional VMT. Future 2040 average daily VMT per employee for office use is 10.0 for the transportation analysis zone, 910. This is 31 percent below the future 2040 regional average daily VMT per employee of 14.5.

The proposed project is not a transportation project. However, the first design variant would create a new 12 foot curb cut on Cotter Street. The second design variant would create a 60 foot white passenger loading zone on the full length of the project frontage. The proposed project would also include Class I and Class II bicycle parking. These features fit within the general types of projects that would not substantially induce automobile travel. Therefore, VMT impacts from the project would not be significant.

⁸ San Francisco Planning Department Transportation Information Map, accessed August 10, 2016 at: http://sftransportationmap.org.

⁹ Governor's Office of Planning and Research, Revised Proposal on Updates to the CEQA Guidelines on Evaluating Transportation Impacts in CEQA, January 20, 2016. Accessed August 10, 2016 at: <u>https://www.opr.ca.gov/docs/Revised VMT CEQA Guidelines -</u> <u>Proposal January 20 2016.pdf</u>.

¹⁰ Per the San Francisco Planning Department. Eligibility Checklist: CEQA Section 21099 – Modernization of Transportation, K-12 schools should be treated as office for screening and analysis. This is based on the SFCHAMP Model.

Trip Generation

Travel demand resulting from the project was based on a School Circulation Memorandum. The proposed project would generate up to 189 daily vehicle trips (153 student trips and 36 staff trips). These vehicle trips include about 54 vehicle trips during the morning drop-off period and 99 vehicle trips during the afternoon pick-up period. The difference between a.m. and p.m. vehicle trips is due to off-site drop-off for 84 students in Grades 5 through 8 proposed to occur at the Balboa Park playground/swimming pool as part of the morning walking school bus program. The students would be dropped off and would depart in the Walking School Bus between 8:00 a.m. and 8:30 a.m. Balboa Park swimming pool's operating hours are from 9:00 a.m. to 5:00 p.m. Therefore, the walking school bus would not affect swimming pool operations. Furthermore, 16 kindergarten students would be drop-off and picked-up off-site at the Christopher Playground. The project would also result in 36 daily vehicle trips from faculty/staff members, which would occur before and after school hours and outside of student drop-off/pick-up periods. The proposed project is also estimated to generate a total (student and staff) of 38 daily transit trips, 41 daily bicycle trips, 125 daily walking trips, and 17 daily trips by other modes (e.g., Uber, Lyft, other rideshare services, taxi, etc.), respectively. Table 2 depicts the trip generation for the proposed project.

	International and a second		udent		Faculty/Staff		Total	
Person Trips by	Mode							
Mode	Person Trips (AM)	Percent (AM)	Person Trips (PM)	Percent (PM)	Person Trips	Percent	Person Trips	Percent
Drive Alone	45	24%	83	45%	8	13%	136	32%
Carpool	18	10%	33	18%	20	33%	71	17%
Transit	9	5%	17	9%	12	20%	38	9%
Bike	11	6%	20	11%	10	17%	41	10%
Walk	95 ¹	52%	20	11%	10	17%	125	29%
Other (e.g. rideshare, taxi, etc.)	6	3%	11	6%	0	0%	17	4%
Total	1841	100%	184 ¹	100%	60	100%	428 ¹	100%
Vehicle Trips								
Arrivals	Vehicle	Trips ²	Perc	cent ³	Vehicle Trips ²	Percent ³	Vehicle Trips ²	Percent ³
Morning	54			5%	18	50%	72	38%
Afternoon	99		65%		18	50%	117	62%
Total	153		100%		36	100%	189	100%

Table 2 – Estimated	Daily Trip	Generation
---------------------	------------	------------

Notes:

1. The 95 student walking trips in the a.m. drop-off period includes 84 trips stemming from the off-site walking school bus for students in Grades 5-8. There is no walking school bus during the p.m. pick-up period, and students in Grades 5-8 would be picked up on-site.

2. Student/Faculty vehicle trips represent total drive-alone person trips and carpool trips (which assumes two students per vehicle trip).

3. Percentage of vehicle arrivals is considered "one-way" trips during each morning and afternoon period. Therefore 38% of total daily vehicle trips would arrive in the morning and the other 62% of total daily vehicle trips would arrive in the afternoon.

 The total person trips for the a.m. drop-off and p.m. pick-up periods does not include 16 off-site kindergarten drop-off/pick-ups at Christopher playground.
 The drop-off at Balboa Park swimming pool/playground and drop-off/pick-up at Christopher playground would not result in any hazardous conditions Sources: Golden Bridges School, 2015; CHS Consulting Group, 2016.

Exemption from Environmental Review

The extracurricular events would result in parent and children participation outside of the typical school day. The project proposes an annual community festival which would generate the highest amount of vehicle trips with an estimated 126 vehicle trips, while committee meetings would generate the least amount of vehicle trips at 5 trips. Table 3 depicts the estimated vehicle trip generation from proposed extracurricular events.

Representative Event	Frequency	Estimated Attendees	Person Trips (One-Way)					Vehicle
			Auto	Transit	Walk	Bike	Total	Trips
Community Festival	1 per year	250	284	93	82	42	500	126
Farm/Work Day	2 per year	. 50	57	19	16	8	100	25
Class/Club Performance	7 per year	30	34	11	10	5	60	15
Open House	3 per year	75	85	28	24	12	150	38
Parent Meetings	10 per year	100	114	37	33	17	200	50
Committee Meeting	20 per year	10	11	4	3	2	20	5
Community Workshop	10 per year	50	57	19	16	8	100	25
Weighted Average			53	17	15	8	94	24

Table 3: Extracurricular Event Trip Generation by Mode

Source: Golden Bridges School, 2016; SF Transportation Impact Analysis Guidelines (October 2002) Appendix E - Table E-15; CHS Consulting Group, 2016.

Transit

The project site is located in an area well-served by transit. Muni bus routes 23-Monterey, 36-Teresita, 44 O'Shaughnessy, 52-Excelsior and Muni light-rail line J-Church are located within a half-mile (walking distance) of the project site. The project site is also within a half-mile (walking distance) from the Glen Park BART Station and one mile from the Balboa Park BART Station.

According to the School Circulation Memorandum, the project would result in 38 new daily transit trips. Transit trips generated by extracurricular events would vary depending on the event type and associated attendance level. Community festivals would generate 93 transit trips, which represents the highest number of transit trips generated by an extracurricular event. These 93 transit trips would typically be outside the p.m. peak hour, when system wide ridership is at its highest. Therefore, additional capacity exists at these times to accommodate the 93 transit trips. This is a minimal increase of transit trips that would be generated by the proposed project. The SFMTA Board has adopted an "85 percent" standard for transit vehicle load—that is, all transit vehicles should operate at or below 85 percent capacity utilization. The p.m. peak hour capacity utilization on the 44 O'Shaughnessy within the Southwest Muni screenline¹¹ is at the 85 percent a significant transit impact. However, the project's transit trips would be dispersed among several different transit lines within the Southwest Muni screenlines. The project's 38 daily transit

¹¹ Screenlines are hypothetical lines that would be crossed by persons traveling between the downtown vicinity and other parts of San Francisco and the region, allowing for a comparison between estimated transit volumes and available capacities. Four screenlines have been established in San Francisco to analyze potential impacts of projects on Muni service: northeast, northwest, southwest, and southeast, with sub-corridors within each screenline.

trips would be distributed across several Muni lines, and therefore would not result in a substantial increase in capacity utilization on any one line. The project's proposed transit trips would be less than 5 percent of the overall capacity for the existing Southwest screenline (comprised of a number of Muni lines). Therefore the proposed project would not result in any new significant transit impacts or contribute considerably to any cumulative transit impacts.

Bicycle

According to the School Circulation Memorandum, the project would result in 41 new daily bicycle trips. Bicycle trips generated by extracurricular events would vary depending on the event type and associated attendance level. Community festivals would generate 42 bicycle trips, which represents the highest number of bicycle trips generated by an extracurricular event. Two bicycle routes (#45 and #70) are within a half-mile of the project site. Bicycle Route #45 (a class II facility) is the nearest bicycle route in proximity to the project site and runs in a southeast direction along Alemany Boulevard, about one and a half blocks south of the project site. Bicycle Route #70 is a Class III facility with segments that run along Hearst Avenue and Circular Avenue north of I-280 and past the Glen Park BART station, along Still Street between the Lyell Street and Alemany Boulevard. The proposed project would comply with Section 155.2 of the Planning Code as the project would include a total of 41 bicycle parking spaces, consisting of 33 Class I and eight Class II bicycle parking spaces. The increase of bicycle trips generated by the proposed project would not create potentially hazardous conditions for bicyclists; therefore, no significant impacts related to bicycling or bicycle facilities would occur.

Pedestrians

The project site is adjacent to the Cotter Street sidewalk. The proposed project would generate 163 daily walk trips (125 daily walk-trips and 38 daily transit trips, which include walk trips). Walk trips generated by extracurricular events would vary depending on the event type and associated attendance level. Community festivals would generate 175 walk trips, which represents the highest number of walk trips generated by extracurricular events (82 walk trips and 93 transit trips, which include walk trips). The first design variant would provide vehicular access to a new driveway from Cotter Street. No potentially hazardous conditions would occur between pedestrians and vehicles entering and exiting the proposed off-street U-shaped driveway under the first design variant because the staff would manage this loading zone to prevent vehicles queues and would safely help students entering the school as described in Attachment A. The second design variant would not include any curb cuts in the sidewalk along Cotter Street. Instead drop-off/ pick-up would occur along Cotter Street in the created 60 foot passenger loading (white) zone. The project also includes a walking school bus from Balboa Park playground/swimming pool for grades 5th through 8th. Staff members, volunteers, and parents would lead the walking school bus to ensure safety. The increase in daily pedestrian person-trips generated by the proposed project would not substantially overcrowd sidewalks in the project vicinity or otherwise interfere with pedestrian accessibility to the site and adjoining areas. Furthermore, as detailed in the Circulation Memorandum and Attachment A, Golden Bridges School would implement drop-off and pick-up protocols to ensure that loading children are

escorted safely to and from the vehicles. Therefore, no significant impacts related to pedestrian trips would occur as a result of the proposed project.

Parking

The project would remove three on-street parking spaces to provide a new curb cut and Ushaped driveway to accommodate the five off-street parking spaces under the first design variant. Under the second design variant, the project would convert three on-street parking spaces along Cotter Street to a 60 foot passenger loading zone (white zone) between the hours of 8:00 a.m. and 5:30 p.m.

Pursuant to the Planning Code Section 151, the project requires one off-street parking space. The project sponsor has substituted the required off-street parking space with one Class I bicycle space as permitted under the Planning Code 155(e).

Parking was analyzed in the School Circulation Memorandum, which looked at the study area (bounded by San Jose Avenue to the north, Cayuga Avenue to the south, Theresa Street to the east, and Santa Rosa Avenue to the west). As shown in Table 4, there are a total of 111 on-street parking spaces in the study area. During the morning period, there were a total of 90 vehicles parked on-street in the study area, which represents an overall on-street parking utilization of 81 percent. Parking demand is relatively constant throughout the day, as the survey findings indicate that during the afternoon period a total of 92 vehicles were parked in the study area, leaving 19 available spaces (an overall on-street parking utilization of 83 percent). There are no public, off-street parking facilities in the vicinity of the project site. As shown in Table 4, on-street parking demand within the project area is generally well-utilized; however, the survey results indicate that parking occupancies are not above practical capacity (85 percent for on-street facilities). Based on these findings, parking conditions are not constrained during the course of a typical weekday and on-street parking is generally available and these available spaces could accommodate some of the parking demand generated by the proposed project.

Street	То	From	Parking Supply	Parking Occupancy				
				Мотг	ning	Afternoon		
				Occupied	Percent	Occupied	Percent	
Cotter Street	San Jose Avenue	Cayuga Street	33	33	100%	30	90%	
Cotter Street	Cayuga Street	Alemany Blvd	13	11	85%	15	115%	
Cayuga Street	Cotter Street	Theresa Street	13	9	69%	11	85%	
Cayuga Street	Theresa Street	Tingle Street	16	14	88%	13	81%	
Cayuga Street	Santa Rosa Ave	Cotter Street	36	23	64%	23	64%	
Total		······································	111	90	81%	92	83%	

Sources: CHS Consulting Group, 2016.

Additionally, the project sponsor is in the process of securing a contract with the Community Assembly of God Church, located at the intersection of Ocean and San Jose Avenues, approximately 0.7 miles from the project site. The parking lot on the Church property has a total of 56 available parking spaces and the project sponsor may be able to lease a portion of these spaces as needed depending on the number of faculty/staff members who would drive to the school and parents/guardians who may occasionally have the need to stay on the school grounds for a longer period of time (e.g. during extracurricular events.). It is anticipated that the school may be able to lease 10 to 15 parking spaces for these purposes. The leased parking spaces may also be made available for parents/guardians who wish to escort their child/children onto the school campus and who are unable to seek an available on-street parking space. The project sponsor is also in communication with the Corpus Christi Church on Santa Rosa Avenue, located two blocks southeast of the project site, for the potential use of their parking lot. The Corpus Christi Church lot consists of 34 parking spaces and the project sponsor may lease or rent a portion of the spaces as needed (approximately up to 18 spaces). Furthermore, the project includes several measures to encourage travel to the school by modes other than the automobile as described in Attachment A. These measures would help the project meet its parking demand; however, even without such features the proposed project is not expected to result in a substantial parking deficit that could create hazardous conditions or significant delays affecting traffic, transit, bicycles or pedestrians.

San Francisco does not consider parking supply as part of the permanent physical environment. Parking conditions are not static, as parking supply and demand varies from day to day, from day to night, from month to month, etc. Hence, the availability of parking spaces (or lack thereof) is not a permanent physical condition, but changes over time as people change their modes and patterns of travel.

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project's social impacts need not be treated as significant impacts on the environment. Environmental documents should, however, address the secondary physical impacts that could be triggered by a social impact (CEQA Guidelines Section 15131(a)). The social inconvenience of parking deficits, such as having to hunt for scarce parking spaces, is not an environmental impact, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, or noise impacts caused by congestion. In the experience of San Francisco transportation planners, however, the absence of a ready supply of parking spaces, combined with available alternatives to auto travel (e.g., transit service, taxis, bicycles or travel by foot) and a relatively dense pattern of urban development, induces many drivers to seek and find alternative parking facilities, shift to other modes of travel, or change their overall travel habits. Any such resulting shifts to transit service in particular, would be in keeping with the City's "Transit First" policy. The City's Transit First Policy, established in the City's Charter Section 16.102 provides that "parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation." Therefore, no significant parking impacts are expected.

Emergency Access

Emergency vehicles routinely use streets surrounding the project site, including San Jose Avenue, Cotter Street, Cayuga Avenue, Santa Rosa Avenue, and Capistrano Street. Emergency vehicles would continue to use these main streets to reach the project site. The proposed project would not prohibit access to any existing streets. Emergency vehicles would be able to access the site from Cotter Street. As part of the building permit review, the Fire Department will review the proposed project for compliance with the San Francisco Fire Code to ensure adequate emergency access. Therefore, the project would not result in a significant impact to emergency access.

Construction Traffic

Construction of the proposed project is expected to occur over the course of a 14-month period. Construction staging would all occur on the project site. During that time, it is anticipated that the majority of the construction-related truck traffic would use I-80, I-280, and U.S. 101 to access the project site from the East Bay, South Bay, and North Bay and from locations within the City. The addition of worker-related vehicle or transit trips would not substantially affect transportation conditions. Construction workers who drive to the site would result in a small temporary increase in traffic volumes on nearby streets and demand for on-street parking. Construction worker vehicles would temporarily reduce the availability of on-street parking during working hours. As shown in Attachment A, a Construction Management Plan would be prepared for the proposed project and would be subject to review by the Transportation Advisory Staff Committee (TASC), an interdepartmental committee including the Police, Public Works, Planning, Fire Department and SFMTA Muni Operations. TASC would review the Construction Management Plan and would address any issues related to traffic and pedestrian circulation; bicycle safety; parking; and other project construction activities in the area, none of which are anticipated at this time. Due to the temporary and limited duration of construction, construction-related impacts would not be considered significant.

In light of the above, the proposed project would not result in a significant impact on the transportation and circulation system or result in a cumulative transportation impact.

<u>Noise</u>

Noise is regulated by the San Francisco Noise Ordinance (Noise Ordinance), which is codified in Article 29 of the San Francisco Police Code. Article 29 establishes property line and other limits for fixed noise sources and also regulates construction noise. Under Section 2909(b), fixed noise sources from commercial properties (such as the proposed school use) are limited to 8 dBA¹² above ambient levels and Section 2909 (d) also establishes that such noise not exceed an interior daytime (7 a.m. to 10 p.m.) noise limit of 55 dBA or nighttime noise limit (10 p.m. to 7 a.m.) of 45 dBA at the nearest residential receptor. While the limits in the Noise Ordinance only apply to fixed noise sources (e.g. mechanical equipment), and not to noise from the variety of school-related noise activity, the Planning Department uses the criteria in the Noise Ordinance for determining the significance of noise impacts. Specifically, the Department undertakes a two-step

¹² The standard method used to quantify environmental noise involves evaluating the sound with an adjustment to reflect the fact that human hearing is less sensitive to low-frequency sound than to mid-and high-frequent sound. This measurement adjustment is called "a" weighting, and the data are reported in A-weighted decibel (dBA). A -10dB (decibel) increase in noise level is generally perceived to be twice as loud.

analysis that considers first whether noise from a proposed project would exceed the property line noise limits of 8 dBA above ambient per Section 2909(b). If the project does not result in noise in excess of the property line noise limits established in the Noise Ordinance, generally, no further analysis is required. If a project could exceed the property line noise limits, a second analysis is conducted to determine if the noise would meet the daytime or nighttime interior noise limits in Section 2909 (d). The requirements of the Noise Ordinance are designed to prevent sleep disturbance, protect public health, and prevent the acoustical environment from progressive deterioration. Therefore, if noise generated by project operations meets either the property line noise limits or limits established in Section 2909 (d), the project would not result in a significant noise impact.

Section 2907 of Article 29 of the Police Code regulates construction noise and is the basis for determining the significance of construction-related noise impacts.

Operational Noise

An Acoustical Study¹³ was conducted for the proposed project and long-and short-term noise measurements were taken. Ambient noise levels at the project site were determined to be 54 dBA. The study analyzed both noise that would be generated from occupants of the school and mechanical noise. The Acoustical Study analyzed noise scenarios from outdoor student program activities, pick-up and drop-off activities, extracurricular events, and overlapping school and mechanical noise.

As indicated in the Acoustical Study, with the exception of noise from car doors closing in the proposed front yard/vehicle drop off area,¹⁴ noise at the property line would not exceed 8 dBA above ambient noise levels (62 dBA) and would meet the criteria of Section 2909(b). Furthermore, the Acoustical Study indicates that none of the foreseeable noise scenarios from operation of the Golden Bridges School would exceed the 55 dBA daytime limit (between the hours of 7 a.m. to 10 p.m.) of Section 2909(d). No nighttime (10 p.m. to 7 a.m.) activities are proposed or anticipated; therefore, the proposed project would also meet the nighttime noise limits of Section 2909(d).

Mechanical noise from fans and heat pumps was also analyzed as part of the Acoustical Study. The results of the mechanical noise analysis (given the assumed equipment and operating conditions) indicate that sound levels at the nearest property line would be at or below 62 dBA, meeting the criteria of Section 2909(b) and would be at or below the 55 dBA interior residential noise limit established for fixed mechanical equipment in Section 2909(d) of Article 29 of the Police Code.

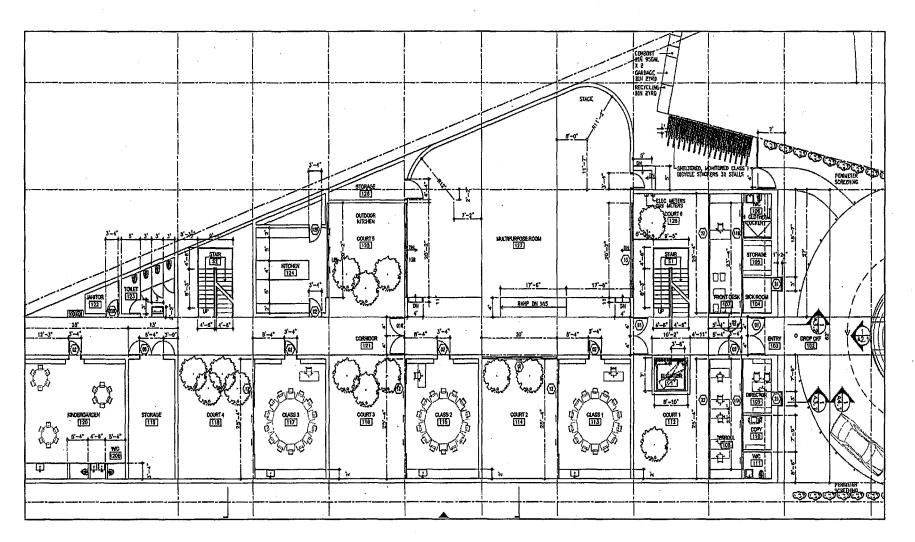
In addition, combined noise from people and mechanical equipment was analyzed as shown in Table 5. Overlapping noise from mechanical equipment and outdoor class time in courtyard 6 (Figure 2) and mechanical equipment and noise from car doors closing in the front yard vehicle drop-off area could result in noise levels of 64 dBA. However, these estimated noise levels are conservative, worst-case, representations of overlapping noise levels that could result from the

¹³ Wilson Ihrig, Golden Bridges School Noise Study Proposed Cotter Street Campus, August 15, 2016.

¹⁴ The noise analysis of doors closing is conservative (i.e., worst-case) in that it assumes doors from five vehicles in the drop-off/ pick-up area shutting at the same time and does not account for acoustical shielding provided by the property line fence. This is temporary and would only occur during passenger loading activities.

Scenario	Scenario Description	Property Line	Predicted level at property line* (dBA)	Predicted 2 nd story interior level (dBA)	
la	Lunch/Recess in Courtyards 1-4	South ⁺	51	35-41	
•	Lunch/Recess in Courtyard 6	$North^+$	62	41	
1b	Lunch/ Recess in Front Yard/ Vehicle Drop-off Area	North and South	52**	37	
1c	Lunch/ Recess in Back Yard Planting Area	North and South	54	41	
	T tailing Aica	West	51	38 .	
2a	Outdoor Class Time Speech (Backyard Planting Area)	North and South	54	41	
		West	51	38	
2b	Outdoor Class Time Speech (Courtyards 1-4)	South^{+}	51	37-42	
	Outdoor Class Time Speech (Courtyard 6)	North	62	41	
2c	Outdoor Class Time Singing (Backyard Planting Area)	North and South	60	47	
		West	57	43 ·	
2d	Outdoor Class Time Singing (Courtyards 1-3)	South^+	61	44	
	Outdoor Class Time Singing (Courtyard 4)	South ⁺	61	51	
	Outdoor Class Time Singing (Courtyard 6)	North ⁺	64	47	
3	All-School or Community Events in the Backyard Planting Area	North and South	57 ·	45	
		West	55	41	
4	Closing Doors in Front Yard/ Vehicle Drop-off Area	North and South	**64	49	

Table 5: Combined Results of Noise Scenario Modeling and Mechanical Noise Predictions


Bold values indicate a possible exceedance of the standards in the San Francisco Noise Ordinance Section 2909 (b).

* Includes 5-7 dB of acoustical shielding from the 6-10 foot tall fence surrounding the property, with the exception of the wall-mounted exhaust fans which are expected to be installed above the fence line. Height of wall is dependent on location.

** Does not include acoustical shielding of the fence

⁺ These are the worst-case courtyards with the closest distances to the property line/ surrounding homes. The noise level at the property lines and residential balconies due to other courtyard noise would be lower than those numbers presented here.

Case No. 2015-003791ENV 203 Cotter Street

Figure 2: Ground Floor Plan Showing Courtyard Locations

16

proposed project. Furthermore, none of the foreseeable combined noise scenarios from overlapping operations at the Golden Bridges School would exceed 55 dBA inside the closest residences, the limit provided by Article 29 of the Police Code Section 2909(d) between the hours of 7 a.m. and 10 p.m. Moreover, per the schedule of events provided by Golden Bridges, there would be no activities or events between 10 p.m. and 7 a.m. Thus, operation of the proposed project (including noise from daytime activities and mechanical noise) would meet the noise limits established in the Noise Ordinance. Therefore, the proposed project would result in less than significant operational noise impacts.

Construction Noise

Although increase in noise during the 14-month construction phase of the project would occur, construction noise would be limited to certain hours of day and would be temporary and intermittent in nature. Construction noise is also regulated by the San Francisco Noise Ordinance and Section 2907 of the Police Code requires that noise levels from individual pieces of construction equipment, other than impact tools, not exceed 80 dBA at a distance of 100 feet from the source. Impact tools (such as jackhammers and impact wrenches) must have both intake and exhaust muffled to the satisfaction of the Director of Public Works. Section 2908 of the Police Code prohibits construction work between 8:00 p.m. and 7:00 a.m. if noise would exceed the ambient noise level by 5 dBA at the project property line, unless a special permit is authorized by the Director of Public Works. The proposed project would be required to comply with these requirements during construction. Therefore, the proposed project would result in less than significant construction noise impacts.

In light of the above, the proposed project would not result in individually or cumulatively significant noise impacts.

Air Quality

In accordance with the state and federal Clean Air Acts, air pollutant standards are identified for the following six criteria air pollutants: ozone, carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2) and lead. These air pollutants are termed criteria air pollutants because they are regulated by developing specific public health- and welfare-based criteria as the basis for setting permissible levels. The Bay Area Air Quality Management District (BAAQMD) in their CEQA Air Quality Guidelines (May 2011), has developed screening criteria to determine if projects would violate an air quality standard, contribute substantially to an air quality violation, or result in a cumulatively considerable net increase in criteria air pollutants within the San Francisco Bay Area Air Basin. If a proposed project meets the screening criteria, then the project would result in less-than-significant criteria air pollutant impacts. A project that exceeds the screening criteria may require a detailed air quality assessment to determine whether criteria air pollutant emissions would exceed significance thresholds. The proposed project would not exceed the criteria air pollutant screening levels for an elementary school (277,000 square feet for construction and 271,000 square feet for operation).¹⁶ Therefore, the proposed project would not result in a significant criteria air pollutant impact either individually or cumulatively.

¹⁶ Bay Area Air Quality Management District, CEQA Air Quality Guidelines, Updated May 2011. Table 3-1.

In addition to criteria air pollutants, individual projects may emit toxic air contaminants (TACs). TACs collectively refer to a diverse group of air pollutants that are capable of causing chronic (i.e., of long-duration) and acute (i.e., severe but short-term) adverse effects to human health, including carcinogenic effects. In response to growing concerns of TACs and their human health effects, the San Francisco Board of Supervisors approved a series of amendments to the San Francisco Building and Health Codes, generally referred to as the Enhanced Ventilation Required for Urban Infill Sensitive Use Developments or Health Code, Article 38 (Ordinance 224-14, effective December 8, 2014) (Article 38). The purpose of Article 38 is to protect the public health and welfare by establishing an Air Pollutant Exposure Zone and imposing an enhanced ventilation requirement for all urban infill sensitive use development within the Air Pollutant Exposure Zone. Projects within the Air Pollutant Exposure Zone require special consideration to determine whether the project's activities would expose sensitive receptors to substantial air pollutant concentrations or add emissions to areas already adversely affected by poor air quality. The project site is not within an Air Pollutant Exposure Zone. Therefore, the proposed project is not subject to Health Code Article 38.

The proposed project would include a backup emergency generator. Emergency generators are regulated by the BAAQMD through its New Source Review (Regulation 2, Rule 5) permitting process. The project sponsor would be required to obtain applicable permits to operate the emergency generator from the BAAQMD. Although emergency generators are intended only to be used in periods of power outages, monthly testing of the generator would be required. The BAAQMD limit testing to no more than 50 hours per year. Additionally, as part of the permitting process, the BAAQMD would limit the excess cancer risk from any facility to no more than ten per one million population and requires any source that would result in an excess cancer risk greater than one per one million population to install Best Available Control Technology for Toxics (T-BACT).

The proposed project would require construction activities for the approximate 14-month construction phase. However, construction emissions would be temporary and variable in nature and would not be expected to expose sensitive receptors to substantial air pollutants. Furthermore, the proposed project would be subject to, and required to comply with, California regulations limiting idling to no more than five minutes,¹⁷ which would further reduce nearby sensitive receptors' exposure to temporary and variable TAC emissions. Therefore, the proposed project would not result in significant impacts from TAC emissions. In conclusion, the proposed project would not result in significant air quality impacts individually or cumulatively.

Water Quality

The project would not result in discharges that would have the potential to degrade water quality or contaminate a public water supply. Project-related wastewater and stormwater would flow into the City's combined sewer system and would be treated to standards contained in the City's National Pollutant Discharge Elimination System (NPDES) Permit for the Southeast Water Pollution Control Plant prior to discharge. Furthermore, the Department of Building Inspection

¹⁷ California Code of Regulations, Title 13, Division 3, § 2485. This regulation applies to on-road heavy duty vehicles and not offroad equipment.

(DBI) would review the proposed project's stormwater features for compliance with the California Plumbing Code (Section 16) Nonpotable Rainwater Catchment Systems to ensure compliance with State requirements for water quality. Therefore, the proposed project would not result in significant water quality impacts.

e) The site can be adequately served by all required utilities and public services.

The project site is located in a dense urban area where all public services and facilities are available. The proposed project would be connected to existing water, electric, gas, and wastewater services. Prior to receiving a building permit, the project would be reviewed by the Department of Building Inspection (DBI), the San Francisco Fire Department (SFFD), the San Francisco Public Utilities Commission (SFPUC), and Public Works (DPW) to ensure compliance with City and State regulations concerning building standards, fire protection, sewer connections, and hydrology. Therefore, the proposed project would be adequately served by all required utilities and public services.

DISCUSSION OF ENVIRONMENTAL ISSUES:

CEQA Guidelines Section 15300.2 establishes exceptions to the application of a categorical exemption for a project. None of the established exceptions applies to the proposed project.

Guidelines Section 15300.2, subdivision (b), provides that a categorical exemption shall not be used where the cumulative impact of successive projects of the same type in the same place, over time, is significant. As discussed previously there are no cumulative projects in the vicinity that could combine with the proposed project to result in cumulative effects on the environment. Therefore, there is no possibility of a significant cumulative effect on the environment due to the proposed project.

Guidelines Section 15300.2, subdivision (c), provides that a categorical exemption shall not be used for an activity where there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances. As discussed above, the proposed project would not have a significant effect on traffic, noise, air quality and water quality. In addition, the proposed project would not have a significant effect on the environment due to unusual circumstances for other environmental topics, including those discussed below.

CEQA Guidelines Section 15300.2, subdivision (e), provides that a categorical exemption shall not be used for a project located on a site which is included on any list compiled pursuant to Section 65962.5 of the Government Code. The project site is not located on such a list.

OTHER ENVIRONMENTAL TOPICS:

Agriculture and Forest Resources

The project site is an existing neighborhood agricultural use. The project includes a change of use from neighborhood agricultural to an institutional use (Golden Bridges School). The school would construct a new 15,400 square foot building, which includes open space in the rear of the property for farming and

educational activities. The project would remove one existing tree²⁰ and add up to 21 new trees (including up to three street trees). The project site is located in San Francisco, an urban area. The California Department of Conservation's Farmland Mapping and Monitoring Program identified the site as Urban and Built-Up Land. The site is not under Williamson Act contract or zoned as forest land or timberland. Therefore, the proposed project would not convert any prime farmland, unique farmland, or farmland of statewide importance to non-agricultural use, would not conflict with agricultural zoning or Williamson Act contracts, and would not lead to the loss or conversion of forest land to non-forest use, and the proposed project would not conflict with any policies of the San Francisco Urban Forestry Ordinance. Therefore, the proposed project would not result in a significant impact to agricultural or forest resources.

Aesthetics

Design and aesthetics are by definition subjective, and open to interpretation by decision-makers and members of the public. A proposed project would be considered to have a significant adverse effect on visual quality only if it would cause a substantial and demonstrable negative change. The proposed project would not cause such change. The project would intensify and change the use of the site and would be visible from residential buildings within the project site vicinity. The project would not degrade or obstruct scenic views from public areas viewable by a substantial number of people or substantially degrade the visual quality in the project vicinity. While private views may be lost or obstructed, this is common and expected in an urban setting and not considered a significant impact. In addition, the proposed project would include new lighting, but the lighting would not result in spillover into light-sensitive areas, due to the distance between the lighting and residential properties and proposed screening such as vegetation and fencing. Therefore, the project would not result in a significant impact on aesthetics.

Biological Resources

The area surrounding the project site is currently developed with single-family homes. There are no riparian corridors, estuaries, marshes, or wetlands in the project vicinity that could be affected by the proposed project. The proposed construction of the school's 25-foot-tall building would require the removal of one tree and portions of the existing neighborhood agricultural use including row crops and shrubs. The project would include new landscaping and vegetation including 21 new trees (including up to three street trees). The proposed project's height would not substantially interfere with the movement of any resident or migratory wildlife species and the proposed project would be required to comply with Planning Code Section 139 standards for bird-safe buildings.

Migratory and residential birds often nest in ornamental and/or street trees in urban environments. Although birds that nest in urban environments are generally habituated to higher levels of noise and human activity than birds in less developed areas, project-related construction activities and noise could disrupt nesting activities. Most species of nesting birds and their nests and eggs are protected by Fish and Game code Sections 3505 and 3503.5 and the federal Migratory Bird Treaty Act (MBTA) which makes it unlawful to harm migratory birds and their nests. To ensure compliance with the Fish and Game Code and the MBTA, the project would implement the following measures, or their equivalent, to ensure compliance with state and federal regulations protecting migratory birds:

²⁰ The existing tree to be removed is not a significant tree, landmark tree, or street tree.

- Vegetation removal activities for the proposed project could be conducted during the nonbreeding season (i.e., September through February) to avoid impacts to nesting birds. If other timing restrictions make it impossible to avoid the nesting season, preconstruction surveys shall be conducted for work scheduled during the breading season (March through August).
- Preconstruction surveys are typically conducted by a qualified ornithologist, authorized by the California Department of Fish and Wildlife (CDFW), to determine if any birds are nesting in or in the vicinity of the vegetation to be removed. The preconstruction survey is typically conducted within 15 days prior to the start of the work from March through May (since there is higher potential for birds to initiate nesting during this period) and within 30 days prior to the start of work from June through August.
- If an active nest is found close enough to the construction area to be disturbed by these activities, the qualified biologist, in consultation with CDFW, typically determine the extent of a construction-free buffer zone to be established around the nest until the young have fledged.

As described above, the proposed project would not conflict with any local policies or ordinances protecting biological resources; affect any rare, threatened, or endangered species; or diminish habitat for rare, threatened or endangered. For these reasons the proposed project is not anticipated to have a significant effect on biological resources.

Geology and Soils

A Geotechnical Investigation²¹ was conducted for the proposed project. Soil samples were obtained using borings to determine the probable subsurface conditions at the site, and to provide general soil and foundation engineering design criteria. Groundwater was encountered in all borings at depths of approximately 3 to 3.5 feet below the existing ground surface. Groundwater at the project site would vary seasonally a few feet depending on rainfall amounts and time of year. The site was noted to be susceptible to flooding. The field investigation indicated the site is underlain by about 1.5 to 3 feet of fill consisting of clayey sand and clay with sand. The fill is typically loose or soft to medium stiff and is underlain by very loose to medium dense sand, sand with clay, silty sand and clayey sand to approximately 9 to 12.5 feet below the existing ground surface. Depths of approximately 2 to 12.5 feet below ground surface is susceptible to liquefaction. Total liquefaction-induced settlement may occur on the order of 2.5 to 5 inches. Differential earthquake-induced settlement beneath the proposed building may occur on 1 to 5 inches over a horizontal distance of 50 feet. Earthwork at the site would consist of clearance of existing vegetation including approximately 910 cubic yards of excavation. A letter²² was provided by the geotechnical engineer confirming that the recommendations of the geotechnical investigation remain valid for the proposed project. The geotechnical report concludes that the site is suitable for the proposed construction, provided that recommendations in the report are incorporated into the project plans and specifications and implemented during construction.

 ²¹ Rollo * Ridley Inc., Geotechnical Investigation Golden Bridges School 203 Cotter Street San Francisco, California, January 13, 2015.
 ²² Rollo * Ridley Inc., Geotechnical Investigation Golden Bridges School 203 Cotter Street San Francisco, California, September 16, 2016.

Compliance with applicable codes and the recommendations in the Geotechnical Investigation would reduce risks related to liquefaction to an acceptable level. The proposed project would be required to conform to the San Francisco Building Code, which ensures the safety of all new construction in the City. Decisions about appropriate foundation and structural design are considered as part of DBI permit review process. DBI would review background information including geotechnical and structural engineering reports to ensure that the security and stability of adjoining properties and the subject property is maintained during and following construction. In this manner, DBI's review would provide another layer of expert oversight in regards to the safety of the proposed structure from geologic hazards. The proposed project would therefore result in a less-than-significant impact with regard to geologic hazards.

<u>Hazards</u>

The proposed project would entail approximately 910 cubic yards of soil disturbance. The project site has been used for neighborhood agricultural uses and agricultural pesticides may have been applied. Therefore, the project is subject to Article 22A of the Health Code, also known as the Maher Ordinance, which is administered and overseen by the San Francisco Department of Public Health (SFDPH). The Maher Ordinance requires the project sponsor to retain the services of a qualified professional to prepare a Phase I Environmental Site Assessment (ESA) that meets the requirements of Health Code Section 22.A.6. The Phase I ESA would determine the potential for site contamination and level of exposure risk associated with the project. Based on that information, the project sponsor may be required to conduct soil and/or ground water sampling and analysis. Where such analysis reveals the presence of hazardous substances in excess of state or federal standards, the project sponsor is required to submit a site mitigation plan (SMP) to SFDPH or other appropriate state or federal agency(ies), and to remediate any site contamination in accordance with an approved SMP prior to the issuance of any building permit. In compliance with the Maher Ordinance, the project sponsor has prepared a Phase I ESA²³ and has submitted a Maher Application to SFDPH. The Phase I ESA identified a Recognized Environmental Condition at the property due to its long history as an urban farm where agricultural pesticides may have been applied and recommended soil sampling to further evaluate soil quality. The Phase I ESA also notes that the location of the water/groundwater source tapped by the 111 Capistrano Avenue residence appears to be located on the project site. If the groundwater well is located on the project site, SFDPH may require it be abandoned in conjunction with the proposed site development or operated under permit from SFDPH. The proposed project would be required to remediate potential soil and/or groundwater contamination at the project site, as described above, in accordance with Article 22A of the Health Code.

In San Francisco, fire safety is ensured through the provisions of the Building Code and Fire Code. During the review of the building permit application, DBI and the San Francisco Fire Department will review the project plans for compliance with all regulations related to fire safety. Compliance with fire safety regulations would ensure that the proposed project would not impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan, or expose people or structures to a significant risk of loss, injury, or death involving fires.

²³ All West, Environmental Site Assessment 203 Cotter Street San Francisco, California, May 28, 2015.

For these reasons, the proposed project would not result in any significant impacts related to hazards or hazardous materials.

Historic Resources

The existing use is a neighborhood agricultural use. The project proposes to change the use and construct a 15,400 square foot kindergarten through 8th grade private school campus. A property may be considered a historic resource if it meets any of the criteria related to (1) events, (2) persons, (3) architecture, or (4) prehistory that make it eligible for listing in the California Register of Historical Resources, or if it is considered a contributor to a potential historic district.

A Planning Department Preservation Planner reviewed the project and found that the property is not a historic resource²⁴. Furthermore, the project site is not located within a historic district. For these reasons, the proposed project would not result in a significant impact with regards to historic resources.

<u>Hydrology</u>

The proposed project is located within the historical Islais Creek and on a San Francisco Public Utilities Commission (SFPUC) Block of Interest²⁵, within an area prone to flooding. This is the existing condition at the project site. The project site, being in a topographically low area, and with no downhill slope for surface runoff from the adjacent Cotter Street, requires attention to properly drain stormwater during major storms. The project's finished floor elevation has been set sufficiently higher than the adjacent street to minimize chances of inundation during major storms. The project also requires adequate conveyance of runoff during prolonged storms.

In addition, because the proposed project would create or replace more than 5,000 square feet of impervious surface, the project is subject to the San Francisco Stormwater Management Ordinance (SMO). Compliance with the SMO and attendant Stormwater Management Requirements and Design Guidelines will require the project to maintain or reduce the existing volume and rate of stormwater runoff discharged from the site. To achieve this, the project would be required to implement and install appropriate stormwater management systems that retain runoff on-site, promote stormwater reuse, and limit site discharges before entering the combined sewer collection system.

A Conceptual Stormwater Management Approach Memorandum²⁶, was prepared to analyze the proposed stormwater management design for the project. The project would minimize disruption of natural hydrology by implementing Low Impact Design approaches. The proposed project would include several stormwater management measures, including: pervious pavers, a green roof and living wall, and bioretention planters and the rear yard would remain pervious open space for a total of approximately 31,300 square feet. Additional stormwater retention measures that may be required by the SFPUC, DBI, or Public Works during the permit review process could include additional pipes, a detention vault, or a detention pond, the environmental effects of which have been considered in this exemption determination. As currently proposed, all non-active roof space would be vegetated where feasible. All roof areas, vegetated or not, would be routed to a bioretention planter. These measures

²⁴ Personal Communication from Tina Tam to Lana Russell-Hurd, Planning Department, 203 Cotter Street, May 22, 2015.

²⁵ San Francisco Planning Department, Planning Bulletin Review of Projects in Identified Areas Prone to Flooding, April 1, 2007.

²⁶ BKF, Golden Bridges School - 203 Cotter Street - Conceptual Storm Water Management Approach, June 10, 2016.

would reduce impervious surfaces and increase stormwater infiltration on-site. The Memorandum found that the project would comply with the two-year 24-hour design storm that is required by the SMO. This Memorandum will serve to guide the preparation of a Stormwater Control Plan for submittal to the SFPUC. Prior to issuance of building permits, the project is required to submit a Stormwater Control Plan demonstrating compliance with the requirements of the Stormwater Management Requirements and Design Guidelines as required under the Stormwater Management Ordinance.

Although existing conditions at the site indicate that the site is prone to flooding, compliance with the SMO would require the project sponsor to maintain or reduce the amount of stormwater runoff at the site. Therefore, the proposed project would not result in significant impacts to hydrology.

Neighborhood Concerns. A "Notification of Project Receiving Environmental Review" was mailed on August 7, 2015, to community organizations, tenants of the affected property, properties adjacent to the project site, and to persons who own property within 300 feet of the project site. The combined 311 and Conditional Use Authorization notice was mailed on September 9, 2016. The Planning Department has received numerous comments from members of the public concerning environmental issues during both of these notification periods.

The following comments and responses to the comments (in italics) are provided below.

1. Concerns about the size, scale and use of the proposed building.

As discussed under Section a), the proposed project is consistent with applicable general plan designations and policies as well as with applicable zoning designations.

2. Loss of neighbor's views.

As discussed under Aesthetics, the proposed project would not degrade or obstruct scenic views from public areas viewable by a substantial number of people. While private views may be lost or obstructed, this is common and expected in an urban setting and not considered a significant impact.

3. Loss of agricultural land and open space.

As discussed under Agriculture and Forest Resources, the proposed project would not convert any prime farmland, unique farmland, or farmland of statewide importance to non-agricultural use, would not conflict with agricultural zoning or Williamson Act contracts, would not lead to the loss or conversion of forest land to non-forest use, and the proposed project would not conflict with any policies of the San Francisco Urban Forestry Ordinance. The project would include farming and educational activities in the rear of the property. The project's impact is less than significant for agricultural and forestry resources.

4. Water drainage issues.

As discussed under Hydrology, the proposed project would be required to be reviewed by the SFPUC to ensure compliance with the Stormwater Management Ordinance. Public Works will also review the project's impact on hydrology. The project's impacts with respect to hydrology were found to be a less than significant impact.

5. Flooding and sewer failure on property and effects on nearby properties.

As discussed under Hydrology, the proposed project's potential flooding impacts were evaluated according to a technical memorandum, which found that the project would comply with the two-year 24-hour design storm. Prior to issuance of building permits, the project sponsor is required to submit a Stormwater Control Plan demonstrating

24

compliance with the requirements of the Stormwater Management Requirements and Design Guidelines as required under the SMO. Furthermore, the project's design with regard to hydrology would also be reviewed by Public Works. Also, as discussed under Section d) the proposed project would comply with water quality requirements. This is considered a less than significant impact.

6. Lack of capacity to handle stormwater runoff and runoff during a 100 year storm.

As discussed under Hydrology, flooding at the site is an existing condition. The proposed project would be required to design the project to comply with the two-year 24-hour design storm as required by the SFPUC. The project would include living walls, living roof, and bioretenation planters to reduce impervious surfaces and increase infiltration. The proposed project may include pipes, a detention vault, or a detention pond to further retain stormwater on-site. The proposed project is not required to be designed for a 100-year-storm. This is considered a less than significant impact.

7. Increased traffic, queuing, and double parking during project operation.

As discussed under Section d), the potential for impacts associated with traffic, queuing, and double parking is considered to be less than significant, given the available vehicle and parking capacity in the project area and demand estimated to occur with the proposed project. Furthermore, the project sponsor has agreed to implement several measures to further reduce the project's less than significant traffic impact (See Attachment A).

8. Loss of street parking during project operation.

As discussed under Section d), the potential for impacts associated with loss of parking is considered to be less than significant.

9. Noise effects on residential uses.

As discussed under Section d), the proposed project's potential noise impacts were evaluated in an Acoustical Study and found to be less than significant.

10. Air pollution from new project automobile trips. As discussed under Section d), the potential for air pollution associated with new vehicle trips is considered to be less than significant per BAAQMD CEQA Air Quality Guidelines construction and operation screening criteria.

11. Emergency vehicle and fire access to the site.

As discussed under Section d), the proposed project would not prohibit or interfere with emergency vehicle or fire access to the project site or project area. Also as part of permit review for the project, the Fire Department would ensure compliance with the Fire Code to ensure safety and access to fight fires. This is considered a less than significant impact.

Other issues that were raised by members of the public include:

12. Effect on real estate values and liability for damage.

Since these concerns do not relate to physical environmental effects, they are outside the scope of CEQA and are not addressed in this document. Comments that relate to economic, financial, and legal concerns may be considered by City decision-makers during their deliberations on whether to approve, modify, or disapprove the proposed project.

Exemption from Environmental Review

Conclusion. CEQA State Guidelines Section 15300.2 states that a categorical exemption shall not be used for an activity where there is a reasonable possibility that the activity will have a significant effect on the environment due to unusual circumstances. There are no unusual circumstances surrounding the current proposal that would suggest a reasonable possibility of a significant effect. The proposed project would have no significant environmental effects. The project would be exempt under the above-cited classification. For the above reasons, the proposed project is appropriately exempt from environmental review.

Attachment A

TRANSPORTATION MANAGEMENT PLAN 203 COTTER STREET, SAN FRANCISCO

Golden Bridges School is currently planning a new academic facility at 203 Cotter Street in San Francisco. This is a new construction of approximately 15,400 sq ft on a currently open lot of approximately 30,000 sq ft. The projected enrollment is up to 200 students in grades K-8 and 30 staff members, with additional part-time staff as needed.

To help manage vehicle circulation immediately surrounding the school site, especially during the student drop-off and pick-up periods, Golden Bridges School will implement a comprehensive suite of circulation and transportation demand management strategies. This Transportation Management Plan (TMP) provides transportation-related measures that Golden Bridges School will commit to implementing at its campus at 203 Cotter Street.

Recommended Improvement Measures

The following improvement measures would aid in further reducing less-than-significant impacts to traffic/circulation, construction and parking.

Improvement Measure I-TR-1: Develop Transportation Management Plan (TMP)

Project Sponsor should develop a comprehensive Transportation Management Plan (TMP) for the proposed site. The overall purpose of the TMP is to provide guidelines for student drop-off and pick-up procedures. The following elements of the conceptual TMP are outlined below:

- Golden Bridges School should develop assigned drop-off/pick-up periods for each student depending upon grade and would enforce these drop-off/pick-up times by not allowing vehicles to occupy the proposed loading zone before or after their designated drop-off/pick-up time;
- Under the on-site passenger loading zone design alternative, a staff member would locate at the entrance of the on-site loading zone to facilitate vehicle flow into the on-site loading zones, while another staff member would locate at the exit to facilitate vehicle flow out of the on-site loading zones and back onto Cotter Street. A third staff member would locate in the middle of the on-site roundabout to coordinate vehicle movement into and through the on-site loading zones. One staff member would locate at the on-street passenger loading zone adjacent the on-site loading zone space to coordinate traffic into and out of the space and facilitate student drop-off/pick-up from and to vehicles in the loading space. In the event these spaces are occupied, staff members should direct vehicles to alternative on-street parking or to prospective, alternative parking locations in

nearby private lots. Staff members would help students safely exit vehicles and walk the students into the school;

- Under the on-street passenger loading zone design alternative, no less than three staff
 members would locate at the curbside adjacent to the loading zone to coordinate vehicle
 entries and exits into and out of the loading spaces and facilitate students exiting or
 entering vehicles on the vehicle curbside during drop-off/pick-up activities;
- Notify parents/guardians about pick-up and drop-off procedures in writing and orientations;
- Discourage parents/guardians from parking in the school loading space for longer than one (1) minute;
- Golden Bridges School should maintain a log (inventory) of complaints from neighbors and would work with these neighbors to mitigate unforeseen problems with student dropoff/pick-up activities, and to maintain an ongoing, constructive relationship with the neighboring residents and businesses; and
- Golden Bridges School should establish a monitoring program for the first year of school operation at 203 Cotter Street to conduct observations and circulation along Cotter Street and surrounding streets during student drop-off and pick-up activities. The monitoring reports should be distributed to staff and parents/guardians up to three times during the academic school year (between September and June). Potential improvements and adjustments to the student drop-off and pick-up procedures and other related school operations should be conducted based on the monitoring reports.
- Post the TMP on the Golden Bridges School website for public access to the document;
- Provide parents/guardians with the TMP as part of the enrollment application, orientation manual, and/or related information packet;
- Provide a detailed map of student drop-off and pick-up zones along Cotter Street, including the loading zones on-site and adjacent to the proposed site and potential secondary off-street parking spaces at nearby private lots;
- Provide a suggested vehicle routing map to the Golden Bridges School to minimize traffic impacts on local residential streets (e.g., Capistrano Avenue, Theresa Street, Tingley Street)
- Encourage parent/guardians to utilize on-street parking or potential secondary off-street parking spaces for long-term parking (e.g., parking more than two [2] minutes);
- Enforce parents/guardians to not exit their vehicles and enter the school while stopped/parked at the loading zone;

Improvement Measure I-TR-2: Develop Multimodal Strategies for Parents

In order to improve the student drop-off and pick up operations and encourage the use of carpooling and alternative modes of transportation to reduce vehicle and parking demand, Golden Bridges School proposes implementing the following measures for future consideration for the Golden Bridges School:

- Provide parents/guardians with *Multimodal Access Guide* to describe how to reach the school by walking, bicycling, and transit. The guide may include:
 - A detailed map of nearby transit facilities (stops and routes) in vicinity of the school site;
 - o A detailed map of bicycle routes in the vicinity of the school site; and
 - Provide online links and phone numbers to transit providers that serve the school site.
- Develop a volunteer carpooling program for parents/guardians; and
- Appoint a TDM coordinator who is in charge of overseeing the implementation of various multi-modal strategies and programs and promoting them.
 - TDM coordinator would establish model split goals for Golden Bridges School staff members and students, and monitor progress each year; and
 - TDM coordinator would periodically survey parents/guardians and faculty/staff to determine travel patterns, reasons for travel choices, barriers and potential opportunities for change.

Improvement Measure I-TR-3: Establish a Walking School Bus

To reduce the number of vehicles on Cotter Street and other surrounding streets during the morning drop- off period, the Project Sponsor should establish a volunteer program modeled after the Safe Routes to School Program similar to the San Francisco Unified School District Program, and arrange a "walking school bus" for students enrolled in older middle school students (i.e., Grades 5 to 8). The "walking school bus" would have a drop-off point at the Balboa Park playground/swimming pool (San Jose Avenue and Havelock Street), approximately a half mile from the school site. From this drop-off point, the "walking school bus" would proceed up the west side of San Jose Avenue to the closest stop light, located at Santa Rosa Avenue. At the intersection of San Jose Avenue and Santa Rosa Avenue, the walking school bus would proceed to cross from the west side of San Jose Avenue to the east side. The walking school bus would then continue up San Jose Avenue, turning right onto Cotter Street. This is the safest and most direct route, and would lessen any disturbance to the neighborhood. Parents/guardians would have the option to park their vehicles at the parking lot of the park and walk with their children to school, or drop their child off to walk as part of the walking school bus, which would be led by volunteers and/or faculty/staff members. It is noted that the walking school bus would occur prior to school hours for students above Grade 5. The walking school bus would be conducted by staff and parent volunteers, with a ratio of 1 volunteer to every 12 students.

Improvement Measure I-TR-4: Improve the Pedestrian Realm and Street Safety:

In order to establish a more pedestrian-friendly environment and improve pedestrian and bicycle safety along Cotter Street and at the intersection of Cotter Street and Cayuga Street, the project sponsor proposes the following streetscape and traffic calming improvements:

 Install appropriate signage along Cayuga and Cotter Streets which may include, but is not limited to, "School Zone" and appropriate speed limit signs, particularly at the intersection of San Jose Avenue and Cotter Street;

- Install speed humps along Cotter Street in order to increase pedestrian safety by reducing vehicular travel speeds adjacent to the project site;
- Provide high-visibility yellow school crosswalk crossing Cotter Street at San Jose Avenue. This is intended to identify the potential crossing and alert drivers to pay attention to a pedestrian area. However, it shall be the school policy to discourage the use of this crossing and instead encourage crossing at Cayuga Street where there is greater visibility;
- Install painted, high-visibility (e.g., yellow-striped, continental design) crosswalks at all four approaches at the Cotter Street/Cayuga Street intersection and upgrade existing curb ramps including the reduction of curb radii to promote lower vehicle turning speeds and reduce crossing distance to improve pedestrian and school children safety;

Improvement Measure I-TR-5: Queue Abatement

 As an improvement measure to further minimize vehicle queues and conflicts with other modes at the Proposed Project's driveway into the public right-of-way, Golden Bridges School would monitor loading activities and would employ additional queue abatement methods as needed.

Improvement Measure I-TR-6: Construction Management Plan

The construction contractor(s) should develop a detailed *Construction Management Plan*. The *Construction Management Plan* would, at a minimum, include the following provisions:

- Circulation routes should be developed to minimize impacts on local street circulation, as appropriate. In the event of parking and/or travel lane closures, flaggers or signs or both should be used to guide vehicles through or around the construction zone. Roadside construction safety protocols should be implemented.
- Truck routes should be identified. Haul routes that minimize truck traffic on local roadways and residential streets should be used to the extent possible.
- Sufficient staging areas should be developed for trucks accessing construction zones so as to minimize disruption of access to adjacent land uses, particularly at entries to the project site.
- Construction vehicle movement should be controlled and monitored by on-site inspectors enforcing standard construction specifications.
- Truck trips should be scheduled outside the peak morning and evening commute hours, to the extent possible.
- All equipment and materials should be stored in designated contractor staging areas on or next to the worksite, such that vehicle, pedestrian, and bicycle traffic obstruction is minimized.
- Shuttle service should be established for off-site construction worker parking.

- Construction should be coordinated with facility owners or administrators of police and fire stations (including all fire protection agencies) and transit stations or stops. Emergency service vehicles shall be given priority for access.
- The contractor should be encouraged to reduce the number of construction workers' vehicle trips by facilitating the use of public transportation and minimizing construction worker parking availability.
- The contractor should coordinate with other contractor(s) for projects in the vicinity and share information regarding schedule, duration of activities, vehicle routing and detouring (if applicable), staging of vehicles, etc.
- The contractor should provide regularly-updated information (typically in the form of website, news articles, on-site posting, etc.) regarding project construction and schedule, as well as contact information for specific construction inquiries or concerns.

It is noted that the construction management plan should be reviewed by the TASC to adequately address issues of circulation (traffic, pedestrians, and bicycle), safety, parking and other project construction in the area.

Improvement Measure I-TR-7: Develop Extracurricular Event Traffic & Parking Management Plan

The project sponsor should develop a detailed *Extracurricular Traffic and Parking Management Plan* in order to provide transportation and parking guidelines for extracurricular events occurring on weekday evenings and weekends. The *Extracurricular Traffic and Parking Management Plan* would, at a minimum, include the following provisions:

- Include a section in the *Multimodal Access Guide* to describe how to reach the school by transit on weekday evenings and weekends;
- Maintain the volunteer carpooling program for parents/guardians for extracurricular events;
- Ensure that the TDM coordinator promotes multimodal strategies for reducing projectgenerated traffic and parking demand for extracurricular events;
- Utilize TDM coordinator, staff, and parents to manage events and discourage parking and queuing on Cotter Street;
- Consider utilizing a shuttle service for extracurricular events. The shuttle service would be provided by the project sponsor, and would provide transportation for event attendees from/to the Glen Park and Balboa Park BART Stations, as well as from/to potential offsite parking spaces located at the Community Assembly of God Church and the Corpus Christi Church parking lots; and
- Continue to pursue negotiations with nearby private lot operators to secure access to offsite parking spaces to accommodate extracurricular events.

Golden Bridges School commits to implementing the above measures at its location at 203 Cotter Street in San Francisco, CA

9/16/16

Jessie Elliot Administrative Director Golden Bridges School

September 19, 2016

Rodney Fong, Commission President Planning Department, City and County of San Francisco 1650 Mission Street, Suite 400 San Francisco, CA 94103

Subject: Hydrologic and Water Quality Issues Associated with Proposed Golden Bridges School Project at 203 Cotter Street, San Francisco, CA

Dear Mr. Fong:

I am a hydrologist with over twenty five years of technical and consulting experience in the fields of geology, hydrology, and hydrogeology. I have been providing professional hydrology services in California since 1991 and routinely manage projects in the areas of surface- and groundwater hydrology, flood studies and modeling, water quality assessments, water resources management, and geomorphology. Most of my work is located in the Coast Range watersheds of California, including the Northern and Southern San Francisco Bay Counties. My areas of expertise include: characterizing and modeling watershed-scale hydrologic and geomorphic processes; evaluating surface- and ground-water resources/quality and their interaction; assessing hydrologic, geomorphic, and water quality responses to land-use changes in watersheds and causes of stream channel instability; and designing and implementing field investigations characterizing surface and subsurface hydrologic and water quality conditions. I co-own and operate the hydrology and engineering consulting firm Kamman Hydrology & Engineering, Inc. in San Rafael, California (established in 1997). I earned a Master of Science in Geology, specializing in Sedimentology and Hydrogeology as well as an A.B. in Geology from Miami University, Oxford, Ohio. I am a Certified Hydrogeologist (CHg) and a registered California Professional Geologist (PG).

I have been retained by Ms. Nancy Huff and other neighbors of Cotter Street to review and identify potential impacts on area hydrology and flooding associated with the proposed Golden Bridges School Project (Project) at 203 Cotter Street, San Francisco, California. Currently, residents along Cotter Street, and many others living in the low-lying areas of the Mission Terrace neighborhood, experience frequent flood damage to their homes and exposure to raw sewage. Ms. Huff has asked me to evaluate if the proposed Project will effect current flooding and water quality conditions that she and other neighbors experience.

In addition to speaking with Ms. Huff, I have discussed local area flood conditions with City DPW staff. I have also review the following materials regarding Project design and local drainage and flood conditions.

- ASTM Standard D2487, 2006, "Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)," ASTM International, West Conshohocken, PA, 2006, DOI.
- BkF Engineers, Surveyors, Planners, 2016, Golden Bridges School 2013 Cotter Street conceptual storm water management approach. Memorandum to: Neal Kaye A.I.A, Stanley Saitowitz / Natoma Architects, Inc., May 16, 11p.
- Brown and Caldwell, Carollo Engineers, and Metcalf and Eddy, 2010, Final Draft Technical Memorandum No. 501, collection system modeling, City and County of San Francisco 2030 Sewer Systems Master Plan. Prepared for: San Francisco Public Utility Commission (SFPUC), December, 111p.
- Brown and Caldwell, Carollo Engineers, and Metcalf and Eddy, 2009a, Final Draft Technical Memorandum No. 502, detailed drainage plan modeling approach, City and County of San Francisco 2030 Sewer Systems Master Plan. Prepared for: San Francisco Public Utility Commission (SFPUC), August, 93p.
- Brown and Caldwell, Carollo Engineers, and Metcalf and Eddy, 2009b, Final Draft Technical Memorandum No. 504, existing conditions and needs assessment for detailed drainage plan, City and County of San Francisco 2030 Sewer Systems Master Plan. Prepared for: San Francisco Public Utility Commission (SFPUC), August, 73p.
- Holley Consulting, 2016, 203 Cotter Street. Prepared for: San Francisco Planning Department, January 12, 18p.
- Rollo & Ridley, 2015, Geotechnical investigation, Golden Bridges School, 2013 Cotter Street, San Francisco, CA. Prepared for: Golden Bridges School, January 13.
- San Francisco Public Works (SFPW), 2016, Preliminary review of 203 Cotter development. Memorandum to: R. Kraai, SFPUC-WWE, May 27, 5p. (included as Attachment A).
- Sherwood Design Engineers, 2015, Storm sewer summary, Golden Bridges School 203 Cotter Street. Prepared by Chris Boswell, October 22, 6p.
- Stanley Saitowitz / Natoma Architects, Inc., 2016a, Project architectural drawings, February 10, 6 sheets (A0.1, A0.5, A0.6, A1.1, A1.2, and A2.2).
- Stanley Saitowitz / Natoma Architects, Inc., 2016b, Project architectural drawings, August 5, Sheet A2.1.

- U.S. Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS), 2009, Chapter 7 Hydrologic Soil Groups. In: Part 630 Hydrology, National Engineering Handbook, January, 13p.
- U.S. Department of Agriculture, Soil Conservation Service (USDA-SCS), 1991, Soil survey of San Mateo County, Eastern Part, and San Francisco County, California, May, 120p.

Based on my discussions and review, it is my professional opinion that construction of the Golden Bridges School project will increase flood hazards to surrounding properties as well as increase human exposure to raw sewage during flood events. In particular, I believe homes immediately across the street from 203 Cotter will experience the most direct and severe impacts. It is also my opinion that the Conceptual Storm Water Management Plan developed by Project engineers used invalid assumptions and the proposed Project BMPs will likely not satisfy the City of San Francisco's Storm Water Management Ordinance. I present the rationale for these conclusions in the following sections.

1.0 Existing Site Setting and Flood Conditions

The proposed Golden Bridges School Project (Project) is located in the Mission Terrace neighborhood of San Francisco, which lies within the SFPUC's Cayuga flood study focus area. The following description of flood conditions and history effecting the Project site is excerpted from the SFPUC's Technical Memorandum No. 504 (2009a) and describes the existing floodprone character in the immediate vicinity.

The Cayuga Focus Area can be defined as the area around the Cayuga Avenue and Alemany Boulevard trunk sewers. The Cayuga Avenue and Alemany Boulevard trunk sewers carry flows (West to East) from the Mission Terrace, Outer Mission, Excelsior, Crocker Amazon, Oceanview, Ingleside, Sunnyside, Westwood Highlands, Miraloma Park, Diamond Heights, and Glen Park neighborhoods (see Figures 1 and 2). The Alemany sewer carries flows originating from the southern and southeastern part of the basin. The Cayuga sewer carries flows originating from the western and northern part of the basin. The trunk sewers of this basin are aligned with the upper part of the historical Islais Creek (SFPW, 2016). The Cotter Street sewer is a smaller (12-inch) lateral line that flows into the 8-foot diameter Cayuga trunk sewer at the street intersection (Sherwood Design Engineers, 2015).

The Cayuga Focus Area has a history of flooding occurrences. Flooding in the area varies from minor and localized events to extremely serious, major flooding during large storm events. Minor flooding may occur during storm events on the order of a five year return period due to peak flows exceeding pipe conveyance capacity. The sewers in the focus area are also affected by downstream hydraulic conditions. In particular, high hydraulic grade lines in the downstream Alemany Boulevard sewer may propagate upstream contributing to Cayuga focus area issues.

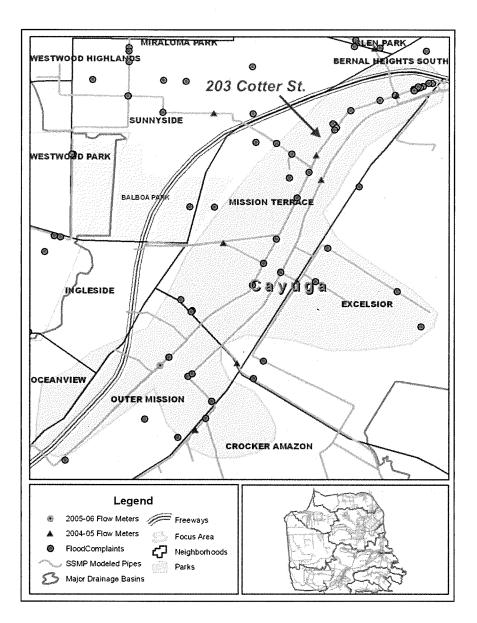


FIGURE 1: Project location in Cayuga Focus Area. Source: Brown & Caldwell et al. Tech. Memo No. 504, 2009.

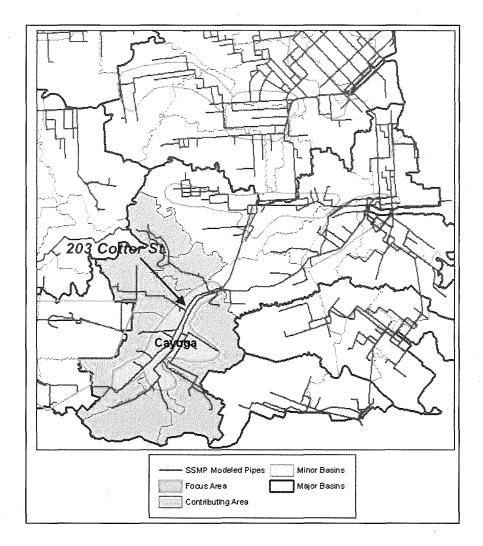


FIGURE 2: Contributing drainage area to Cayuga Focus Area. Note location of 2013 Cotter St. Source: Brown & Caldwell et al., Tech. Memo No. 504, 2009.

The two major trunk sewers of the focus area are aligned with the historical Islais Creek. During major storms, if there is overland flow, it tends to follow the lower elevations of the older historical creek route. The elongated lot at 203 Cotter Street is centered and aligned within the low-lying historic creek route (see Figure 3). Further compounding the issue is the fact that Highway I-280 is built on a berm and, together with the Mission Viaduct, impedes the overland flow near the intersection of Cayuga Avenue and Milton Street, an area also known as the "foot of Cayuga," creating a pond (see Figure 3). During the February 25, 2004, storm event, this pond was estimated based on visual observation to have a depth of approximately 6 feet.

Kamman Hydrology & Engineering, Inc. 5

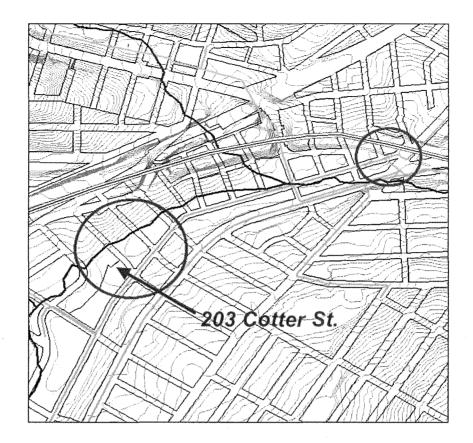


FIGURE 3: Low lying and ponded areas in the Cayuga Focus Area. Circle to left indicates existing topography lower than Cayuga Street. Smaller circle to the right indicates area of surface ponding at "foot of Cayuga." Source: Brown & Caldwell et al., Tech. Memo No. 504, 2009.

A number of lots in the Cayuga Focus Area are built within the historical creek, including 203 Cotter Street (Figure 3). In these areas, the lots and houses are at a lower elevation than the surrounding streets. This is the case along Cotter Street running north of Cayuga Avenue, which displays a pronounced dip centered on the former creek alignment located at 203 Cotter Street (SFPW, 2016). As illustrated on a sewer as-built drawing for Cotter Street provided in Sherwood Design Engineers 2015 drainage study report (provided as Attachment A), the low spot in the Cotter Street dip is 110.6-feet in elevation (City vertical datum) at the north end of the Project lot. Street elevations rise when moving away from this point in both directions. The road elevation at the Cayuga-Cotter Streets intersection is at an elevation of Cotter Street is surcharged, there is no way flow generated on local properties can enter the sewer, even if the hydraulic grade line is lower than the ground on Cayuga Avenue itself. Instead, water flowing out of the surcharging Cayuga Avenue sewer would flow north on Cotter Street to the low point in front of the

Project site. Based on review of available LiDAR data¹ for the project area, portions of the 203 Cotter Street lot lie 1.0-foot below street elevation and 1.5-feet below curb elevation. Thus, the site acts as a small detention basin that can receive and hold flood waters entering from the street or surrounding properties. This topographic setting is also illustrated in the shaded relieve map (Figure 6) presented in the San Francisco Public Works memorandum dated May 27, 2016. Once the lot becomes fully ponded to the elevation of the street curb, local area topography is such that flood water would flow to the Northeast, centered on the 200 Cotter Street property, located opposite of the Project parcel.

2.0 Potential Increased Adverse Impacts Associated with Proposed Project

Based on the Golden Gate LiDAR, I estimate that there is currently approximately 6000-cubic feet (0.14-acre-feet) of flood water storage below the existing curb crest at the Project property. Based on project plans (Stanley Saitowitz / Natoma Architects, 2016a and 2016b) and statements in the geotechnical report (Rollo & Ridley, 2015), the project proposes to fill site grades up to, if not higher, than the existing curb height. This Project action will effectively eliminate the existing flood storage available to the Project property. This will result in forcing approximately 6000-cubic feet of flood waters onto surrounding properties that otherwise currently is detained on the Project lot during flood events when the Cayuga trunk line is over capacity and surcharging. Based on my understanding of the local area topography, most of this water would be directed onto properties directly across the street from the Project site imparting potentially larger magnitude, higher frequency and longer duration flows, which will all contribute to greater potential flood damages than currently exist.

The loss of stormwater detention also increases the volume (and flooded area), frequency and duration of sewage exposure to humans, property and the environment surrounding the Project. Other ways the Project increases the potential impacts to water quality include new and increased loads to the sanitary system with the addition of approximately 200 students and 30 staff members (Stanley Saitowitz / Natoma Architects, 2016a) and placing and potentially exposing students, families and staff into an area known to experience routine flooding of sewage contaminated water. Increasing the size of the storm/sanitary line in Cotter Street that connects to the Cayuga trunk line will make no improvements to drainage capacity when the Cayuga trunk line is already over capacity and surcharging during known flood magnitudes. Therefore, it is my opinion that *the Project will increase adverse impacts to water quality and increase health risk to students, staff and surrounding residents*.

3.0 Inaccurate Conceptual Project Storm Water Management Approach

Based on my review of the BkF conceptual Stormwater Management Plan (2016), I believe there are two incorrect assumptions in the CSS BMP Sizing Calculator that call into question the ability for proposed BMPs to achieve compliance with City Ordinances. One concern I have is

Kamman Hydrology & Engineering, Inc.

¹ 2010 Golden Gate LiDAR, The Golden Gate LiDAR Project is a cooperative project sponsored by the US Geological Survey (USGS) and San Francisco State University (SFSU) that has resulted in the collection and processing of high resolution 2 meter nominal pulse spacing or better LiDAR and meet objectives of the American Recovery and Reinvestment Act (ARRA). <u>http://dds.cr.usgs.gov/lidar_v2/CA/2010/ARRA-CA_GoldenGate_2010/</u>

the shallow groundwater beneath the site. Rollo & Ridley (2015) state that groundwater was encountered between 3 and 3.5 feet below existing ground surface. They also anticipated that the groundwater level would vary seasonally a few feet depending on rainfall amounts and time of year. Based on my experiences in monitoring and measuring groundwater conditions in similar soils and settings in San Francisco, I would expect full saturation of site soils to or close to the ground surface during wet winter periods. Saturated soils do not provide the infiltration capacity or subsurface water storage necessary for many of the BMPs contained in the Project Conceptual Stormwater Management Plan. For example, infiltration trenches, dry well/infiltration gallery and permeable pavement will not infiltrate or store water during storms (including those of 1- and 2-year recurrence intervals) if they are already fully saturated by groundwater. Even if only partially saturated by groundwater the full function of these BMPs would not be realized. *Thus, it is my opinion that the Project BMP calculator is overestimating the true amount of stormwater infiltration and storage at a site with such shallow* groundwater.

The second critique I have with the BMP sizing calculator is the assumed Hydrologic Soil Group and associated infiltration rate of site soils. In their 2016 Conceptual Storm Water Management Plan. BkF assumes site soils uniformly fall into Hydrologic soil group (HSG) A, but note that this designation should be verified and infiltration rate to be tested prior to final design. HSG designations for soil are most commonly provided in the U.S. Department of Agriculture Natural Resources Conservation Service (formerly Soil Conservation Service) soil survey reports. The soil survey report for San Francisco County (USDA SCS, 1991) maps the soil at the project site as "Urban land" and does not provide a HSG classification. However, Rollo & Ridley (2015) state that their field investigation indicates the site is underlain by about 1.5 to 3 feet of fill consisting of clayey sand and clay with sand. They also report the fill is underlain by very loose to medium dense sand, sand with clay, silty sand and clayey sand to approximately 9 to 12.5 feet below existing grade. Since groundwater is so shallow at the site, the character and soil type of the upper fill layer will dictate the infiltration rates. According to the Unified Soil Classification System (ASTM, 2006), a soil described as "clayey sand" is defined as having greater than 12% clay content and "clay with sand" is defined as having greater than 50% clay content. In my experience, soil with these types of clay content do not fall into and HSG A category - the category with the highest infiltration rates. Pursuant to USDA guidance on Hydrologic Soil Groups (USDA NRCS, 2009), soil with a clay content falling between 10-20% typically falls into the HSG B category, and a soil containing clay in excess of 40% is typically an HSG D. As an HSG alphabet category increases the associated infiltration rate decreases. Thus, site field information indicates that the infiltration rates for site soils are less than the rates assumed in the BMP sizing analysis presented by BkF. When taking into account the shallow groundwater table elevations and lower site infiltration rates discussed above, I don't think the BMP sizing analysis can be considered valid. Therefore, it is not possible to make a determination on if the Conceptual Storm Water Management Plan complies with City Ordinance and should be considered non-compliant until demonstrated otherwise.

Please feel free to contact me with any questions regarding the material and conclusions contained in this letter report.

Sincerely,

Augy R. Kamm

Greg Kamman, PG, CHG Principal Hydrologist

Attachment

Cc: Dennis Richards, Commission Vice-President Rich Hillis, Commissioner Christine D. Johnson, Commissioner Katherin Moore, Commissioner Joel Koppel, Commissioner Joel Koppel, Commissioner Jonas P. Ionin, Planning Commission Secretary Nancy Tran, Planner Lana Russel-Hurd, Planner Nancy Huff Deborah Holley, Holley Consulting Scott Emblidge, Moscone Emblidge & Otis LLP

ATTACHMENT A

Memorandum from San Francisco Public Works May 27, 2016

Edwin M. Lee Mayor

Mohammed Nuru Director

Patrick Rivera Manager

Infrastructure Design and Construction 1680 Mission St. San Francisco, CA 94103 tel 415-554-8200

sfpublicworks.org facebook.com/sfpublicworks twitter.com/sfpublicworks

MEMORANDUM

Lesley Wong Manager, Hydraulic Section

1

To:

R. Kraai, SFPUC-WWE B. Shrestha, Supervisor, Hydraulic Studies Group

Through: N. Birth

From: I. Taghavi

May 27th, 2016 Date:

Subject: Preliminary Review of 203 Cotter Development

Backround

SFPUC has asked for flooding review of a development of the lot at 203 Cotter St.

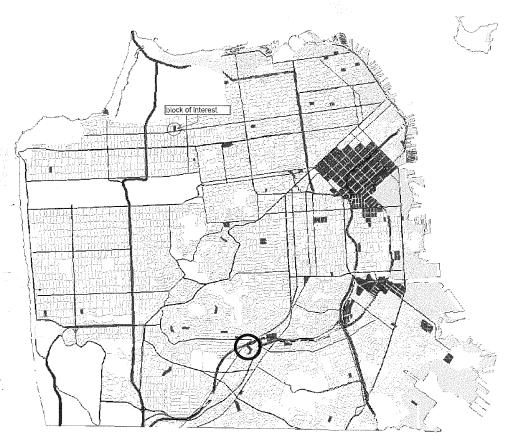


Figure 1: Bulletin 4 Overall Map

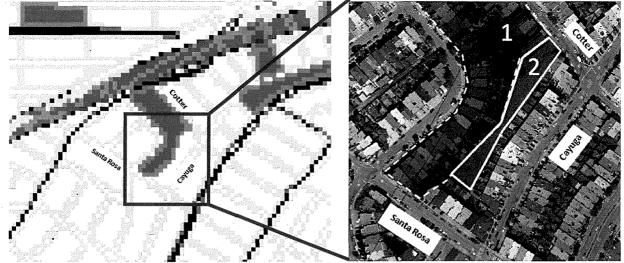


Figure 2: Bulletin 4 Map - 203 Cotter St.

Figure 3: 203 Cotter Aerial Picture

Figures 1 and 2 show 203 Cotter St. on the Bulletin 4 map. Figure 3 shows the property with aerial imaging. In Figure 3, Region 2 (solid line polygon) represents 203 Cotter St.'s property and Region 1 (dotted white polygon) represents a "block of interest" (BOI) bordering 203 Cotter St. that is susceptible to flooding. Source: <u>http://www.sf-planning.org/ftp/files/publications_reports/DB_04_Flood_Zones.pdf</u>

Analysis

1. Is 203 Cotter St. part of the Islais creekbed? Figure 4 has the property in the red circle. The Islais Creek bed, in green, clearly travels through 203 Cotter St.

Figure 4: Islais Creek Historic Map Sources: <u>http://explore.museumca.org/creeks/1630-OMIslaisBig.html</u>

2. Is 203 Cotter St. a natural stormwater management asset?

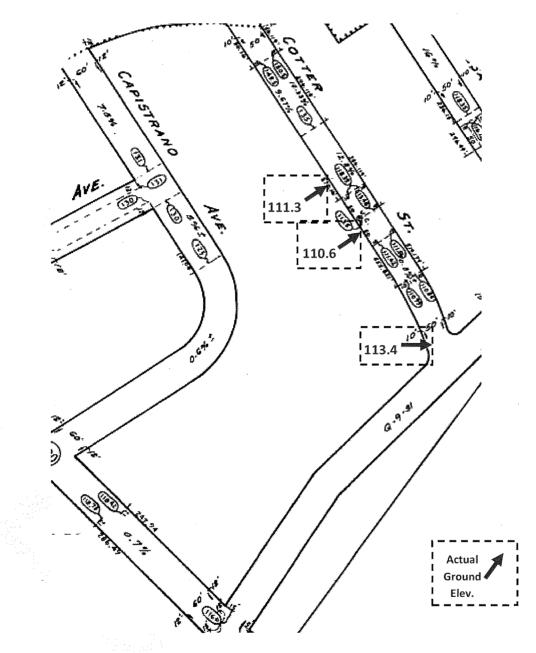


Figure 5 is the grade map, showing the planned street elevations. Ground elevations in dotted boxes are the current ground levels from Lidar. There is a low point bordering 203 Cotter St, which is shown on the grade map. The grade map does not give an elevation at the intersection of Cotter and Cayuga, where the 113.4 ft. Lidar elevation is labeled.

Sources:

http://bsm.sfdpw.org/subdivision/keymap/, http://bsm.sfdpw.org/subdmap/subd/Key_Maps/224_gm.tif

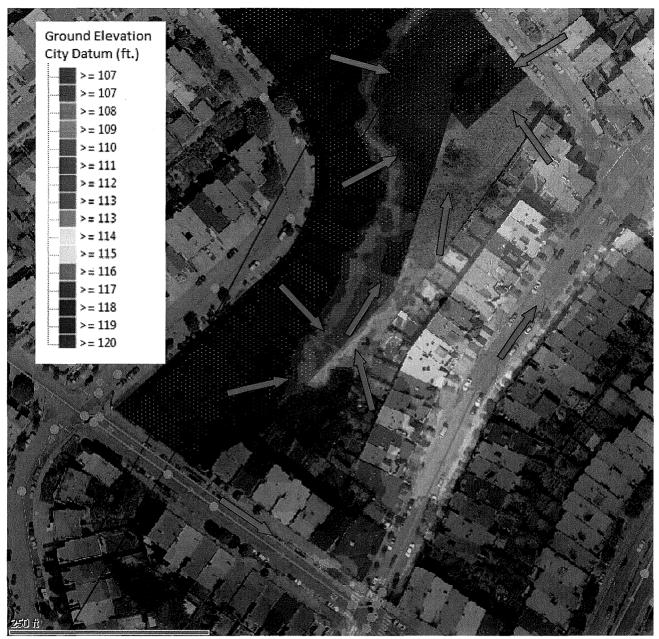


Figure 6: 203 Cotter St. Lidar Map w/ Surface Water Flow

Figure 6 shows the flow direction of surface water. 203 Cotter St. acts as a basin collecting surface water runoff leaving it susceptible to flooding even though it is not within the black shaded BOI. As such, 203 Cotter St. should be considered a valuable natural stormwater management asset.

3. Does 203 Cotter St. lie on the 100 year floodplain?

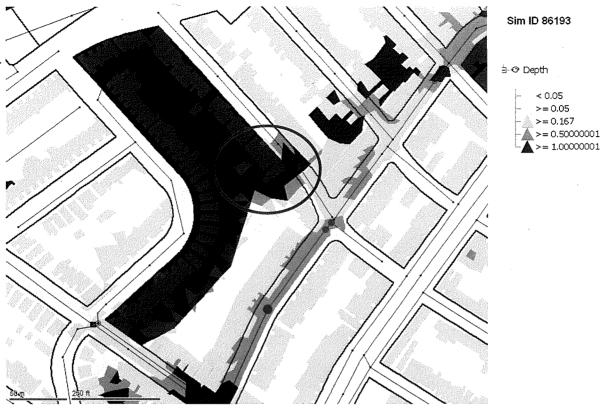


Figure 7: 203 Cotter St. 100 Year Floodmap

Figure 7 shows flooding as a result of the 100 year storm. The source of model results is the Flood Resilience Baseline, 100-year storm simulation. The area of lowest elevation on 203 Cotter St. bordering Cotter St. is circled in red.

September 26, 2016

Rodney Fong, Commission President Planning Department, City and County of San Francisco 1650 Mission Street, Suite 400 San Francisco, CA 94103

Subject: Amendment to Letter dated September 19, 2016 Hydrologic and Water Quality Issues Associated with Proposed Golden Bridges School Project at 203 Cotter Street, San Francisco, CA

Dear Mr. Fong:

This letter is an amendment to my original comment letter regarding the subject project which I sent on September 19, 2016 on behalf of Ms. Nancy Huff and other neighbors of Cotter Street. Since that submission, I have received and reviewed the Final Conceptual Storm Water Management Approach memorandum prepared by BkF Engineers and dated June 10, 2016. I received this updated memorandum from the Planning Department just last Friday September 23 and therefore was unable to review if before. I only reviewed the May 16, 206 draft version of this report for my original comments letter.

As you may recall, my original comment letter included a critique that the Storm Water Management Approach did not acknowledge or integrate a lower infiltration rate of the clay-rich soils found at the site. The updated Management Approach does include an analysis of soils having both high and low infiltration rates (Type A and D Soils, respectively). Thus, my concern about the analysis not acknowledging the lower permeability soils has been addressed. However, I still contend that the shallow groundwater conditions at the site will prohibit surface water infiltration via associated BMP measures regardless of soil type. The fully saturated condition of the inter-granular soil pore spaces by shallow groundwater that extend to or close to the ground surface does not permit infiltration of surface water. *Thus, it is my opinion that the Final Storm Water Management Approach is still overestimating the true amount of stormwater infiltration and storage at a site with such shallow groundwater. When taking into account the shallow groundwater table elevations, I don't think the BMP sizing analysis can be considered valid, regardless of site soil type or infiltration rate. Therefore, it is not possible to make a determination on if the Conceptual Storm Water Management Plan complies with City Ordinance and should be considered non-compliant until demonstrated otherwise.*

Nor does the additional information contained in the Final Storm Water Management Approach memorandum change my professional opinion about potential project impacts on flood and water quality hazards to surrounding properties. It is still my opinion that due to the loss of existing flood water storage on the existing site lot, the Project will increase flood hazards and adverse impacts to water quality and increase health risk to students, staff and surrounding residents.

Please feel free to contact me with any questions regarding the material and conclusions contained in this letter report.

Sincerely,

Augy R. Lamm

Greg Kamman, PG, CHG Principal Hydrologist

Attachment

Cc: Dennis Richards, Commission Vice-President Rich Hillis, Commissioner Christine D. Johnson, Commissioner Kathrin Moore, Commissioner Joel Koppel, Commissioner Joel Koppel, Commissioner Jonas P. Ionin, Planning Commission Secretary Nancy Tran, Planner Lana Russel-Hurd, Planner Nancy Huff Deborah Holley, Holley Consulting Scott Emblidge, Moscone Emblidge & Otis LLC

Anne Geddes NANCY A HUFF 214 COTTER ST SAN FRANCISCO, CA 94112-1923 264 11-35/1210 CA 90406 : [] [] 60CT 2 PM Pay to the Order of Dintratingat \$ 578.00 1787 BE Sputity Pich Fealures Details on Back. Dollars Valued Customer **Bank of America** ACH R/T, 121000358 x12015-003741 ENU 12.2