

Emergency Firefighting Water System (EFWS) Update

John Scarpulla SFPUC

What is the EFWS?

- Emergency Firefighting Water System (EFWS): A high pressure fire-suppression water system built after 1906 earthquake.
- Hetch Hetchy Regional Water System = Primary Source of Water
- EFWS ownership transferred to SFPUC in 2010
- SFFD is the end user: System improvements and expansion approved by SFFD, SFPUC, and Public Works
- Modeling utilized to guide decision making.

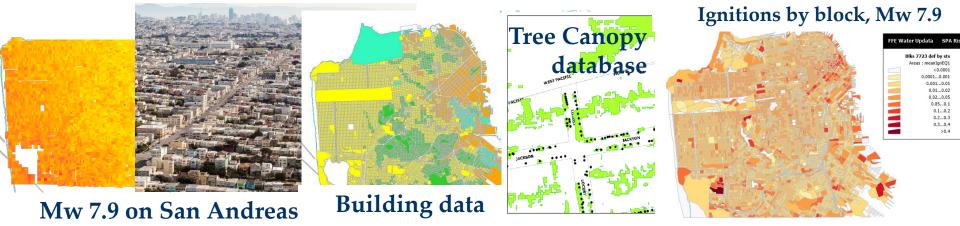
Agenda

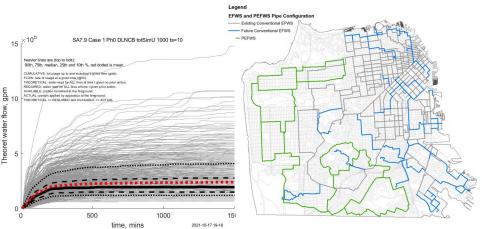
1. Findings of Studies:

- a) Neighborhood Firefighting Demand Study
- b) Seawater Supply Study

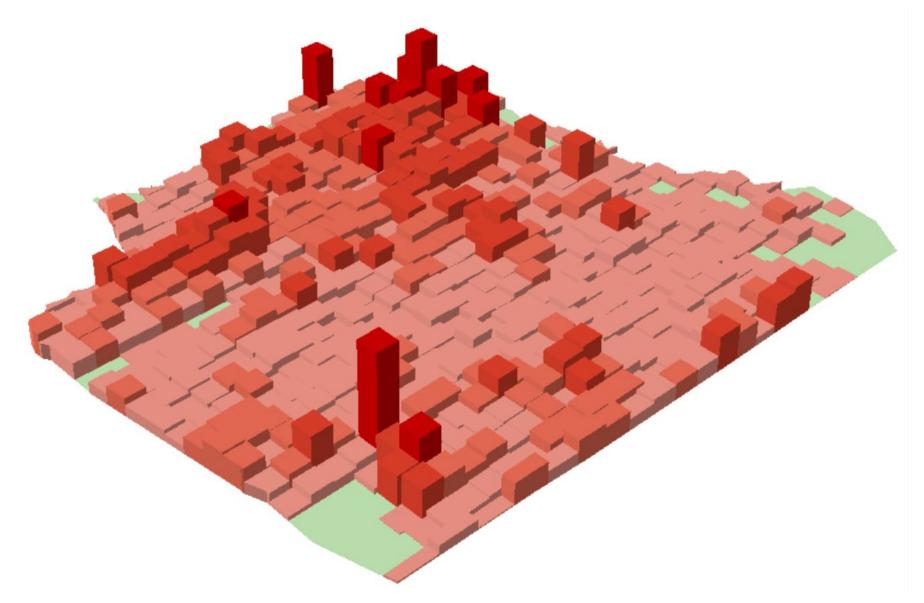
2. Proposed Citywide Plan

- a) Pipelines
- b) Water Sources
- c) SFFD Resources


Neighborhood Firefighting Demand Study - Overview

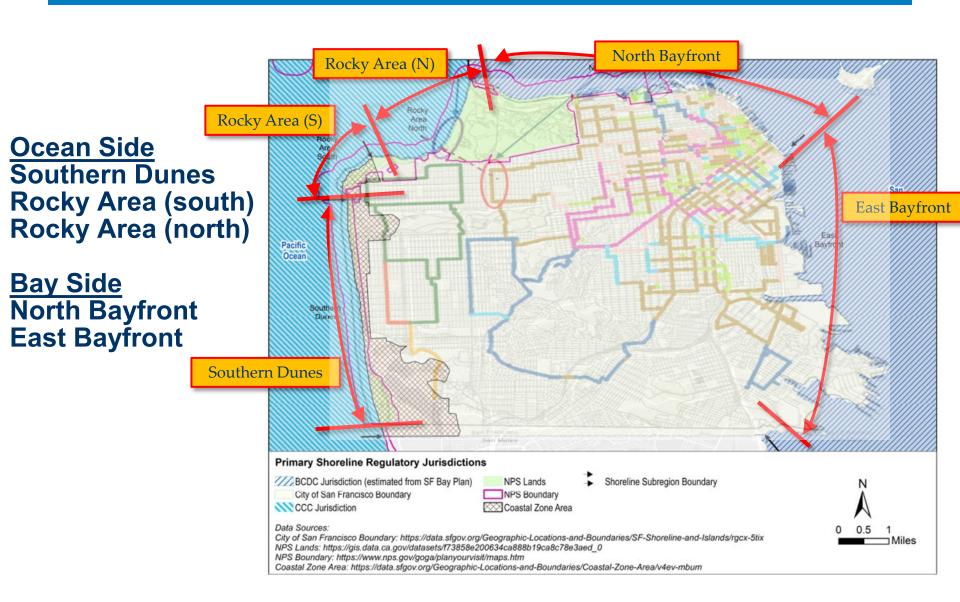

- Refine earthquake firefighting water demands
- Based on:
 - Seismological, geotechnical, building inventory (materials, density, sprinkler systems, etc.), vegetation, SFFD resources, & other data
 - City buildings: current and future growth:
 - Planning Dept. Reports and Pipeline Projections
 - Area Redevelopment Plans
 - Capital Construction Projects in Area
 - Association of Bay Area Government Reports and Projections
 - EFWS
 - Current and extended
- Current and for 2030, 2040, 2050

Neighborhood Firefighting Demand Study - Illustrated


Analysis: Earthquake → Buildings/ignitions → Weather/fire spread → SFFD Ops → water system functionality →

Neighborhood Firefighting Demand Study - Findings

15	15 × 10 ⁵ SA7.9 Case 1 Ph0 DLNCB totSimU 1		Case		Total Required Water Flow (millions gallons)		Required Water Flow (gpm)		
15				median	mean	75%	median	mean	75%
	heavier lines are (top to bott): 90th, 75th, median, 25th and 10th %, red dotted is mean CUMULATIVE: tot usage up to and including a given time (gals). FLOW: rate of usage at a given time (ggm). THEORETICAL: water reqd for ALL fires at time t given no prior action. REQUIRED: water reqd for ALL fires at time t given prior action. AVAILABLE: portion furnished at the fireground. ACTUAL: portion applied by apparatus at the fireground.	1	SA7.9 Ph0 DLNCB	218	284	309	165,059	228,439	243,896
		2	SA7.9 Ph0 DMNCB	176	225	266	131,445	180,384	218,535
		3	SA7.9 Ph0 DHNCB	162	205	246	120,072	166,243	195,212
		4	SA7.9 Ph0 NENCB	141	194	223	112,510	159,258	184,002
=		20	SA7.9 Phl NEYCF	143	205	256	112,621	167,254	202,586
d 10		22	SA7.9 Phl NENCF	161	209	241	128,048	169,887	202,599
r flow, gl	THEORETICAL >= REQUIRED and AVAILABLE >= ACTUAL	48	SA7.9 Ph2 NEYCF	143	213	221	113,026	178,722	176,621
		50	SA7.9 Ph2 NENCF	142	194	216	112,719	159,024	173,056
		64	SA7.9 Ph3 DLYCF	216	282	340	165,368	233,123	274,085
ate		65	SA7.9 Ph3 DLVAF	254	222				85,350
š	8/1								55,097
	5 240 000 com is required 14								_
et			. 1 010	000	~**	m i	ren	nired	31,481
eoret	Canalusion: Approxin	na	tely 240	<u>,000</u>	gp	m is	s req	<u>uirec</u>	31,481 0,338
Theoret 9	Conclusion: Approxin	<u>1a</u>	<u>tely 240</u>	<u>,000</u>	gp	m is	s req	<u>uirec</u>	31,481 0,338 8,888
Theoret water flow, gpm	Conclusion: Approxin	na		<u>,000</u>	gp	m is	s req	uirec	31,481 0,338 8,888 188,237
Theoret 5	Conclusion: Approxin	1a ⁻	tely 240 SA7.9 Ph3 DHYAF	216	gp	m is		160,093 245,180	31,481 0,338 8,888 188,237 289,105
Theoret	Conclusion: Approxin						108,833	160,093	188,237
		73	SA7.9 Ph3 DHYAF	216	306	371	165,255	160,093 245,180	188,237 289,105
		73 74	SA7.9 Ph3 DHYAF SA7.9 Ph3 DHNCF	216 136	306 204	371 245	165,255 105,150	160,093 245,180 170,313	188,237 289,105 191,507
	Conclusion: Approxin	73 74 75	SA7.9 Ph3 DHYAF SA7.9 Ph3 DHNCF SA7.9 Ph3 DHNAF	216 136 208	306 204 254	371 245 305	165,255 105,150 157,598	160,093 245,180 170,313 198,034	188,237 289,105 191,507 237,922
		73 74 75 76	SA7.9 Ph3 DHYAF SA7.9 Ph3 DHNCF SA7.9 Ph3 DHNAF SA7.9 Ph3 NEYCF	216 136 208 150	306 204 254 215	371 245 305 241	165,255 105,150 157,598 120,181	160,093 245,180 170,313 198,034 180,760	188,237 289,105 191,507 237,922 198,990
	0 500 1	73 74 75 76 77	SA7.9 Ph3 DHYAF SA7.9 Ph3 DHNCF SA7.9 Ph3 DHNAF SA7.9 Ph3 NEYCF SA7.9 Ph3 NEYAF	216 136 208 150 208	306 204 254 215 294	371 245 305 241 334	165,255 105,150 157,598 120,181 161,549	160,093 245,180 170,313 198,034 180,760 237,548	188,237 289,105 191,507 237,922 198,990 262,762
		73 74 75 76 77	SA7.9 Ph3 DHYAF SA7.9 Ph3 DHNAF SA7.9 Ph3 DHNAF SA7.9 Ph3 NEYCF SA7.9 Ph3 NEYAF SA7.9 Ph3 NENCF	216 136 208 150 208 144	306 204 254 215 294 193	371 245 305 241 334 236	165,255 105,150 157,598 120,181 161,549 112,664	160,093 245,180 170,313 198,034 180,760 237,548 162,089	188,237 289,105 191,507 237,922 198,990 262,762 195,184


Seawater Supply Study

High-level Evaluation:

- Regulatory / Permitting
- Siting Considerations
- Geotechnical and Geological
- Sea Level Rise
- Engineering
- Intake Types
- Capital Cost
- Operations & Maintenance
- Operating Costs

Seawater Supply Study: Areas of Study

Seawater Supply Study: Findings

Seawater pump station not immediately advised for Westside:

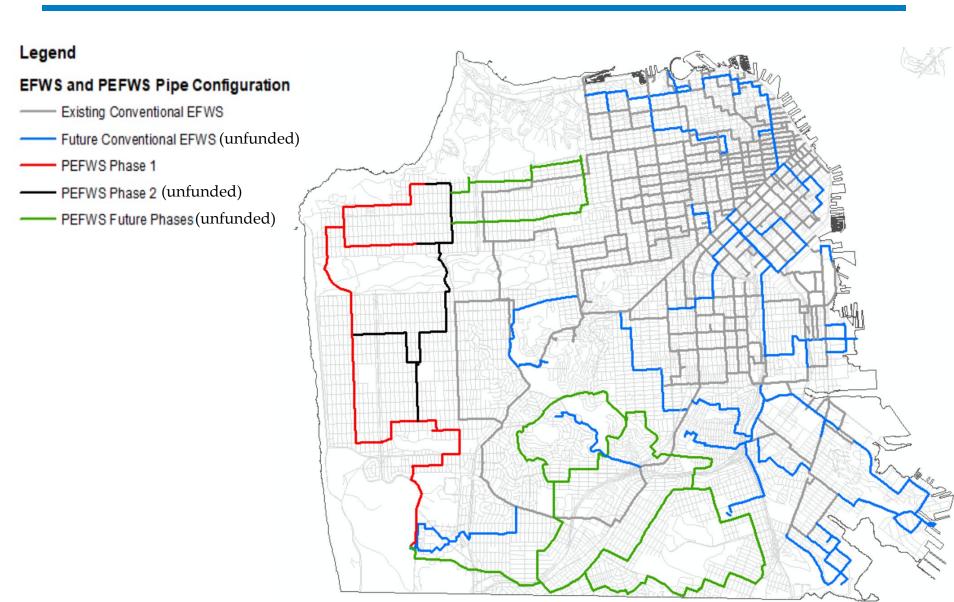
- A. Adequate water supply to meet all firefighting demands:
 - GPM Need for Westside: 37,000 GPM
 - Lake Merced and Sunset Reservoir meet this need and provide multiple weeks of supply storage.
- Difficult and lengthy permitting process
 - Federal Permitting: Army Corps of Engineers and National Park (primary)
 - State Permitting: California Coastal Commission (primary)
 - Movement of Infrastructure Away from Shoreline III.
- C. Expensive to install and maintain
 - Costly to install T.
 - \$68 million for a 3,000 GPM pump station
 - \$180 million for pump station to cover all Westside demands
 - Costly to operate: II.
 - i. Life Cycle: \$78 million for 3,000 GPM pump station
 - Life Cycle: \$286 million for pump station to cover all Westside demands 10

Seawater Supply Study: Findings Cont'd.

Recommend: expand capacity of two existing pump stations and new pump station to serve Southeast and East:

- a) Water supply shortage in the areas
- b) Easier to permit
- c) Easier and more cost efficient to install and maintain

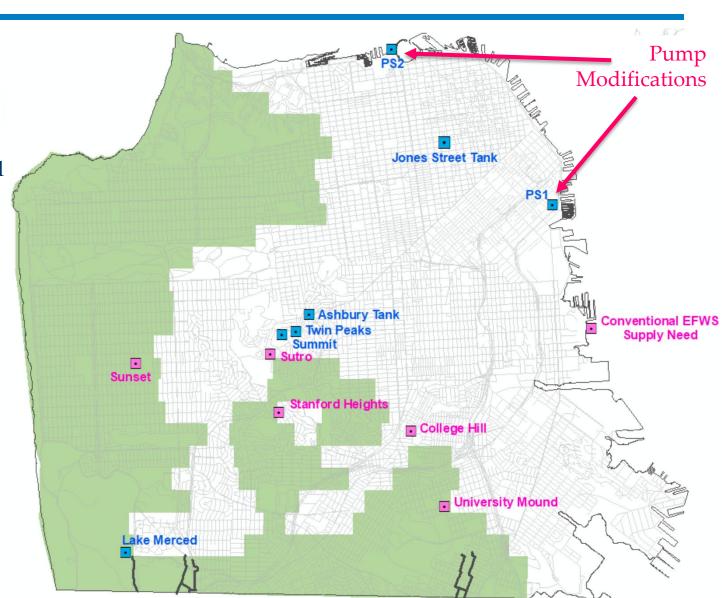
Proposed Citywide Plan


Expand EFWS Pipelines

Add additional water sources

Resources for SFFD

Proposed Pipelines



Proposed Water Sources

PEFWS Coverage

Blue = Existing/Funded

Pink = Proposed new water source

Water Sources in a Table

	Supply Sources	Storage (Ga	allons)
Supplied by	Twin Peaks Reservoir (existing)	9 million	
Hetch Hetchy	Ashbury Tank (existing)	500,000	
Regional	Jones St. Tank (existing)	750,000	
Water System	Summit (existing)	12.6 million	
	Sutro (proposed)	27 million	
	Sunset Reservoir (proposed)	158 million	
	University Mound (proposed)	122 million	
	College Hill (proposed)	12.2 million	
	Stanford Heights (proposed)	10.8 million	
Fresh Water	Lake Merced (connection funded for Phase 1 of Westside Project)	1.7 Billion	
			Pump Capacity
Seawater	Pump Station 1 (existing)		10,000 GPM
	Pump Station 2 (existing)		10,000 GPM
	Pump Stations 1 & 2 Modifications (proposed)		CO 000 CDM
	Conventional EFWS Supply Need (proposed)	60,000 GPM	

	Project Costs (\$M) Unescalated (2021\$)		
Pipelines			
Potable EFWS (1)	\$	420	
Conventional EFWS	\$	510	
Pump Stations and Facilities	\$	700	
Total	\$	1,630	

(1) Excludes previously funded Phase 1 of Westside Potable EFWS

Program Costs - Escalation

		Project Costs (\$M) Escalated (2)			
	Const	15-Year truction Period (3)	Con	25-Year struction Period (3)	
Pipelines					
Potable EFWS (1)	\$	670	\$	840	
Conventional EFWS	\$	830	\$	1,030	
Pump Stations and Facilities	\$	1,140	\$	1,420	
Total	\$	2,640	\$	3,290	

- (1) Excludes previously funded Phase 1 of Westside Potable EFWS
- (2)5-year planning/design
- (3) Assumes 4% annual escalation

Summary

- Present and future firefighting water needs have been quantified through 2050
- City-wide plan for EFWS to meet future demands has been developed
- Cost of improvements is \$1.6B (2021\$)
- SFFD resources for best use of EFWS
- Planning concept will be optimized in future phases

Questions?

